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Abstract: Small-cell lung cancer (SCLC) represents 15% of all lung cancers and it is clinically the
most aggressive type, being characterized by a tendency for early metastasis, with two-thirds of the
patients diagnosed with an extensive stage (ES) disease and a five-year overall survival (OS) as low
as 5%. There are still no effective targeted therapies in SCLC despite improved understanding of the
molecular steps leading to SCLC development and progression these last years. After four decades,
the only modest improvement in OS of patients suffering from ES-SCLC has recently been shown in
a trial combining atezolizumab, an anti-PD-L1 immune checkpoint inhibitor, with carboplatin and
etoposide, chemotherapy agents. This highlights the need to pursue research efforts in this field.
Focal adhesion kinase (FAK) is a non-receptor protein tyrosine kinase that is overexpressed and
activated in several cancers, including SCLC, and contributing to cancer progression and metastasis
through its important role in cell proliferation, survival, adhesion, spreading, migration, and invasion.
FAK also plays a role in tumor immune evasion, epithelial-mesenchymal transition, DNA damage
repair, radioresistance, and regulation of cancer stem cells. FAK is of particular interest in SCLC, being
known for its aggressiveness. The inhibition of FAK in SCLC cell lines demonstrated significative
decrease in cell proliferation, invasion, and migration, and induced cell cycle arrest and apoptosis.
In this review, we will focus on the role of FAK in cancer cells and their microenvironment, and its
potential as a therapeutic target in SCLC.
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1. Introduction

Lung cancer, which arises from lung epithelial cells, is histologically divided into two main types:
small-cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC), which represent 15% and 85% of
the cases, respectively [1]. As opposed to SCLC, oncogenic drivers with sensitivity to targeted therapies
have been discovered in NSCLC. Tyrosine kinase inhibitors (TKIs) targeting epidermal growth factor
receptor (EGFR) mutations, anaplastic lymphoma kinase (ALK) rearrangements, or other oncogenic
abnormalities have brought remarkable improvements in the outcome of oncogenic-driven NSCLC
patients [2]. Immunotherapy with anti-programmed death-(ligand) 1 (PD-(L)1) immune checkpoint
inhibitors (ICIs) has also significantly improved the survival of NSCLC patients without oncogenic
drivers [3–9]. Clinically, SCLC is the most aggressive type of lung cancer, being characterized by a high
growth rate, a fast doubling time, and a tendency for early metastasis, with two-thirds of the patients
diagnosed with an extensive stage (ES) disease [10,11]. While a good initial response to chemotherapy
and/or radiation therapy is observed in most patients, they typically recur or progress rapidly after the
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primary treatment, with a median overall survival (OS) of 24–38 months in limited stage (LS) [12,13]
and 7–10 months in ES [14], and a five-year OS as low as 5% [1].

Despite improvements in the understanding of the molecular steps that lead to SCLC development
and progression these last years, there are still no effective targeted therapies in SCLC. Rovalpituzumab
tesirine (Rova-T) is an antibody-drug conjugate (pyrrolobenzodiazepine (PBD)-dimer cytotoxic) that
is directed against Delta-like 3 (DLL3), an inhibitory NOTCH ligand, which has been shown to be
overexpressed on the surface of SCLC cells [15]. Despite encouraging preclinical and early clinical
results, targeted therapy with Rova-T underperformed in the phase II TRINITY trial, including
pretreated SCLC patients with high levels of DLL3 on tumor cell surface [15,16]. After four decades,
the only modest improvement in the OS of patients suffering from ES-SCLC has recently been shown
in a trial combining atezolizumab, an anti-PD-L1 ICI, with carboplatin and etoposide, chemotherapy
agents [17]. In this trial, the OS was 10.3 months in the chemotherapy alone arm, while it was
12.3 months in the chemotherapy plus immunotherapy arm. Based on this positive trial, atezolizumab
that is associated to carboplatin an etoposide recently became the new standard of care in the first-line
treatment of ES-SCLC [17]. At relapse or progression after a first-line treatment, a rechallenge
with platinum and etoposide is proposed to tumors that are considered to be sensitive to platinum
(relapse or progression within 60 or 90 days of completion of chemotherapy) [18], while a second-line
chemotherapy with topotecan is proposed to tumors platinum-refractory (relapse or progression
before three to six months). However, the response rates are poor and OS ranges from 1.2 months
to 7.6 months based on systematic reviews of real-world data 15 [19]. These disappointing results
highlight the need for novel therapies.

Focal adhesion kinase (FAK) is a 125 kDa non-receptor protein tyrosine kinase that is known
to be overexpressed and activated in several cancers, including SCLC [20–28]. Unlike receptor
tyrosine kinases (RTKs), such as epidermal growth factor receptor (EGFR), non-RTKs, such as FAK,
are cytoplasmic enzymes that lack transmembrane and extracellular domains [29]. FAK localizes to
focal adhesions and it is triggered off by extracellular signals, such as integrin-mediated adhesion
and some growth factors [30]. Therefore, FAK plays a central role in the interaction between cells,
including cancer cells and their microenvironment. The FAK structure includes an NH2-terminal
Protein4.1-ezrin-radixin-moesin (FERM) domain, a central kinase domain, two proline-rich motifs,
and a COOH-terminal focal adhesion targeting (FAT) domain. FAK is maintained in an inactive state
by the binding of the FERM domain to the kinase domain, which blocks access to the catalytic site
and sequesters the activation loop, as well as the key autophosphorylation site tyrosine 397 (Tyr397)
(Figure 1). The engagement of integrins with the extracellular matrix (ECM) or growth factors leads to
signals that displace the FERM domain, resulting in rapid autophosphorylation of Tyr397, which is a
critical event in signal transduction by FAK [30,31]. Tyr397 phosphorylation provides a binding site
that recruits and activates Src through the SH2 domains of Src family kinases. The FAK-Src complex
therefore maintains Src and FAK in their activated states, creating a functional kinase complex [32].

