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ABSTRACT
Cancer- associated fibroblasts (CAFs) are a heterogeneous 
population of cells. At one end of the spectrum are alpha- 
smooth muscle actin expressing myoCAFs (myofibroblast 
CAFs) and at the other end are the interferon (IFN) 
and Janus Kinase/Signal Transducer and Activator of 
Transcription responsive iCAFs (inflammatory CAFs). Both 
types of CAFs promote tumor growth. While myoCAFs 
foster immune exclusion and limit tumor spread, iCAFs 
create a highly immunosuppressive environment and 
foster the seeding of distant metastases. However, iCAFs 
also represent a tumor vulnerability. They are competent 
to undergo necroptosis, a highly immunogenic form 
of cell death that is triggered when Z- DNA or Z- RNA 
(collectively called ZNA) is sensed by the IFN- induced 
ZNA binding protein 1 (ZBP1). The sequestering of ZNA 
ligands by the p150 isoform of the double- stranded 
RNA- specific deaminase ADAR1 protects iCAFs from 
cell death. ZBP1- dependent necroptosis in iCAFs can 
be triggered by administering an orally available small 
molecule that generates sufficient amounts of ZNA to 
bypass ADAR1 inhibition. The therapeutic approach of 
targeting Z- prone sequences (called flipons) is agnostic 
to the mutations driving cancer progression. By exploiting 
the tumor vulnerability posed by expression of ZBP1- 
dependent immunogenic cell death pathways in iCAFs, 
flipon therapeutics offer new hope for improved clinical 
outcomes.

THE CHALLENGE
While the success of immune checkpoint 
blockers (ICB) has proven the worth of 
immunotherapies in the clinic, most patients 
still do not experience lasting remissions. 
Tumors with a large fibroblast component 
are especially difficult to treat, and include 
a subset of breast, pancreatic and lung 
cancers.1 Myriad roles for cancer- associated 
fibroblasts (CAFs) in promoting cancer 
growth and spread have been proposed and 
specifically targeted by a spectrum of thera-
peutic modalities.2 3 Our focus here is on a 
novel therapeutic approach that exploits the 
highly immunogenic cell death pathway of 
necroptosis present in a subset of interferon 
(IFN)- activated inflammatory CAFs (iCAFs). 
The pathway depends on the sensing of the 

non- canonical left- handed Z- DNA or Z- RNA 
(collectively called ZNA) double helix by ZNA 
binding protein 1 (ZBP1). The subsequent 
ZBP1- dependent necroptotic response is 
normally inhibited within tumors by another 
IFN- induced ZNA binding protein, the p150 
isoform of ADAR1, which also binds ZNAs. 
Both proteins recognize ZNA through related 
Zα domains.4 5 We describe here how an orally 
available small molecule can bypass ADAR1 
to trigger ZBP1 activation and necroptosis in 
iCAFs to cause immunogenic cell death. The 
molecule acts by inducing Z- DNA formation 
by Z- prone sequences called flipons.6 This 
novel approach raises the hope that flipon 
therapeutics can improve the effectiveness 
of ICB in the clinic as we demonstrated with 
preclinical models of melanoma.

CANCER-ASSOCIATED FIBROBLASTS
The heterogeneity of CAFs has recently 
been highlighted by single cell sequencing 
approaches.2 The studies have built on 
earlier work identifying two major subsets of 
tumor resident CAFs: myoCAFs and iCAFs.7 
The myoCAFs (cancer- associated myofibro-
blasts) express alpha- smooth muscle actin 
(encoded by ACTA2) and often form a pali-
sade around the tumor cells, which excludes 
beneficial immune cell infiltration but also 
limits cancer cell intravasation and meta-
static spread. Clinically, a predominance 
of myoCAFs correlates with resistance to 
immunotherapy.8 The differentiation of 
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myoCAFs from mesenchymal stem cells resident in the 
tumor microenvironment (TME) is favored by cross- talk 
between transforming growth factor-β (TGF-β) and the 
Hedgehog signaling pathway.9 In contrast, depletion of 
myoCAFs allows the emergence of iCAFs and results in a 
higher rate of metastases, as shown in models of mouse 
pancreatic ductal adenocarcinoma (PDAC).10 While the 
differentiation of iCAFs is prevented by TGF-β produced 
by myoCAFs, their growth is driven by interleukin 1 
(IL- 1)- induced leukemia inhibitory factor, IL- 6, IFN and 
potentially other activators of inflammatory Janus Kinase/
Signal Transducer and Activator of Transcription (JAK/
STAT) signaling pathways.11 The iCAFs are highly immu-
nosuppressive and cooperate with adhesion G protein- 
coupled receptor E1 (F4/80+) programmed cell death 
ligand 1 (PD- L1)+, major histocompatibility complex II 
(MHCIIlow) tumor- associated macrophages (TAMs) to 
induce immune resistance, as reported for genetically 
engineered KRASG12D proto- oncogene mouse models of 
PDAC.12 While a predominance of myoCAFs in the tumor 
bed is bad because of immune exclusion, iCAFs are worse 
as they portend the onset of metastatic disease.

