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Abstract: Despite complete resection, cancer recurrence frequently occurs in clinical practice. This in-
dicates that cancer cells had already metastasized from their organ of origin at the time of resection or
had circulated throughout the body via the lymphatic and vascular systems. To obtain this potential
for metastasis, cancer cells must undergo essential and intrinsic processes that are supported by
the tumor microenvironment. Cancer-associated inflammation may be engaged in cancer devel-
opment, progression, and metastasis. Despite numerous reports detailing the interplays between
cancer and its microenvironment via the inflammatory network, the status of cancer-associated
inflammation remains difficult to recognize in clinical settings. In the current paper, we reviewed
clinical reports on the relevance between inflammation and cancer recurrence after surgical resection,
focusing on inflammatory indicators and cancer recurrence predictors according to cancer type and
clinical indicators.
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1. Introduction

Cancer recurrence remains one of the greatest concerns for patients with cancer [1]
and markedly contributes to the poor prognosis and quality of life associated with several
cancer types [2]. Many factors, including remnant cancer cells at the tumor margin after
surgery and intrinsic cellular resistance to treatment, contribute to cancer recurrence [3,4].
Resistance to anticancer medications occurs at the tissue level due to the modification of the
cancer microenvironment by cancer-promoting mediators [5,6]. Several resistance mecha-
nisms associated with the cancer microenvironment are well recognized [7,8], including
the genetic modulation of cancer cells that results in the expression of tumor-promoting
metabolic factors that induce invasion, thereby promoting resistance [9,10].

The inflammatory microenvironment is a crucial component in most tumors, con-
sidering the important role that the inflammatory response plays in tumor development
and metastasis. The potential for tumor metastasis depends on complex and dynamic
interactions between cancer cells, inflammatory cells, immune cells, and stromal elements
within the tissue from which they originate. The phases of metastasis can be classified into
four distinct stages. The first stage involves the epithelial-mesenchymal transition, during
which, cancer cells acquire fibroblast-like properties that allow them to promote their
motility, invade the epithelial endothelium/basement membrane, and reach exudative
blood and lymphatic vessels [11]. The second stage involves cancer cell invasion of the
blood and lymphatic vessels, which may be facilitated by inflammation via the production
of cytokines that upregulate vascular permeability. In the third stage, cells have begun
to metastasize, survive, and migrate via the circulatory system [12]. In the final stage,
single metastatic progenitor cells interact with stromal, inflammatory, and immune cells
and begin to proliferate [13]. Cancer cell invasion necessitates protease degradation of the
extracellular matrix around the invasive forefront, with inflammatory cells being a critical
source of extracellular matrix-degrading proteases. Moreover, Th2 cytokines stimulate
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matrix metalloproteinase expression, invasive potential, and metastasis, whereas other
cytokines that constitute the Th1 response inhibit tumor progression [14]. Thus, the compli-
cated association between cancer cells, immune function, and inflammatory cells regulates
tumor progression and the establishment of distant metastasis [15–19].

Over the past two decades, researchers have identified several molecules that have an
important role in inflammation, including vascular endothelial growth factor (VEGF), tu-
mor necrosis factor, chemokines, cyclooxygenase (COX)-2, interleukin-1 (IL-1), interleukin-
6 (IL-6), 5-lipoxygenase, matrix metalloproteases, and cell surface adhesion molecules.
However, it remains unclear whether acute and chronic inflammatory conditions or dif-
ferent types of acute inflammation produce similar results. Moreover, studies are yet to
elucidate whether the inflammatory burden of stored blood product transfusion is similar
to that of acute infectious stimuli. As such, it remains to be determined whether an acute
inflammatory burden (e.g., perioperative transfusion) in an immunosuppressive environ-
ment (e.g., perioperative stress) complicates the patient’s condition and creates a pro-tumor
environment that facilitates distant metastases. To explore this, the present paper reviewed
numerous clinical reports examining the potential association between inflammation and
cancer recurrence after surgical resection, focusing on inflammatory indicators and cancer
recurrence predictors in major cancer types and their clinical indicators.