Based on FAK overexpression and/or increased activity in cancer and its known function in
multiple biological processes that play a role in the development and progression of cancers, such as
crosstalk between cell and his microenvironment, cell growth, survival, adhesion, spreading, migration,
invasion, angiogenesis, DNA damage repair, radioresistance, and regulation of cancer stem cells,
it has been suggested that increased the expression and/or activity of FAK may have a critical role
in cancer development and progression [33]. Therefore, FAK is a potential target for anti-cancer
therapy, especially in SCLC, being known to be a highly invasive cancer. Small-molecule inhibitors
targeting the FAK kinase domain and preventing FAK activation (Tyr397 autophosphorylation) have
been developed. Phase I trials with GSK2256098 [34–36], VS-6062 [37], defactinib (VS-6063) [38–40],
or BI853520 [41–43] have shown an acceptable safety profile and favorable pharmacokinetics. Most
frequent treatment-related adverse events included digestive disorders (nausea, diarrhea, vomiting),
headaches, reversible proteinuria, and unconjugated hyperbilirubinemia [34–42]. With GSK2256098,
the best response of stable disease was observed in 37% of glioblastoma (three patients, median PFS
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5, seven weeks) [36] and in 45% of advanced solid cancers (28 patients) [35]. With VS-6062, 34% of
patients (31 patients) with advanced solid tumors exhibited stable disease at six weeks, including one
case of SCLC for ≥6 cycles cycles [37]. VS-6063 led to the stabilization of advanced solid tumors in
43% of Caucasian patients (six cases) after six weeks of treatment [38] and in 33% of Asian patients
(three cases) during more than 24 weeks (median PFS of 63 days) [40]. Recently, the combination of
the FAK inhibitor GSK2256098 and the MEK inhibitor trametinib in recurrent advanced pancreatic
ductal adenocarcinoma did not provide significant clinical activity in a phase II trial (PFS of 1.6 month
and OS of 3.6 months) [44]. In malignant pleural mesothelioma, defactinib in maintenance after
first-line chemotherapy in a phase II trial did not provide any benefit either (PFS of 4.1 months
with defactinib vs 4.0 months with placebo, and OS of 12.7 months with defactinib vs. 13.6 months
with placebo) [45]. Preoperative administration of defactinib in the ongoing phase II clinical trial
NCT02004028 appears promising, with therapeutic activity (13% objective partial response, 67% stable
disease, 17% tumor progression) and beneficial modification of the tumoral microenvironment [46].
Several clinical trials with defactinib associated with immunotherapy (NCT02758587, NCT03727880,
NCT02943317), RAK/MEK inhibitor (NCT03875820), or chemotherapy (NCT02546531) are ongoing,
with some of them being open to SCLC inclusion (Table 1) [34–37,39–45,47–61]. Other small-molecules
targeting the protein-protein interactions between FAK and other proteins, such as VEGFR-3, called
scaffolding inhibitors, have been developed and shown to induce antitumoral effects in preclinical
studies. Further research is needed to find predictive biomarkers of response to FAK TKI alone or,
probably more promising, in association with another drug.
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Figure 1. The domain organization and activation of focal adhesion kinase (FAK). FAK is composed
of a central kinase domain (KD), an amino-terminal side that is flanked by a protein band
4.1-ezrin-radixin-moesin (FERM) homology domain, and a carboxy-terminal focal adhesion targeting
(FAT) domain flanked by proline-rich regions (PRRs). FAK localizes to focal adhesions and is triggered
off by extracellular signals such as integrin-mediated adhesion and some growth factors. FAK is
maintained in an inactive state by the binding of the FERM domain to the kinase domain, which blocks
access to the catalytic site and sequesters the activation loop, as well as the key autophosphorylation
site tyrosine 397 (Tyr397). Engagement of integrins with the extracellular matrix (ECM) or growth
factors leads to signals that displace the FERM domain, resulting in rapid autophosphorylation of
Tyr397, which is a critical event in signal transduction by FAK.

Table 1. FAK inhibitors with anti-tumor activity in preclinical studies and clinical trials.

Name Type Specificity Cancers Targeted Study Phase References

TAE-226 Novartis Kinase inhibitor
ATP competitive

FAK, IGF-IR,
c-Met, Pyk2 Glioma, ovarian Preclinical [47,62]

PF-573,228 Pfizer Kinase inhibitor
ATP competitive FAK Prostate, breast Preclinical [48]

GSK2256098
GlaxoSmithKline

Kinase inhibitor
ATP competitive

Reversible
FAK, UGT1A1

Solid tumors (ovarian,
pancreatic, meningioma,
glioblastoma, malignant
pleural mesothelioma)

Clinical: phase
I & II

[34–36,44,49]
NCT00996671,
NCT02523014
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Table 1. Cont.

Name Type Specificity Cancers Targeted Study Phase References

NVP-TAC544 Kinase inhibitor
ATP competitive FAK N/A Preclinical [50]

VS-4718
(PND-1186)

Verastem

Kinase inhibitor
ATP competitive

Reversible
FAK, Pyk2

Solid tumors (pancreas,
breast, ovarian), acute

myeloid leukemia, B-cell
acute lymphoblastic

leukemia

Clinical: phase
I [51]

VS-6062 (PF-562271
and PF271)
Verastem

Kinase inhibitor
ATP competitive

Reversible

FAK,
CDK2/CyclinE,
CDK3/CyclinE,
CDK1/CyclinB,

Pyk2

Prostate, pancreatic, head
and neck

Clinical: phase
I [37,52]

VS-6063
(Defactinib)

Verastem

Kinase inhibitor
ATP competitive FAK, Pyk2

NSCLC, pancreatic cancer,
ovarian, malignant pleural

mesothelioma,
hematologic

Clinical: phase
I/Ib & II

[38–40,45,53]
NCT02758587
NCT02004028
NCT03875820
NCT03727880,
NCT02943317,
NCT02913716,
NCT02465060,
NCT02546531

1H-Pyrrolo(2,3-b)
Merk Serono

Kinase inhibitor
non-ATP

competitive

Hinge region of
FAK N/A Preclinical [54]

C4 CureFAKtor
Pharmaceuticals Scaffold inhibitor FAK /VEGFR-3 Neuroblastoma,

pancreatic, breast Preclinical [55–57]

Compound R2
(Roslins)

CureFAKtor
Pharmaceuticals

Scaffold inhibitor FAK, p53 Colon, reast Preclinical [58]

Y11 CureFAKtor
Pharmaceuticals Scaffold inhibitor FAK Y397 site Colon, breast Preclinical [59]

BI853520 ATP competitive
inhibitor FAK

Malignant pleural
mesothelioma,

non-hematologic
malignancies

Preclinical,
clinical [42,43,60]

Abbreviations: CDK: Cyclin-dependent kinases 1, 2, 3; FAK: focal adhesion kinase; IGF-IR: insulin-like
growth factor 1 (IGF-1) receptor; N/A: data not available; Pyk2: proline-rich tyrosine kinase 2; UGT1A1:
UDP-glucuronosyltransferase 1-1; VEGFR-3: vascular endothelial growth factor receptor 3.

In this review, we will focus on the role of FAK in tumor development and progression and its
potential as a therapeutic target in SCLC.

2. FAK Overexpression and/or Activation in Human Cancers, Its Frequency and Mechanisms

Increased FAK expression or activity has been observed by various methods (Western blot, IHC,
Northern blot, quantitative real-time polymeric chain reaction, immunohistochemistry (IHC)) in many
human cancers, including lung, head and neck, oral cavity, thyroid, breast, ovarian, prostate, colon,
liver, stomach, pancreas, kidney, skin, and bone cancers [63–66]. Increased FAK expression or activity
has also been reported in various tumor-derived cancer cell lines [64].