Many early therapeutic strategies were aimed at 
myoCAFs, primarily because of their role in dampening 
immune responses. At the time, the part played by 
myoCAFs in repressing iCAF differentiation was unknown3 
and approaches, which included TGF-β and Hedgehog 
signaling pathway inhibitors, produced results that were 
contrary to expectations: in experimental models where 
myoCAFs were eliminated by Sonic Hedgehog deletion, 
an immunosuppressive environment developed within 
the tumor mass, with expansion of CD4+CD25+FOXP3+ 
regulatory T cells and concomitant loss of effector CD8+ 
T cells,13 while in the 4T1 breast cancer model, blockade 
of TGF-β resulted in depletion of myoCAFs but resulted 
in the emergence of immunosuppressive macrophages.14 
Targeting myoCAFs by blockade of TGF-β and Hedgehog 
pathways was also complicated by on- target side effects, 
reflective of the role these pathways perform in normal 
tissue maintenance. Overall, the earlier focus on myoCAFs 
yielded new information, but did not improve clinical 
outcomes.

ZBP1 AND NECROPTOSIS
Interestingly, JAK/STAT signaling pathways not only 
increase iCAF abundance, but also sensitize cells to ZBP1- 
dependent necroptotic cell death, which is highly immu-
nogenic. For example, components of this cell death 
pathway, including ZBP1 itself, are induced by IFN via 
JAK1/STAT1 signaling.15 ZBP1- mediated necroptosis is 
triggered by left- handed ZNA conformations, where the 
two strands of a DNA or RNA double- helix twist to the 
left rather than to the right as occurs with Watson- Crick 
B- DNA or A- RNA. ZNA prone flipons are present in the 
genomes of many promoters, retroelements and patho-
gens.5 6 16–18 Their sequence motifs often have alternating 

Figure 1 ZBP1- initiated cell death signaling and its 
repression by ADAR1. (A) ADAR1 suppresses immune 
responses in multiple ways through its different domains. The 
ADAR1 Zα domain binds ZNA and inhibits ZBP1 activation 
while the A- RNA binding domains (RBDs1–3) inhibit 
activation of the double- stranded RNA (dsRNA) sensors 
melanoma differentiation- associated gene 5 (encoded by 
IFIH1), RIG- I (encoded by DDX58) and the protein kinase 
PKR (encoded by EIF2AK2).44 Together the Zα and RBD 
domains of ADAR1 localize the enzyme to substrates where 
adenosine to inosine editing (A→I) occurs, a modification 
that can alter the stability of dsRNA regions and also recode 
messenger RNAs since inosine is translated as guanosine. 
Zβ is not known to bind nucleic acids. (B) Binding of ZNA 
activates ZBP1. ZBP1 activates RIPK1 and RIPK3 by 
engaging in RHIM- based associations with these proteins. 
Phosphorylation of MLKL by RIPK3 leads to the formation 
of membrane pores and necroptosis, while activation of 
CASP8 by RIPK1 results in apoptosis, a relatively non- 
inflammatory form of cell death. RIPK1 sequesters ZBP1 
In some settings, and the RIPK1/CASP8 complex can also 
inhibit necroptosis.24 25 In addition, ZBP1 can associate with 
toll receptor associated with TIR- domain- containing adapter- 
inducing interferon-β (TRIF, encoded by TICAM1) and activate 
NF-κB (not shown).45 Stimulatory pathways are indicated with 
green arrows while inhibitory ones are colored blue with ZNA 
dependent outcomes labeled yellow. The arrows with blunt 
ends indicate suppressive interactions. CASP8, caspase 8; 
MLKL, mixed lymphocyte kinase like; NF- kB, nuclear factor- 
kB; PKR, protein kinase RNA; pMLKL, phosphorylation of 
MLKL; RBDs, dsRNA- binding domains; RHIMs, receptor- 
interacting protein homology interaction motifs; RIPK3, 
receptor interacting protein kinase 3; ZBP1, ZNA binding 
protein 1; ZNA, Z- DNA or Z- RNA collectively.
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purine, pyrimidine motifs with guanosine preferred over 
adenosine and cytidine favored over thymidine.19