2. Types of Cancer
2.1. Lung Cancer

Lung cancer remains the top cause of cancer-related death in the world [20]. Although
surgery with curative intent is the treatment of choice for patients with early-stage cancers,
postoperative complications frequently occur in the early phase after the surgery [21,22].
Moreover, patients with lung cancer often develop postoperative recurrence in the late
phase after the surgery [23–25]. Although both acute postoperative complications and
cancer recurrence in the late phase are regarded as major problems after the surgery,
the interplay between postoperative complications and recurrence in the late phase among
patients who have undergone lung cancer surgery is an issue that has only recently been
investigated [26–30].

According to previous clinical studies, it was shown that the inflammatory response
has a critical function in tumor invasion, progression, and metastasis by promoting tu-
mor angiogenesis and decreasing anticancer effects through the upregulation of inflam-
mation [31,32]. Recently, inflammatory biomarkers, such as C-reactive protein (CRP),
the neutrophil-to-lymphocyte ratio (NLR), the monocyte-to-lymphocyte ratio (MLR),
and the platelet-to-lymphocyte ratio (PLR) were found to be associated with cancer progno-
sis [33]. For instance, Mizuguchi et al. examined the prognostic value of the NLR in patients
with completely resected stage I non-small cell lung cancer (NSCLC), whereas Nojiri et al.
showed that patients with postoperative respiratory complications had markedly higher
postoperative white blood cell counts, CRP levels, and cancer recurrence rates than those
without [34]. Meaney et al. reported that among patients with stage I lung adenocarcinoma,
those with high IL-6 and IL-17A levels had a lower 5-year survival rate (46%) than those
with low levels of both markers (93%), with a similar trend having been observed for the
prognostic signatures of IL-6 and IL-17A in an independent data set [35]. Multivariate
analyses in another study revealed that although the NLR was not predictive of overall
survival (OS), a high NLR was an independent risk factor for recurrence, in addition to
age, stage, tumor differentiation, and lymphatic invasion. The same study concluded that
a lower preoperative NLR was correlated with a better prognosis and a lower systemic
inflammatory status in patients with stage I NSCLC [36].

Additionally, the systemic immune-inflammation index (SII), a new inflammatory
biomarker that is defined as (platelet count × neutrophil count)/(lymphocyte count) [37],
has been found to potentially have a high prognostic value for patients with cancer [38].
Indeed, a meta-analysis of the SII showed that a higher pretreatment SII indicated markedly
poorer OS, disease-free survival (DFS), and progression-free survival (PFS) with high
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heterogeneity, as well as cancer-specific survival (CSS). Given that the SII has a more
accurate prognostic value in NSCLC than the NLR and the PLR, the pretreatment SII may be
a useful prognostic marker for NSCLC and may be more helpful for prognostic assessment
and treatment strategy development [39]. The advanced lung cancer inflammation index
(ALI) has also been reported to be associated with survival in patients with lung cancer.
In fact, Zhang et al. showed that among NSCLC cases, those with a low ALI had poorer
OS than those with a high ALI. Subgroup analyses further revealed that a low ALI had a
significant negative prognostic value in NSCLC, with a low ALI being clearly associated
with lower PFS and recurrence-free survival (RFS) in patients with NSCLC. Based on these
results, the aforementioned study concluded that the pretreatment ALI was indicative of
poor prognosis among patients with NSCLC, suggesting its potential utility as a tumor
marker for survival prediction among the same patients [40]. The Glasgow Prognostic
Score (GPS), which includes albumin and CRP levels, can predict postoperative survival in
stage I and advanced NSCLC patients [41–43]. Therefore, these clinical indices are reliable
predictive markers for post-treatment survival in lung cancer.