IHC in 85 human SCLC tissues revealed that total FAK was localized to the cytoplasm of 78/85
(92%) SCLCs, and that its expression was low in 11 (13%), moderate in 17 (20%), and high in 50
(59%) SCLCs [24]. In a more recent study, multiplex immunofluorescence staining in 105 SCLC and
95 non-NSCLC patients, as well as 37 healthy donors, revealed that FAK and phospho-FAK (Y397)
expression was significantly higher in lung cancer than in normal lung, and significantly higher in
SCLC when compared to NSCLC tissues (p < 0.01). Moreover, the ratio between phospho-FAK and
FAK staining scores was significantly higher in SCLC than in NSCLC tissues (p < 0.01) [67]. In the
SCLC cell lines, FAK and phospho-FAK (Y397) expression has also been shown to be increased [28,68].
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We performed a Pubmed search of studies evaluating FAK protein expression in human cancers by
IHC to determine the percentage of cancer samples with increased FAK protein expression. The used
methods are described in the legend of Figures 2 and A1. Based on this Pubmed search, we found an
overexpression of FAK at the protein level, as evaluated by IHC, in 80% of pancreatic adenocarcinoma,
72% of neuroblastoma, 70% of ovarian epithelial tumors, and many other cancers, including 52% of
NSCLC and 69% of SCLC (Figure 2) [20,21,24,26,69–109].
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Figure 2. Frequency of focal adhesion kinase (FAK) overexpression at protein level in human solid
cancers. A Pubmed search of studies evaluating FAK protein expression in human cancers by
immunohistochemistry (IHC) was performed to determine the percentage of cancer samples with
increased FAK protein expression. The following keywords were used in the search strategy: FAK [All
Fields] AND (“neoplasms” [MeSH Terms] OR “neoplasms” [All Fields] OR “cancer” [All Fields]) AND
(“immunohistochemistry” [MeSH Terms] OR “immunohistochemistry” [All Fields]). The results were
limited to English language studies. Manual searches of reference articles from applicable studies were
performed to identify articles that may have been missed by the computer-assisted search. Abstracts
were excluded for cell lines, pre-invasive tumors, if insufficient data to evaluate the methodological
quality, absence of tumor total FAK staining, absence of FAK quantification or proportion, absence of
proportion of samples overexpressing FAK. Non-eligible trials included ecological studies, case reports,
reviews, editorials, and animal trials. This work was conducted in accordance with the PRISMA
guidelines (Figure A1). N = number of cancers analysed.

In The Cancer Genome Atlas (TCGA) database [110], we found increased FAK expression at the
mRNA level in several human malignancies, including 51% of uveal melanoma, 49% of ovarian serous
cystadenocarcinoma, 41% of liver hepatocellular carcinoma, 34% of breast invasive carcinoma, 23% of
lung adenocarcinoma, and 20% of lung squamous cell carcinoma, while not being reported in SCLC
(Figure 3A).
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Figure 3. (A) Frequency of increased focal adhesion kinase (FAK) expression at mRNA levels in
human cancers. The Cancer Genome Atlas (TCGA) was queried using cbioportal.org to determine the
percentage of tumor samples with increased levels of FAK mRNA expression. Search criteria included
mRNA expression data (Z-scores for all genes) and tumor datasets with mRNA data. N = number of
cancers analysed in the TCGA. (B) Frequency of focal adhesion kinase (FAK) genomic alterations in
human cancers. The Cancer Genome Atlas (TCGA) was queried using cbioportal.org to determine
the percentage of samples with FAK genomic alterations (mutations, fusions, amplifications, deep
deletions, multiples alterations) in different cancers. Search criteria included PTK2 (FAK). N = number
of cancers analysed in the TCGA.
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Despite recent progress, the underlying mechanisms of FAK overexpression and activation
in cancer, especially in SCLC, remain unclear. The control mechanisms include gene alterations,
transcriptional regulation, post-translational modifications, and interaction with proteases,
phosphatases, etc. Among gene alterations, FAK gene amplification within chromosome 8q24.3
and isochromosome formation has been described in many cancers [90,111].

Based on the TCGA database [110], the FAK copy number gain is found in 26% of ovarian
epithelial tumors, 11.5% of oesophageal squamous cell, 10.4% of invasive breast, 9.7% of hepatocellular
carcinoma, and less frequently in other tumors, such as 4.8% of NSCLC (Figure 3B), while there are no
data related to SCLC. In SCLC, specifically, the genomic profiling of SCLC tumor samples while using
genomic comparative hybridization revealed 70 regions of significant copy number gain and 55 regions
of significant copy number loss, among which an enrichment of 11 genes associated with the focal
adhesion pathway, including amplified FAK, was found [28]. The FAK gene copy number gain was
confirmed by fluorescent in situ hybridization (FISH) in 80% of the SCLC tissues. FAK amplification was
also correlated to increased FAK mRNA expression. At the protein level, as evaluated by IHC, FAK was
expressed in the cytoplasm of 78/85 (92%) SCLC tissues [24]. In the TCGA database, point mutations
with a single-base substitution in FAK gene, resulting in amino acid substitutions in FAK protein, are
found in 6.1% of endometrial carcinoma, 3.5% of colorectal adenocarcinoma, 3.3% of melanoma, 2.7%
of cholangiocarcinoma, and less frequently in other tumors, including NSCLC (Figure 3B), while no
data are available in SCLC. Somatic mutations (A1004S point mutations) and splicing variants of FAK
have been reported in 7.7% of human NSCLC (Figure 3B) [112] and they have been shown to exhibit
increased autophosphorylation and increased sensitivity to FAK kinase inhibitors as compared with
wild-type FAK in patient-derived xenograft models [112].

However, FAK gene copy number gains and mutations have not always been correlated with
increased FAK expression or activity [28]. Therefore, epigenetic mechanisms may also play a role in
increasing FAK expression or activity. Analysis of human FAK gene promoter has identified putative
binding sites for transcription factors. NFκB [113], Argonaute 2 (Ago2) [114], and Nanog [59] are known to
activate FAK transcription, while TP53 is a well described repressor of the FAK promotor [115]. Though not
explored in SCLC, this last mechanism might be of particular interest in SCLC where TP53 is universally
inactivated [116]. According to TCGA, concomitant TP53 mutation and FAK amplification/mutation
co-occurred in 2% of all cancers. However, these data do not include SCLC samples. The lack of material
that is dedicated to research is unfortunately a major obstacle in the study of SCLC.