ZNA activates ZBP1 by engaging its N- terminal Zα 
domains and triggers binding to receptor interacting 
protein kinase 3 (RIPK3) through the receptor- interacting 
protein homology interaction motifs present on both 
proteins20 21 (figure 1B). The subsequent phosphoryla-
tion of mixed lymphocyte kinase like by RIPK3 promotes 
the lethal assembly of pores in nuclear and cytoplasmic 
membranes that lead to necroptotic cell death. Alterna-
tively, both ZBP1 and RIPK3 can associate with RIPK1 
to initiate apoptosis, a less inflammatory form of cell 
death.15 22 23 Apoptosis is favored over necroptosis by the 
association of ZBP1 with RIPK1 with caspase 8 (CASP8) 
protease further modulating outcomes through cleavage 
of both RIPK1 and RIPK3.24 25

Notably, the p150 isoform of ADAR1 negatively regulates 
ZBP1 activation by binding ZNA through its Zα domain 
(figure 1).5 26–28 ADAR1 also engages A- RNA through its 
double- stranded RNA (dsRNA) binding domains (RBDs) 
and prevents IFN induction by the helicase melanoma 
differentiation- associated gene 5 (encoded by IFIH1). 
The sequestration of dsRNA also prevents inhibition 
of protein translation by PKR (protein kinase RNA- 
activated, encoded by EIF2AK2) (figure 1A).29 ADAR1 
further inhibits these responses through the adenosine 
to inosine editing of A- RNA, destabilizing dsRNA while 
decreasing its potential to form Z- RNA. By arresting both 
ZBP1 activation and IFN induction, ADAR1 p150 main-
tains immune silence4 (figure 1).

DAMPS AND IMMUNOGENIC CELL DEATH
Tumors exploit a number non- inflammatory mecha-
nisms, such as apoptosis and efferocytosis, to eliminate 
cells and their debris (figure 1).30 However, when tumor 
cells die by necroptosis, they leak out various proteins 
and nucleic acids with strong inflammatory and immu-
nogenic potential. These damage- associated molecular 
patterns (DAMPs) comprise heat- shock, high- mobility 
group box 1 (HMGB1), annexin A1, calreticulin and 
histone proteins, DNA and RNA and many other 
signaling molecules including ATP.31 Those originating 
from the nucleus are especially immunogenic, as shown 
in mouse models of severe influenza.17 Chemokines such 
as IL- 33, IL- 1α and C- X- C motif chemokine ligand 1 are 
also released and attract neutrophils and other immune 
cells to the site of injury.32 The damage to normal tissue 
could far exceed that necessary to contain a threat if 
this response was left unchecked.33 Indeed, there is an 
immunosuppressive arm to the necroptotic response that 
leads to resolution and tissue repair. Tumors subject to 
necroptosis can suppress the immune response against 
cancer cells by exploiting counter measures that depend 
on encapsulation of necroptotic cells or on increased 
levels of prostaglandin E2, oxidized HMGB1 or galec-
tin- 9.30 34–36 DAMPs like SAP130 (Sin3A- associated protein 
130), acting through macrophage- inducible C- type 

lectin- initiated pathways, further promote the differen-
tiation of infiltrating myeloid cells into F4/80+PD- L1+ 
MHCIIlow TAMs that suppress antitumor responses.12 32 
The tumor- driven counter- measures that inhibit immune 
cell activation can be blocked by the use of ICB, allowing 
DAMP- activated dendritic cells (DCs) to emerge. As these 
DCs differentiate, they produce cytokines and present 
cancer cell- derived antigens to CD8+ T cells and stimulate 
robust immune responses which, when combined with 
ICB approaches, can produce tumor rejection (figure 2).