Another interesting study investigated the relationship between cancer recurrence and
lung scars. Inflammation-mediated events that can occur independently of inflammation,
such as reactive oxygen species production, growth factor activation (for wound repair),
and altered signaling processes that activate cell proliferation (replacing necrotic/apoptotic
tissue cells), have all been considered risk factors for various cancers. Taking lung scar
cancer as an example, this study discussed the mechanisms of inflammation that is as-
sociated with recurrent Mycobacterium tuberculosis infection in the context that they may
be the primary or exclusive cause of cancer. The production of reactive oxygen species,
cytokines, leukotrienes, and prostaglandins in lung tissues is greatly upregulated by a
cell-mediated immune response to M.tuberculosis-infected macrophages. These responses
result in extensive fibrosis that is associated with recurrent infection, possibly causing
the reduced clearance of lymphatic and lymph-related particles from the site of infection.
Moreover, the inhibition of p21 synthesis increases the rate of cell division and acceler-
ates cell cycle progression from G0 arrest to the G1 phase, the G1 phase to the S phase,
and the G2 phase to the M phase. Furthermore, increased oxidative DNA damage and
the suppression of apoptosis due to increased BCL-2 synthesis, coupled with enhanced
progenitor cell mutagenesis and increased angiogenesis due to COX-2 products, create an
environment that is conducive to tumorigenesis. The provided evidence appears to suggest
that some scar cancer cases would not have existed without an inflammatory response
to recurrent infections. Appropriate lifestyle and dietary changes would provide various
anti-inflammatory effects and reduce the risk of inflammation-induced cancer [44].

2.2. Breast Cancer

Molecular mechanisms associated with inflammation have been considered to play
an important role in the development of breast cancer, which is the leading cause of death
among women. Studies have shown that proinflammatory cytokines alter tumor cell biol-
ogy and promote cancer progression and metastasis by activating stromal cells in the tumor
microenvironment, including fibroblasts, vascular endothelial cells, and tumor-associated
macrophages in breast cancer [45–48]. Systemic inflammation may also alter the status of
the vasculature in such a way as to promote micrometastasis leaching, transplantation,
and growth [45,48], or reactivate dormant tumors at distant sites [49]. The new significance
of inflammation in breast cancer progression is noteworthy considering that primary breast
tumors are rarely accompanied by significant inflammation per se [50,51]. However, bio-
logical processes that induce metastasis or sustain residual disease during treatment may
be totally different from those that promote primary tumor formation [52]. According to
Paget’s analogy [52], chronic inflammation fertilizes the soil of systemic tissues and pro-
motes the growth and dissemination of metastatic seeds. Analyses comparing molecular
characteristics and the location of primary and recurrent tumors will elucidate the extent to
which inflammation contributes to the regrowth of the primary tumor, disease recurrence,
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development of micrometastases, or the emergence of entirely new malignancies. Oshi et al.
demonstrated that intratumoral angiogenesis is associated with inflammation, immune
reactions, and metastatic recurrence in breast cancer [53]. Although the direct correlation
between inflammation in the primary tumor and cancer recurrence was not revealed,
a relationship via angiogenesis may exist and have an important role in tumor recurrence.

Chronic inflammation associated with obesity is now recognized as an important
condition that promotes carcinogenesis and cancer progression in patients with breast
cancer, primarily in postmenopausal women with tumors expressing estrogen and proges-
terone receptors. Altered levels of several inflammatory mediators that regulate aromatase
and estrogen expression are among the mechanisms that increase the risk of breast can-
cer in patients with obesity. The role of local adipose inflammation and macrophages
as determinants of the risk of breast cancer recurrence and prognosis has also received
increasing attention. The obesity–inflammation axis provides different molecular signaling
pathways for potential pharmacological targets and therapeutic interventions. Moreover,
the increasing rates of obesity worldwide have prompted further investigation into recent
findings linking inflammation and breast cancer [54]. With regard to clinical indicators,
dietary inflammatory indexes (DIIs) have been associated with breast cancer incidence,
as well as survival and recurrence [55].