Finally, FAK activation is induced by the engagement of integrins with the ECM or the binding of
extracellular growth factors to their receptors. SCLC is well-known to release growth factors, such as
bombesin, gastrin-related peptide (GRP), HGF, VEGF, TGF-β, HGF, and FGF, which have been shown
to activate focal adhesion pathways in several cancers [117–125].

Similarly, it has been demonstrated that bombesin, gastrin, and bradykinin phosphorylated FAK
in SCLC cell lines in vitro [126], which suggests autocrine and paracrine regulation.

3. FAK Role in Proliferation, Cell Cycle, and Survival

FAK activation during cell adhesion protects cells from anoikis, a form of apoptosis that is induced
by cell detachment from ECM, favouring cancer growth and metastasis [127]. FAK is implicated in
several pathways that contribute to cell survival. Phosphorylated FAK at Tyr397 can bind PIK3R2,
which leads to the activation of AKT that inhibits apoptosis by regulating various molecules. Among
other mechanisms, there is the suppression of apoptosis by FAK through c-JUN kinase activation
downstream of CAS [33] and the inhibition of RIP interaction with the death receptor complex [128].

FAK also induces cell proliferation through the stimulation of cell cycle progression. One of the
mechanisms is the formation of FAK/Src complex that allows for Src to phosphorylate FAK at Tyr925
and mediate its interaction with Grb2, which leads to the activation of the RAS-MAPK signaling
pathway [40]. Another mechanism involves the FAK-induced increased expression of cyclin D1 and
decreased expression of cycline-dependent kinase (Cdk) inhibitor p21 [129–132]. Other cell cycle
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regulators, such as cyclin E, Cdk inhibitor p27, and Skp2, also mediate FAK regulation of cell cycle
progression [133–136]. Moreover, FAK is important for tumor cell-induced remodeling of the tumor
matrix, which produces a rigid microenvironment and facilitates cell proliferation [137].

Specifically, in SCLC cell lines, it has been shown that the inhibition of FAK activity with PF-573,228,
a FAK TKI, decreased proliferation, DNA synthesis, induced cell-cycle arrest in G2-M phases, and
increased apoptosis in the NCI-H82, NCI-H146, NCI-H196, and NCI-H446 SCLC cell lines [138].
Treatment with increasing concentrations of PF-228 (0.1 to 10 µM) dose-dependently decreased the
FAK phosphorylation (Tyr397) in these four cell lines, without modifying total FAK expression, and
the inhibition of FAK activity with 1 to 10 µM PF-228 significantly decreased their proliferation, also
dose-dependently (p < 0.001 for all tested concentrations beside 1 µM in NCI-H196), as assessed
by a WST-1 assay. Cell cycle analysis showed that PF-228 inhibited progression through cell cycle
by significantly reducing the S phase and inducing cell cycle arrest in the G2/M phases in the four
cell lines after 24h-treatment, dose-dependently (p < 0.001). PF-228 at concentrations of 1 to 5 µM
also significantly induced apoptosis in the four cell lines, as demonstrated by a dose-dependent
increase of PARP p85 expression by WB after 48h-treatment. This was confirmed by flow cytometry in
NCI-H82 and NCI-H446 cell lines, with a significant increase of BrdU-positive and activated Caspase
3-positive cells after 48h-treatment (p < 0.001 for all tested concentrations, except 1 µM in NCI-H446
in the Caspase-3 assay). Genetic inhibition of FAK through stable transduction with FAK shRNA
and/or FAK-related non-kinase (FRNK), a splice variant lacking the N-terminal and kinase domains
of FAK, revealed that the FAK-targeting (FAT) domain (attached to focal adhesion complex, where it
inhibits pro-proliferative proteins) was necessary to inhibit proliferation, cell cycle progression, and
survival [138]. Indeed, FAK shRNA transduction did not affect these functions, while the restoration
of FAT domain by FRNK transduction inhibited proliferation, DNA synthesis, and induced apoptosis
in the evaluated SCLC cell lines. Additionally, while FAK shRNA transduction increased the active
Rac1 level, FRNK re-expression in cells that were previously transduced with FAK shRNA decreased it.
Therefore, this study not only suggested that FAK is important in SCLC biology, but also that targeting
its kinase domain might have a therapeutic potential, while targeting its FAT domain might have
Rac1-mediated pro-tumoral activity and thus should be avoided.

4. FAK Role in Adhesion, Migration, and Invasion

FAK induces morphological changes in cells, including the formation of podosomes or invadopodia,
contributing to cell migration [68,139,140]. Moreover, cancer cells overexpressing FAK are able to
invade tissues [141]. FAK overexpression contributes to the metastatic phenotype of cancer cells by
promoting cell migration and invasion.

Cell migration is a complex process that consists of several coordinated events, including protrusion
of the leading edge, adhesion of the leading edge to the substrate [142], translocation of the cell body,
and release of the trailing edge [143]. Thus, a strict regulation of tension at specific times and in
specific areas of the cell is required for cell migration [144,145], where FAK plays an important role
by sensing the mechanical forces that are generated in or exerted on cells [146], and modulating cell
responses to environmental stimuli. Once activated by integrins, G protein-coupled receptors ligands,
or growth factors, FAK is autophosphorylated at Tyr397 and activates proteins, such as Src, p130CAS,
paxillin, and PIK3R2 [147], to regulate adhesion turnover at the cell front, a process that is central to
migration [147–151]. FAK is indeed required for the organization of the leading edge in migrating
cells [152]. The formation of a complex between FAK and Src, leading to the phosphorylation of the
adaptor molecule CAS by the FAK/Src complex [153–157], is one of the best characterized downstream
signaling pathways that mediate FAK-stimulated cell migration. A second mechanism involves FAK
interaction with PIK3 and an adaptor molecule, Grb7 [158,159]. A third mechanism involves the
modulation of the assembly and disassembly of actin cytoskeleton through the effect of FAK on the Rho
family GTPases. Among the Rho family GTPases, FAK/Src signaling has, in particular, been implicated
in regulating the activities of Rac1 and RhoA.