TARGETING ICAFS
Given these experimental findings, we wondered whether 
triggering intratumor necroptosis in the presence of ICB 
would enhance treatment outcomes. We hypothesized 
that by directly activating ZBP1 in the TME, we could 
overcome silencing of immunogenic cell death by ADAR1 
p150. An analysis of human melanoma samples from 
The Cancer Genome Atlas revealed that CAFs expressed 
the entire necroptosis machinery,5 whereas other non- 
transformed cell types do not.37 Thus, a therapeutic 
window of opportunity existed for the selective activa-
tion of necroptosis in CAFs of the TME without toxicity 
to major organs. If successful, this strategy would boost 
DC- induced beneficial antitumor immune responses 
engendered by ICBs. Further, such an approach would 
be agnostic to the presence of any cancer cell mutations, 
including those that drive malignancy and others that 
inactivate the necroptotic machinery (a frequent occur-
rence during tumorigenesis).38 The next step was to find 
a way to implement this strategy.

CBL0137, THE FIRST FLIPON THERAPEUTIC
While CAFs express the necroptosis pathway, there is 
insufficient ZNA ligand in these cells to activate ZBP1. 
For example, the transcription of ZNA prone flipons 
within fibroblasts is not dysregulated as it is in cancer 
cells. Further, any ZNA formed is quenched by ADAR1, 
either through direct sequestration or by editing of 
dsRNAs (figure 1).5 The challenge was to find a ZNA- 
inducing agent that not only bypasses ADAR1 to acti-
vate necroptosis in iCAFs, but one that also spares 
normal tissues. (figure 2). ICBs would then provide a 
way to overcome the immunosuppression that occurs 
as part of the normal wound repair response and 
that is induced by DAMPs.12 32 The combination of a 
ZNA- inducing drug and ICB would then initiate and 
amplify antitumor responses through a positive feed-
back loop where the release of IFN from immune cells 
would drive the differentiation of additional drug- 
susceptible, necroptosis- competent iCAFs. (figure 2).

A screen of clinical compounds identified the curaxin 
CBL0137 as an inducer of Z- DNA in all mammalian 
cell types tested.5 Further experimentation demon-
strated that the molecule only induced necroptosis 
in cells competent for ZBP1- initiated death signaling. 
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CBL0137 also triggered ZBP1- dependent necroptosis 
in CAFs in vivo when tested in mouse models of mela-
noma and drove regression of tumors that are either 
completely (B16.F10) or partially (YUMMER 1.7) 

refractory to ICB (α- programmed cell death 1) mono-
therapy. Further, we were able to show infiltration of 
tumors with CD11c+ DCs, as well as CD8+ cytotoxic T 
cells.5 We also demonstrated the CBL0137- induced T 
cell priming in draining lymph nodes and promoted 
ICB- driven abscopal responses.

CBL0137 has been trialed in humans as a mono-
therapy where the primary concern was a manageable 
combined thrombocytopenia/neutropenia occur-
ring in 2 of the 83 patients treated.39 These findings 
may represent an off- target effect as we noted that 
CBL0137 can induce both ZBP1- dependent and non- 
ZBP1- dependent cell death in bone marrow derived 
myeloid cells. Further study will reveal if these 
effects impact outcomes when CBL0137 is combined 
with ICB in the clinic. Overall, the combination of 
ZBP1- induced necroptosis and immune checkpoint 
blockade holds significant promise for the treatment 
of checkpoint resistant/refractory malignancies.