The following discussion details the current prospects for alleviating the impact of
systemic inflammation on the recurrence of breast cancer. Polymorphisms of the cytokine
gene are reported to have some effect on breast cancer progression, which also suggests
that even a partial reduction in inflammatory signaling may be protective when maintained
over time [56,57]. Although long-term nonsteroidal anti-inflammatory drug use has been
associated with a lowered risk of primary breast cancer [58,59], its efficacy as adjuvant
therapy after the successful treatment of early-stage disease remains yet to be verified.
Although tamoxifen clearly reduces acute phase protein (APP) levels [60–62], part of
the protective effect of endocrine therapy may be attributed to its anti-inflammatory
effects. The long-term use of other anti-inflammatory agents, such as COX2 inhibitors,
cytokine antagonists, and glucocorticoids, has been associated with side effects that could
restrict their possible role in an adjuvant setting. The most beneficial approach may be
to target upstream factors that promote chronic inflammation, such as inactivity and
adiposity [63,64]. In an analysis adjusting for age, physical activity, and adiposity, Pierce
et al. found that residual variation in APP levels was predictive of breast cancer recurrence.
While this does not deny the significance of adiposity and physical activity, it strongly
suggests that other factors influencing chronic inflammation, such as smoking, subclinical
infections, major depression, low socioeconomic status, and heavy drinking of alcohol,
affect the risk of breast cancer recurrence [63–67]. Relieving the impact of such lifestyle-
related factors is a difficult task for both patients and clinicians but one that many breast
cancer survivors need to address if they are to understand the potential for preventing
breast cancer recurrence and the development of other cancers and cardiovascular diseases,
as observed by Pierce et al. According to the presented data, disease recurrence was
markedly promoted in only the top third of the APP distribution, suggesting that resource-
intensive lifestyle interventions may target some patients based on the inflammatory
biomarkers of disease risk. Despite the specific treatment, the findings highlight the need to
address the broader environment of patients’ behavior and global health, given their effects
on localized neoplastic disease and clinically occult breast cancer recurrence. Taking a
systemic approach to controlling minimally remnant disease may identify new possibilities
for reducing the risk of recurrence after the successful treatment of early-stage breast
cancer [68].

2.3. Esophageal Cancer

Although esophageal cancer occurs less frequently than other cancers, it is character-
ized by a wide range of lesions involving the neck, chest, and abdomen, and is difficult to
treat [69]. While various methods for treating esophageal cancer currently exist, surgery is
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still the treatment of choice. The principles of surgical treatment include reducing surgical
trauma, promoting patient recovery, and increasing treatment safety, which are based on the
premise of complete tumor resection and lymph node dissection [70]. Given that patients
with postoperative recurrence or metastasis lose the opportunity for surgical treatment,
conservative interventions, such as chemotherapy, radiotherapy, and biotherapy, may be
the most effective approach in such cases [71]. Studies suggest that approximately 40%
of patients with esophageal cancer who undergo curative surgery develop postoperative
recurrence/metastasis within 2 years [72] and there is still no standard treatment regimen
for the postoperative recurrence/metastasis of esophageal cancer. With the recent changes
in people’s lifestyles, the incidence of esophageal cancer has shown a clear increasing trend
in younger people [73]. After examining the correlation between recurrence and insulin
resistance, glycolipid metabolism, stress, inflammation, and serum p53 concentration after
radical surgery in 80 patients with esophageal cancer who underwent surgery, Zheng et al.
concluded that complex hypertension, hyperlipidemia, and diabetes mellitus were indepen-
dent risk factors for postoperative recurrence of esophageal cancer. Moreover, they found
that earlier postoperative recurrence was associated with higher fasting blood glucose,
insulin resistance index, and total cholesterol levels, as well as stronger inflammatory
and oxidative stress responses. This is one of only a few papers that showed an associa-
tion between high inflammatory responses and high recurrence rates in the perioperative
period [74]. Lindenmann et al. showed that the GPS score was significantly associated
with survival and was considered to be a poor prognostic marker in advanced esophageal
carcinoma [75]. In general, most patients complained about spontaneous weight loss at
the first visit. It frequently happens that patients with esophageal cancer, as well as gastric
cancer, lose weight continuously, resulting in a compromised functional performance status
during treatment. Thus, we should pay attention to such confounding factors, which can
influence not only treatment but also post-treatment survival when we use these clinical
indexes in esophageal cancer.