Cancers 2019, 11, 1683 9 of 32

Besides its role in cell migration, FAK promotes invasion in normal and cancer cells by various
mechanisms. In one of them, FAK promotes the formation of the Src-CAS-Crk-Dock180 complex,
which activates Rac1 and JNK, and leads to increased expression or activity of metalloproteinases 2
(MMP2) and 9 (MMP9) [68]. MMPs are concentrated and activated at actin-rich cell/ECM contacts,
termed podosomes or invadopodia, which are distinct from focal adhesion. In another mechanism,
FAK cooperates with Src to disrupt the E-cadherin-based intercellular adherens junctions [160],
contributing to EMT and, therefore, to the invasive phenotype of metastatic carcinomas through
increased cell migration and remodelling of the ECM microenvironment [161–163]. In SCLC cell lines,
the pharmacologic inhibition of FAK with PF-573,228 decreased cell adhesion [28], as well as migration
and invasion [138]. In NCI-H69, NCI-H146, and NCI-H209 SCLC cell lines, PF-573,228 induced a
dose-dependent decrease of cell adhesion on laminin, with the effect becoming statistically significant
at the concentration of 10 µM (NCI-H69: p = 3 × 10−4, NCI-H146, and NCI-H209: p = 1 × 10−4 as
compared to DMSO) [28]. Moreover, a wound healing assay combined with time-lapse microscopy
showed that PF-573,228 decreased the migration velocity of two SCLC cell lines with an adherent
component, from 5 to 2.5 µm/min. in NCI-H196 (p = 0.0561) and from 9 to 4 µm/min. in NCI-H446
(p = 0.0916)) [68]. Modified Boyden chambers showed that PF-573,228, at a concentration of 3 µM, also
inhibited invasion, with the number of invasive cells being able to migrate to the lower side of the
insert separating the two Boyden chambers, decreasing from 150 to 50 per field (20×magnification) for
NCI-H196 and from 45 to five per field for NCI-H446 [68].

5. FAK in Epithelial to Mesenchymal Transition

Through epithelial-to-mesenchymal transition (EMT), cancer cells acquire a more motile phenotype,
promoting invasion, metastasis, but also conferring resistance to chemotherapies and targeted therapies.
Epithelial cancers undergoing EMT acquire transient mesenchymal features, like Vimentin and
N-cadherin, which are associated with the loss of epithelial markers E-cadherin and β-catenin [164].
EMT is correlated with poor outcomes in SCLC [165], such as in many other cancers. Identified
mechanisms inducing EMT in SCLC include inactive Notch signaling [166], activated MET receptor
signaling through hepatocyte growth factor [165], and activated TGFβ/Akt signaling [167].

While FAK-mediated EMT has not yet been explored in SCLC, its important role has been
demonstrated in other cancers and non-malignant cells [168–171]. Impaired FAK functions lead to a
defective mesenchymal phenotype during EMT. Hence, upon TGF β-induced EMT, hepatocyte cell lines
transduced with FRNK, a genomic method for inhibiting FAK, underwent an incomplete mesenchymal
transition, exhibiting a lack of mesenchymal markers MMP9 and fibronectin and a persistence of
membrane-bound E-cadherin [168]. Mammary tumor cells with deficient FAK scaffolding function due
to Pro 878/881 mutation also displayed incomplete mesenchymal phenotype with increased E-cadherin
and decreased N-cadherin, Vimentin, and fibronectin in a mice model [169]. It was associated with
decreased metastasis potential and decreased expression of EMT-inducing gene Snail 1 [169]. A similar
reduction of Snail 1 in embryonic FAK-null cells has been associated with the inability to display
mesenchymal cell characteristics, while the reexpression of FAK restored mesenchymal phenotype and
Snail 1 level through PI3K/Akt signaling [170]. In ovarian cancer, FAK controls EMT by upregulating
transcription factor KLF8 via the PI3K/Akt pathway [171]. It has been shown that transcription factors
Snail 1 and KLF8 repress E-cadherin expression, promoting EMT in various normal and malignant
cells [172–174]. The inhibition of FAK by a genetic or a pharmacologic method decreased the EMT
features and aggressiveness in colorectal carcinoma cell lines [175,176] and triple negative breast cancer
cell lines in vitro [177], but not in NSCLC cell lines in vitro [178].

6. FAK-Mediated Angiogenesis and Vascular Permeability

The role of angiogenesis and vascular permeability is fundamental to the progression of cancer from
localized to advanced-stage disease [179–181]. The tumors induce local generation (vasculogenesis) and
subsequent growth (angiogenesis) of new vasculature that facilitates the supply of oxygen and nutrients
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to cancer cells [180]. Moreover, it has been shown that SCLC cells in tumors or in the blood harbours
markers of vascular mimicry, including the expression of vascular endothelial cadherin (VE-Cadherin).
Therefore, vascular mimicry could supply nutrient and oxygen required for the expansion of SCLC
cells [182]. Furthermore, several molecules have been shown to promote angiogenesis and/or vascular
permeability, for instance vascular endothelial growth factor (VEGF), hypoxia inducible factor (HIF),
fibroblast growth factor (FGF), transforming growth factor beta (TGF-β), hepatocyte growth factor
(HGF), tumor necrosis factor-α, angiogenin, ephrins, and angiopoietins [123,179,181,183,184]. SCLC
produces many of these pro-angiogenic factors, including VEGF, TGF-β, HGF, and FGF [117–122].
Moreover, SCLC displays a higher vascularisation when compared to other tumours. Both high tumor
vascularisation and high VEGF expression are associated with a poor outcome in SCLC [122,185].
High VEGF expression has also been correlated to an increased risk of extensive disease [185]. This
stressed out the strong connexion between angiogenesis, vascular permeability, and the development of
metastases in SCLC, which is a highly metastatic disease with a high prevalence of circulating tumour
cells (CTCs) (Figure 4A) [1,11,186–188]. Several clinical trials have demonstrated that antiangiogenic
agents, such as bevacizumab, pazopanib, and sunitinib, increased the progression-free survival PFS in
SCLC, despite that they failed to show a significant benefit in terms of OS [189–192]. These results
are probably related to the absence of relevant biomarkers to select patients that might benefit from
antiangiogenic agents.

Interestingly, FAK has a crucial role in angiogenesis and vascular permeability, as demonstrated
by the vascular defects in FAK double knockout mice, resulting from the inability of FAK-deficient
endothelial cells to organise themselves into vascular networks [193]. Additionally, the overexpression
of FAK in vascular endothelial cells promotes angiogenesis [194]. Additionally, VEGF-induced
vascular permeability is mediated by FAK signaling (Figure 4A), with the inhibition of FAK activity in
endothelial cells suppressing VEGF-stimulated vascular permeability [195]. It has been shown that
FAK trigger off by VEGF is abrogated by FAK inhibitors, which decrease vascular permeability and
tumor vasculature, preventing tumor growth, metastasis, and immunosuppressive tumor infiltration
by cells, such as tumor macrophages and T regulatory cells (Figure 4A) [109,195–199]. Additionally, it
has been shown that the withdrawal of antiangiogenic therapy results in accelerated tumor growth
and that FAK activation mediates this tumor rebound, which increases angiogenesis and platelet
infiltration (Figure 4A) [200]. Interestingly, FAK inhibition prevents tumor rebound after the cessation
of antiangiogenic therapy through the inhibition of tumor angiogenesis, platelet-induced tumor cell
proliferation, and vascular leakage (Figure 4A) [200–203]. Of note, there is no data regarding the role
of FAK in angiogenesis and vascular permeability, specifically in SCLC.
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Figure 4. Pro-tumoral functions of FAK. (A). FAK is triggered off by integrins, G protein-coupled
receptors (GPCR), growth factor receptors, and vascular endothelial growth factor receptor (VEGFR).
Activated FAK promotes cell proliferation and survival. FAK also contributes to tumor progression
and metastasis via cell adhesion, migration, and promotion of epithelial to mesenchymal transition
(EMT). Transient contact between platelets and tumor cells induces TGFβ production by the platelets,
which promotes EMT-like transformation and invasive behaviour. In endothelial cell (EC), FAK drives
angiogenesis, increases vascular permeability, and regulates platelet extravasation; this facilitates
intravasation or extravasation of tumor cells, leading to metastasis. Additionally, FAK induces a tumor
protective fibrotic and immunosuppressive tumor microenvironment that promotes antitumor immune
evasion. Indeed, FAK induces cytokines (short soluble (sST2), IL33, Ccl5), which lead to the recruitment
of immunosuppressive cells, such as regulatory T cells (Treg), tumor-associated macrophages (TAM),