FUTURE DIRECTIONS
While we have carried out proof in principle studies 
demonstrating that the combination of ZBP1- 
dependent necroptosis and ICB can improve cancer 
treatment outcomes, there is still much to be explored. 
Most importantly, which tumors are likely to respond? 
Any solid tumor type with a significant population 
of iCAFs (eg, PDAC, cutaneous melanomas) will be 
targets for approaches directly targeting ZBP1 in the 
TME, as we have outlined here. More broadly, the 
dependence of tumors on the IFN- induced ADAR1 
p150 isoform for survival likely indicates that they 
are also susceptible to IFN- induced ZBP1 dependent 
necroptosis. A survey of 324 tumors (30 cancer types) 
performed at the Sanger Center gives hope that this 
approach may be quite generally applicable, as depen-
dency on ADAR expression for survival was found in 
42% of cancers, with more than 70% of head and neck 
tumors, 50% of central nervous system tumors, 40% of 
lung tumors and over 12% of large intestine cancers 
vulnerable to ADAR gene deletion (see supplementary 
table 3 in reference 40). Interestingly, the dependence 
of tumor cells on ADAR1 protein for their survival 
was unrelated to the mutational load or microsatel-
lite instability status of the tumors.41 Although ICB 
responsiveness is not predicted by ADAR1 expression, 
it is encouraging that the poor ADAR1 editing of an 
empirically determined set of RNAs correlates with 
better patient survival outcomes42

Other important questions also arise. Are there 
better molecules than CBL0137 to induce ZNA forma-
tion? Do any of the small- molecule epigenetic modi-
fiers currently in the clinic activate ZBP1- dependent 
necroptosis by derepressing the expression of retroele-
ment Z- prone flipons? Do drugs that inhibit topoisom-
erases promote ZNA- necroptosis by freezing flipons in 
the Z- DNA state, preventing their relaxation back to 

Figure 2 ZNA induced by a small molecule bypasses 
the need for ADAR1 inhibition and directly activates ZBP1 
to induce necroptosis in iCAFs. The DAMPs released 
induce both immunosuppressive TAMs (tumor associated 
macrophages) that express the F4/80 adhesion protein 
and immunostimulatory CD11c+ DCs (dendritic cells). The 
amplification of anti- cancer cytotoxic CD8+ T cells and 
natural killer (NK) cells is favored by ICB with antibodies 
like anti- PD1 (α-PD1) that prevent binding of the PDL1 and 
PDL2 ligands expressed by TAMs to the immune- inhibitory 
programmed cell death 1 (PD1) receptor expressed on T 
cells. The net effect of α-PD1 is stimulatory as it negates 
a negative interaction. The antitumor immune cells, along 
with bystander cells, also produce cytokines that signal 
through the JAK1/STAT1 pathway and, by enhancing ZBP1 
expression in iCAFs, increase the vulnerability of these cells 
to necroptosis.11 15 46 Stimulatory effects are indicated with 
green arrows while inhibitory pathways are colored blue with 
therapeutic agents amplifying antitumor responses labeled 
yellow. The arrows with a blunt end indicate suppressive 
interactions, while the dotted lines are representative of 
additional nodes that are potentially targetable but that are 
not detailed here. DAMPs, damage- associated molecular 
patterns; F4/80, adhesion G protein- coupled receptor E1 
encoded by ADGRE1; iCAF; inflammatory CAF; ICB, immune 
checkpoint blocker; IFN, interferon; JAK/STAT, Janus Kinase/
Signal Transducer and Activator of Transcription; PDL1, 
programmed cell death ligand 1; myoCAF (α-smooth muscle 
actin (encoded by ACTA2) positive cancer- associated 
myofibroblasts);TAMs, tumor- associated macrophages; 
ZBP1, ZNA binding protein 1; ZNA, Z- DNA or Z- RNA 
collectively.
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B- DNA? Which other available immunotherapies will 
work with flipon therapeutics to amplify anticancer 
immune responses? Can ADAR1 p150 targeted mole-
cules be developed to unleash both ZBP1- dependent 
necroptosis along and A- RNA- stimulated antitumor 
responses? Alternatively, are there additional activa-
tors of necroptosis, such as the irradiation of tumors 
or the herpes virus T- Vec, that can subdue a dominant 
myoCAF population which otherwise would limit the 
clinical response to a combined flipon/ICB immuno-
therapy? All these approaches selectively target tumors 
over normal cells and offer the hope of reversing the 
bad- to- worse outcomes CAFs generate.
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