2.4. Gastric Cancer

Gastric cancer is the fifth most common cancer and the third leading cause of mortality
in the world [76]. Currently, surgery is the treatment of choice for early-stage gastric
cancer. Even after curative resection, recurrence or metastasis occur in approximately
35–70% of patients within 5 years [77]. During the past few decades, various adjuvant
chemotherapy regimens have been tested with the hope of controlling postoperative
recurrences. Accordingly, patients with advanced gastric cancer have been found to benefit
from fluoropyrimidine-based chemotherapy [78], whereas those with locally advanced
gastric cancer were able to achieve an improved OS with the administration of capecitabine
and platinum-based regimens [79]. Moreover, patients whose tumors have recurred or
metastasized may have a better prognosis when chemotherapy is combined with targeted
therapy [78]. However, approximately 50% of all gastric cancers are not responsive to
treatment, and only a small number of patients achieve a stable disease status or a partial
response to treatment [80].

As mentioned previously, lymphocytes play an important role in cancer immune
surveillance and defense via the induction of cytotoxic cell death and the inhibition of
tumor cell proliferation and migration [45], thereby modulating the host’s immune response
to malignancy [81]. Some interleukins (IL-1β/IL-4/IL-6/IL-13) may correlate with the
recurrence of gastric cancer [82]. Several immune- and inflammation-based prognostic
scores, such as MLR and NLR, have been developed as predictors of survival and recurrence
across various cancer types, including gastric cancer [83–85]. However, integrated indices
based on peripheral lymphocyte, neutrophil, and monocyte counts that may better reflect
the balance between the host’s immune and inflammatory statuses have not yet been
reported for gastric cancer. In addition, the effects of peripheral lymphocyte, monocyte,
and neutrophil counts on gastric cancer recurrence and metastasis remain to be studied
in detail.
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2.5. Hepatocellular Carcinoma

Hepatocellular carcinoma (HCC) is the sixth most common cancer and the fourth
leading cause of cancer mortality worldwide [20]. According to the Scientific Registry of
Transplant Recipients, there has been a steady increase in the number of liver transplants,
with an annual rise of 3% as of 2017. The same report revealed that among patients waiting
for liver transplants, the number of patients with HCC has increased, accounting for nearly
10% of transplants [86]. HCC recurrence can be attributed to its strong correlation with
cirrhosis and the highly vascular nature of the liver. This lowers the long-term prognosis of
localized treatments, such as ablative therapy and resection; therefore, a liver transplant
remains the mainstay for the curative treatment of HCC [87].