Cancers 2019, 11, 1683 12 of 32

and GR1+ granulocytes, as well as to increased tumor fibrosis. Pro-tumoral functions of FAK.
(B). Ionizing radiations, chemotherapy, and reactive oxygen species (ROS) increase DNA damage and
activate FAK in tumor cells. Activated FAK favors the expression of DNA damage repair (DDR) genes
such as Growth Arrest and DNA Damage-inducible 45 (GADD45), Ataxia Telangiectasia Mutated
(ATM) genes, and Ataxia Telangiectasia and Rad3-related (ATR) genes which play an important role in
resistance to drug and radiation. Additionally, in endothelial cells (EC), ionizing radiations activate
FAK and NF-kB, which induces the production of various cytokines (IL-1α, IL-2, IL-4 IL-6, IL-16)
activating the proliferation of tumor cells. Abbreviations used in the figure and not described in the
legend: IL-1RAcP: interleukin-1 receptor accessory protein, ST2L: longer membrane bound form.

7. FAK and DNA Damage Repair

Exposure to endogenous and exogenous carcinogens (reactive oxygen species, UV light, tobacco
smoking, ionizing radiation, platinum chemotherapy . . . ) generates DNA damage in both normal and
cancer cells [204]. Signaling pathways that are activated by cells to sense and repair DNA damage,
preventing genomic instability, are known as DNA damage repair (DDR) [205,206]. DNA-damaging
chemotherapy and radiotherapy are used alone or in combination in the treatment of ES- and LS-SCLC,
respectively. SCLC tumors are initially responsive to the treatment, but the development of early
resistance limits outcomes. Objective response rates of 80–90% are achieved in LS-SCLC treated
by concurrent radiochemotherapy [12,13] and of 60–70% in ES-SCLC treated by platinum-based
chemotherapy [207,208], but the median OS is only 25–30 months in LS-SCLC and 12 months in
ES-SCLC [12,17,209]. Understanding the underlying mechanisms of acquired or intrinsic radioresistance
and/or chemoresistance is important in the improvement of SCLC survival.

It has been shown that DDR genes and proteins are more highly expressed and activated in
SCLC as compared to NSCLC and that blocking these DDR pathways has antitumoral activity in both
preclinical [210] and clinical [211] studies, including many different types of cancer. In SCLC specifically,
the association of the PARP inhibitor olaparib and the anti-PD-L1 ICI durvalumab in a phase II trial
did not meet efficacy criteria, but revealed that responses were only observed in tumors with an
inflamed phenotype on tissue biopsies at baseline, which suggests that the tumor microenvironment
inflammation phenotype is a potential predictive biomarker [212]. Another phase II trial with the
PARP inhibitor veliparib combined or not to the chemotherapy agent temozolomide in recurrent SCLC
showed improved overall response rate without improvement of PFS and OS in the combination arm,
but patients with SLNF11 (inhibitor of DNA replication)-positive tumors treated with the association
had a significantly improved PFS and OS, which suggests that SLNF11 is a predictive biomarker [211].

Interestingly, FAK promotes DDR by promoting the transcription of genes favoring DDR, such
as growth arrest and DNA damage-inducible 45 (GADD45), ataxia telangiectasia mutated (ATM),
and ataxia telangiectasia and Rad3-related (ATR) (Figure 4B) [213,214]. Furthermore, FAK inhibition
promotes the hyperactivation of downstream targets of ATM/ATR, such as checkpoint kinase 2
(CHK2) [215]. In in vitro and in vivo preclinical models of NSCLC harbouring KRAS mutations,
ionizing radiation leads to FAK activation (Tyr397 phosphorylation), which persists for several hours,
while the inhibition of FAK activity leads to an inherent loss of DNA repair capacity and radiosensitizing
effects that promote the therapeutic effect of ionizing radiation [213,214,216]. Similarly, FAK has also
been shown to regulate human ductal carcinoma in situ (DCIS) cancer stem cells (CSC) activity and
response to radiotherapy [217]. While CSC harbor the ability to avoid or efficiently repair DNA
damage from radiotherapy and chemotherapy, which play a role in disease recurrence, inhibition
of FAK activity potentiated the effect of irradiation in DCIS CSC [217]. Finally, it has been shown
that FAK regulates tumor resistance to DNA-damaging therapies through NF-kB activation and
subsequent cytokine production. Interestingly, FAK inhibition sensitizes tumour cells to chemotherapy
by suppressing NF-kB activation and subsequent cytokine production (IL-1α, IL-2, IL-4, IL-6, IL-16 . . . )
(Figure 4B) [217]. Even though no data are available regarding the role of FAK in DDR, specifically
in SCLC, we hypothesize that FAK TKI might also be used in SCLC to improve the efficiency of
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chemotherapy and/or radiotherapy by impairing DDR and/or increasing DNA damage based on these
findings in other cancers.

8. FAK and Radioresistance

Radiotherapy that is associated with chemotherapy remains the cornerstone of LS-SCLC treatment,
despite the frequent emergence of resistance and cancer recurrence. Understanding the underlying
mechanisms of acquired or intrinsic radioresistance is important in the improvement of SCLC survival.
Several mechanisms have been involved in tumor radioresistance. Among those, adhesion molecules
have a key role against radio-induced apoptosis, in a phenomenon called “cell adhesion-mediated
resistance” [218–222]. In SCLC, the spontaneous transformation of cell lines in culture, since several
months into more adherent and radioresistant sublines highlights this mechanism [223,224]. FAK,
as a key player in the focal adhesion pathway, mediates this anti-apoptotic action against ionizing
radiation. Hence, the irradiation of a promyelocytic leukemia cell line overexpressing FAK induced
less DNA fragmentation and cell death than in the control cells [225]. Accordingly, a proteomic
analysis showed that FAK expression was strongly correlated with radioresistance in a large panel
of head and neck (HN) squamous cell carcinoma (SCC) cell lines [226]. Moreover, ionizing radiation
upregulated the in vitro expression and activation of FAK in breast cancer, glioblastoma, and lung
cancer cell lines, leading to acquired radioresistance [227,228]. The inhibition of FAK using genetic
(FAK shRNA transduction) or pharmacological (FAK TKI) methods radiosensitized KRAS-mutated
NSCLC significantly decreased radiation survival in vitro and in vivo [215]. Similar results have been
reported in HNSCC [226,229,230] and in pancreatic carcinoma [218].

Several FAK downstream signaling pathways have been involved in FAK-mediated survival after
ionizing radiation. In a promyelocytic leukemia cell line overexpressing FAK, the Phosphoinositide
3-kinase (PI-3K)-Akt survival pathway is constitutively activated. Moreover, FAK prevents
radiation-induced cell death by downregulating the mediator of apoptosis Caspase 8 and by
upregulating inhibitor-of-apoptosis proteins, like c-IAP and XIAP [225]. Concomitant activation
of NF-κB has also been reported [225]. FAK inhibition radiosensitized HNSCC cells lines in vitro
through MAPK and Akt signaling dephosphorylation [230]. In spontaneous radioresistant SCLC cell
lines, constitutive activation of Akt and MAPK pathways and increased level of active NF-κB are
similarly observed [224]. FAK interaction with JNK1 also has an important role for radioresistance in
pancreatic carcinoma cell lines [218] and in HNSCC cell lines [218].

Even though not explored in vivo yet, FAK inhibition might be a useful approach for improving
radiotherapy efficacy in SCLC. Nevertheless, cautions are mandatory, since the effects of FAK inhibition
on radiosensitivity depend on the tumor type. While FAK pharmacological inhibition combined with
radiation radiosensitized HNSCC, it did not show any additional effect in vitro on ionizing radiation
lethality in non-Kras mutated NSCLC, colorectal carcinoma, and pancreatic carcinoma cell lines [229].

9. Regulation of Cancer Stem Cells

CSC hypothesis has been developed over the last 150 years [231] and progressively replaced
the clonal evolution theory in carcinogenesis [232]. This model postulates that the tumor arises
from a subpopulation of pluripotent cells that are capable of extensive self-renewal and resistance to
ionizing radiation and chemotherapies. Altogether, these aggressive subtypes of malignant cells are
presumed to be responsible for recurrence after treatment [233]. The existence of CSCs in SCLC has
been demonstrated in cell lines and primary tumors [234–238], participating in therapy resistance and
the rapid recurrence of SCLC [237,239,240]. CSCs have been identified in SCLC based on the analysis
of cell surface markers and functional properties, such as the capacity to exclude Hoechst dye, to form
tumorspheres, and to initiate tumor after xenotransplantation in mice, mirroring their tumorigenicity.
In SCLC, common markers that are used to study CSCs are CD133, ALDH1, pluripotency-related
gene Nanog, Oct3/4, and Sox 2, among others (reviewed in [241]). Some of these markers have been
correlated with poor prognosis [242–244]
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While not explored yet in SCLC, the critical role of FAK in CSCs maintenance has been described in
several cancers. It has been demonstrated that the CSC marker Nanog upregulates FAK, which, in turn,
phosphorylates Nanog in CRC cell lines [59]. Upregulation and activation of FAK has also been observed
in the presence of Oct 3/4-surexpressing glioblastoma primary cell cultures [245]. CD133, another CSC
marker, enhanced cells migration through Src-FAK signaling activation [246]. Furthermore, a strong
influence of ECM in sustaining CSCs through FAK signaling has been demonstrated in pancreatic ductal
adenocarcinoma, colorectal cancer, and breast cancer [247–249]. Additional proof of FAK implication
in CSCs is that several drugs that are effective against CSCs act through FAK inhibition [250–253].
Several studies have demonstrated that FAK inhibition preferentially eliminates CSCs pool in vivo and
in vitro in various cancers [217,247,254–259]. In pancreatic ductal adenocarcinoma, FAK inhibition
with a TKI or shRNA impacted tumor-initiating potential, self-renewal, and metastasis, and improved
the response to chemotherapy via CSCs regulation in vitro and in vivo [247]. FAK TKI more efficiently
decreased proliferation and survival of the CSCs subpopulation in malignant mesothelioma [254,255],
and its administration after chemotherapy improved disease-free survival in a mouse model [255].
In breast cancer, similar effects of FAK inhibition were obtained on the CSCs pool in vivo and
in vitro [217,256,257] and on the duration of response after chemotherapy [257]. FAK knockout
mice prevented the induction and growth of skin SCC, which suggested the decreased capacity of
CSCs generation and maintenance [258]. Finally, colorectal CSCs were preferentially targeted by
FAK TKI in vitro in human cell lines as compared to non-CSCs [259]. FAK kinase dependent and
independent-functions have both been implicated in CSCs maintenance and regulation in breast
cancer [260]. Interestingly, FAK inhibition suppressed β-catenin activation, which confirmed a crosstalk
between FAK and Wnt/β-catenin pathway [217,257]. We hypothesize that combination of FAK TKI
with conventional treatment might be a pertinent strategy to explore in order to improve outcome
given the poor response and rapid recurrence of SCLC after chemotherapy.

10. FAK in Tumor Immune Escape

ICIs induced remarkable improvements in tumor response and OS in many types of solid tumors,
including NSCLC, both in pretreated and treatment-naive advanced-stage disease [3,4,6,9,261,262].
The most robust objective response rates to ICIs have been shown in tumors with high PD-L1 expression,
even though PD-L1 remains an imperfect biomarker [263]. As opposed to NSCLC, there is a lack of
correlation between PD-L1 expression and the response to ICIs in SCLC [264] and the efficacy of ICIs
in terms of response rates and OS is limited in SCLC patients [17]. The IMpower133 trial, comparing
carboplatin plus etoposide with or without atezolizumab, a PD-L1 inhibitor, in the first-line treatment
of patients with ES-SCLC, showed only a two-month improvement in OS in the atezolizumab arm. [6].
Nevertheless, it was the first time since several decades that an improved survival was obtained in
ES-SCLC. Based on this study, chemotherapy combined with atezolizumab recently became the new
standard of care in the first-line treatment of ES-SCLC.