Several studies have tried to identify HCC recurrence predictors before transplanta-
tion to enhance patient selection and transplant outcomes. The development of cancer
produces a chronic inflammatory response that causes neovascularization and disrupts
normal immune pathways [46]. The involvement of platelets and leukocytes, along with
the recruitment of growth factors and interleukins, mediates tumor growth [88,89]. The dis-
ruption of normal homeostasis in these pathways can be detected using straightforward,
easily measured markers that may represent cancer aggressiveness and survival. Inflam-
matory marker ratios derived from peripheral blood count testing have been applicable to
various cancers and chronic inflammatory conditions [90–92]. Meanwhile, others have pre-
viously shown that NLR can be used to predict relapse in HCC [93]. Ismael et al. assessed
inflammatory markers for HCC based on the total blood count to predict the OS and RFS
in patients after liver transplantation. Between 2001 and 2017, 160 patients with HCC who
were eligible for liver transplantation were retrospectively reviewed, among whom, 74.4%
had hepatitis C virus as the background factor of HCC. Accordingly, although patients
with an NLR of ≥5, a derived NLR (dNLR) of ≥3, and a low lymphocyte-to-monocyte
ratio (LMR) (<3.45) had markedly worse model of end-stage liver disease (MELD) scores,
no correlation was observed between the MELD score and those with a high PLR (>150).
Among the cancer characteristics, low LMR was in close association with tumor presence
and microvascular infiltration at the time of transplantation. Moreover, a lower NLR and
dNLR and a higher LMR tended to be associated with a better OS, a higher LMR tended to
be associated with a higher RFS, and a low PLR was associated with significant OS and RFS.
Thus, while previous studies on HCC identified NLR as a biomarker for tumor burden
and survival, Ismael et al. emphasized that PLR was a superior surrogate for identifying
complications and RFS in HCC transplant recipients [94].

2.6. Bile Duct Cancer

Inflammation-based prognostic scores have also been associated with cancer survival
and recurrence in hepatobiliary and pancreatic cancers. Fujiwara et al. used univariate
analysis to evaluate clinicopathological factors, including various prognostic scores, DFS,
and OS, in 121 patients with distal extrahepatic cholangiocarcinoma who underwent a
pancreaticoduodenectomy between 2000 and 2015. Accordingly, they showed that the
GPS, which considers a combination of albumin and CRP levels, was an independent risk
factor for poor prognosis and cancer recurrence. As such, they concluded that the GPS
score is an independent marker for cancer recurrence in patients with distal extrahepatic
cholangiocarcinoma and is superior to other prognostic scores [95].

2.7. Colorectal Cancer

Although radical mesorectal resection and neoadjuvant therapy have improved the
prognosis of patients with rectal cancer, locally recurrent rectal cancer after a complete
resection still occurs in <5–10% of patients [96–98]. However, surgery remains the only
option for improving symptom control, quality of life, and long-term survival among
those with locally recurrent rectal cancer. R0 resection is an important prognostic factor for
improving long-term survival in locally recurrent rectal cancer [99]. However, given that
radical surgery is highly invasive, complications occur at a high rate [100]. Previous stud-
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ies have demonstrated that inflammation is associated with malignant cell proliferation
and survival [45,101]. However, it remains elusive whether intra-abdominal and neck
inflammation after radical surgery for locally recurrent rectal cancer affects prognosis. Af-
ter analyzing prognostic factors associated with OS and RFS in patients undergoing radical
surgery for locally recurrent rectal cancer, Johnson et al. identified massive perioperative
bleeding as the only factor associated with the development of intra-abdominal/intraspinal
inflammation. Moreover, they showed that intra-abdominal/intraspinal inflammation
after curative surgery for locally recurrent rectal cancer was associated with a poor progno-
sis [102]. Another study by Varkaris et al. demonstrated that a circulating inflammation
signature is a strong prognostic factor for RFS and OS in patients with metastatic colorectal
cancer [103].

Conversely, anemia itself has been found to be a poor prognostic factor in patients
with colorectal cancer. Conventionally, anemia in colorectal cancer has been supposed
to be related to iron deficiency due to frank or latent gastrointestinal bleeding and the
associated microcytosis [104]. Therefore, considerable efforts have been made toward
iron replacement therapy during the perioperative period. However, a recent observa-
tional study reported that normocytic anemia was approximately twice as prevalent as
microcytic anemia in patients with colorectal cancer who underwent surgery for curative
purposes [105]. Meanwhile, although normocytic anemia was associated with a poor
prognosis, no such association was observed with microcytic anemia. Notably, normocytic
anemia was significantly associated with preoperative systemic inflammation, which was
characterized by a modified GPS [106]. Moreover, iron replacement therapy was not likely
to be beneficial in this patient group. Unfortunately, no such data was obtained and the
size of the cohort did not allow for meaningful subgroup analysis. McSorley et al. reported
on the prevalence and prognostic impact of normocytic anemia in patients receiving radical
treatment for colorectal cancer. They found that normal cellular anemia was associated
with systemic inflammation and poor CSS. Considering that inflammation may cause both
disease recurrence and anemia in such patients, focusing on and treating this process may
improve both [107].