SCLC displays high capacities to escape immune surveillance through several processes. Among
those, it has been demonstrated that SCLC cell lines have the capacity to induce regulatory T cell
(Tregs) in vitro [265]. This is an important mechanism, as Tregs infiltration in SCLC biopsies has been
correlated with the poor survival of patients [265]. Interestingly, a study recently demonstrated a role
for FAK in controlling Treg levels in cutaneous and pancreatic tumors [17,266]. In skin SCC, FAK
drove the recruitment and expansion of Tregs within the tumor, subsequently impairing the antitumor
response of CD8+ cytotoxic T lymphocytes [266]. The xenograft of FAK-deficient SCC in mice failed to
durably develop and exhibit a CD8+ T cells-dependent tumor regression within 21 days, as opposed
to FAK-wild type tumor cells [266]. The pharmacological inhibition of FAK in a skin SCC mouse
model decreased the levels of Tregs and increased those of CD8+, which confirmed the key role of
FAK in immune escape [266]. Similar results were observed in pancreatic ductal adenocarcinoma
and colorectal cancer, where association of FAK inhibitors with immunotherapy markedly improved
survival of the mice [17,267]. Mechanistically, FAK controls Tregs infiltration in skin SCC through
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the transcription of chemokines and cytokines via its nuclear interaction with transcription factors
and regulators [199,266]. Among those increased genes, Ccl1, Ccl5, and TGFβ2 have been involved in
Tregs conversion and recruitment in various cancers [109,268–272].

Additionally, the immunosuppressive role of myeloid-derived suppressor cells (MDSC) and
tumor-associated macrophages (TAM) promoting tumor development by impairing antitumor
immunity has been described in various cancers [273]. In SCLC, the peripheric MDSC count has been
correlated with poor prognosis [274] and tumor progression induced by TAM has been demonstrated
in vitro [275]. Interestingly, FAK TKI also decreased the tumor-infiltrating immunosuppressive cells in
pancreatic [17,276] and breast cancers [277]. In SCC, FAK TKI promoted tumor control by reducing
tumor-infiltrating regulatory T cells and increasing the T CD8+ T cells [266]. Furthermore, it has been
shown that FAK promotes the expression of interleukin-33 (IL-33), soluble secreted form of the IL-33
receptor, called soluble ST2 (sST2), and chemokine CCL5 (CCL5) in SCC cells. Therefore, IL-33 and
ST2 mediate FAK kinase-dependent antitumor immune evasion [199].

Even though the role of FAK in immune tumor escape has not been proven yet in SCLC, these
studies raise the hope of improving the outcome of patients through the association of FAK TKI
with immunotherapy or conventional chemotherapy. In advanced pancreatic cancer, mesothelioma,
and NSCLC, a clinical trial evaluating the association of FAK (VS6063) and PD-1 (pembrolizumab)
inhibitors is ongoing (NCT02758587).

11. Prognostic and Predictive Value of FAK Alterations

FAK genetic alterations that were reported in the Cancer Cohort of TCGA project were correlated
with PFS (Figure 5), and FAK overexpression at mRNA and protein levels were correlated with poor OS
in several cancers [200,278]. FAK protein overexpression was associated with worse OS in gastric cancer
(HR = 2.646, 95% CI:1.743–4.017, p = 0.000), hepatocellular cancer (HR = 1.788, 95% CI: 1.228–2.602,
p = 0.002), ovarian cancer (HR = 1.815, 95% CI: 1.193–2.762, p = 0.005), endometrial cancer (HR = 4.149,
95% CI: 2.832–6.079, p = 0.000), gliomas (HR = 2.650, 95% CI: 1.205–5.829, p = 0.015), and squamous
cell head and neck and digestive cancers (HR = 1.696, 95% CI: 1.030–2.793, p = 0.038) [200].

In SCLC, no correlation was found between total FAK expression evaluated by IHC on 85 SCLC
tissues and SCLC disease stage, response to therapy, PFS, or OS [24]. Similarly, total FAK and
phospho-FAK (Y397) expression evaluated by multiplex immunofluorescence in tissues from 105 SCLC
and 95 NSCLC patients did not correlate with PFS or OS [67]. However, a predictive value of response
to FAK TKIs cannot be ruled out, even in the absence of a prognostic value. Several clinical trials have
evaluated FAK TKI in patients suffering from various advanced-stage cancers, showing antitumor
activity (up to 33% objective response rates) and safety [35,36,38,40], while they did not use biomarkers,
such as FAK or phospho-FAK expression to identify patients that are likely to respond to FAK TKI.
It would be interesting for future clinical trials evaluating FAK TKI to prospectively test total FAK and
activated FAK expression as potential predictive biomarkers of response to FAK TKI.
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12. Conclusions and Therapeutic Perspectives

In this review, we have presented a brief overview on the role of FAK in cancer development
and progression, through its functions in cell growth, survival, adhesion, spreading, migration,
invasion, angiogenesis, DNA damage repair, radioresistance, and regulation of CSC. This constitutes
the biological rationale to consider FAK as a potential therapeutic target in SCLC. The association of
FAK inhibitors with standard therapies of SCLC—platinum-based chemotherapy, radiochemotherapy,
or immunotherapy—might have synergistic effects and improve the outcomes of SCLC patients. We
hope that the development of specific FAK inhibitors will have clinical translational significance in
SCLC by targeting, among others, antitumor immunity, angiogenesis, EMT, regulation of CSC, DDR,
and therapy resistance, including radioresistance, which are crucial in SCLC biology.
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tissues and SCLC disease stage, response to therapy, PFS, or OS [24]. Similarly, total FAK and phospho-
FAK (Y397) expression evaluated by multiplex immunofluorescence in tissues from 105 SCLC and 95 
NSCLC patients did not correlate with PFS or OS [67]. However, a predictive value of response to FAK 
TKIs cannot be ruled out, even in the absence of a prognostic value. Several clinical trials have evaluated 
FAK TKI in patients suffering from various advanced-stage cancers, showing antitumor activity (up to 
33% objective response rates) and safety [35,36,38,40], while they did not use biomarkers, such as FAK 
or phospho-FAK expression to identify patients that are likely to respond to FAK TKI. It would be 
interesting for future clinical trials evaluating FAK TKI to prospectively test total FAK and activated 
FAK expression as potential predictive biomarkers of response to FAK TKI.  

12. Conclusions and Therapeutic Perspectives 

In this review, we have presented a brief overview on the role of FAK in cancer development and 
progression, through its functions in cell growth, survival, adhesion, spreading, migration, invasion, 
angiogenesis, DNA damage repair, radioresistance, and regulation of CSC. This constitutes the 
biological rationale to consider FAK as a potential therapeutic target in SCLC. The association of FAK 
inhibitors with standard therapies of SCLC—platinum-based chemotherapy, radiochemotherapy, or 
immunotherapy—might have synergistic effects and improve the outcomes of SCLC patients. We hope 
that the development of specific FAK inhibitors will have clinical translational significance in SCLC by 
targeting, among others, antitumor immunity, angiogenesis, EMT, regulation of CSC, DDR, and therapy 
resistance, including radioresistance, which are crucial in SCLC biology. 
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