2.8. Uterine Carcinoma

Cervical cancer is the second most common type of cancer among women in countries
without access to screening and prevention programs. Depending on the initial tumor stage,
8–61% of women with cervical cancer have recurrence, typically within 2 years following
treatment completion [108]. After evaluating the role of GPS in patients with cervical cancer
after radical resection, Seebacher’s group found that a high GPS assessed before the initial
treatment was independently associated with a shorter survival time [109–111]. They also
reported that a higher GPS upon relapse, a history of radiation therapy, and the presence
of peritoneal carcinomatosis or multiple sites of relapse were independently associated
with shorter post-relapse survival in patients with recurrent cervical cancer. Unfortunately,
only a few papers have shown an association between a high inflammatory response and
high recurrence rates among patients with uterine carcinoma.

2.9. Prostate, Urothelial and Bladder Cancer

Prostate cancer is the most common type of malignancy and the leading cause of can-
cer death in men in the world [112]. Prostate cancer usually has a long natural history from
diagnosis till death caused by cancer progression. Similar to breast cancer, inflammation is
the primary etiology of prostate cancer development. Acute or chronic inflammation can
lead to carcinogenesis, as well as prostate cancer progression [113–116]. Chronic systemic
inflammation, which is associated with the risk of several cancer types, including breast,
colon, and pancreatic cancer, has been attributed to lifestyle [117]. Hayashi et al. found that
medications and diets that modulate the immune status or suppress the inflammatory re-
sponse, such as metformin, aspirin, nonsteroidal anti-inflammatory drugs, statins, and soy
isoflavones, may be clinically beneficial for patients with prostate cancer [118].
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Regarding the postoperative recurrence of prostate cancer, Irani et al. evaluated the
prognostic value of prostatic stromal inflammation in surgically treated and localized
prostate carcinoma [119]. Notably, they reported that the inflammation grade in malignant
tissue had a stronger impact on RFS than preoperative serum prostate-specific antigens and
the pathologic stage. Soria et al. retrospectively examined the prognostic role of the modi-
fied GPS (mGPS) for the prediction of oncological outcomes in a large multicenter cohort of
patients with upper tract urothelial carcinoma who underwent radical nephroureterectomy.
Accordingly, they found that mGPS was independently associated with clinicopathological
features and prognostic outcomes after a radical nephroureterectomy [120]. Furthermore,
after investigating the clinical impact of postoperative (3 months after radical cystectomy)
inflammatory biomarkers, including NLR and the hemoglobin-to-platelet ratio, which were
strongly associated with RFS, CSS, and OS, Albisinni et al. found that the preoperative and
postoperative inflammatory status of ureter-related cancers may affect cancer recurrence.

3. Inflammation-Related Conditions
3.1. Necrosis

Anticancer therapy often induces tissue hypoxia and hypometabolism, causing necrotic
cell death, which in turn triggers an immune response through mediators secreted by
necrotic cells [121,122]. The disruption of cell membranes after necrosis leads to the
secretion of intracellular signals known as damage-associated molecular patterns [123],
which function as endogenous danger signals that promote the inflammatory response
in aseptic inflammation [124]. Damage-associated molecular patterns lead to tissue re-
pair and wound healing, as well as promoting cancer invasion in chronic inflammatory
conditions [125]. A recently published study [126] showed that resolvins, namely anti-
inflammatory mediators [127,128], effectively inhibited tumor growth and enhanced the
therapeutic efficacy when combined with anticancer drugs. Despite extensive studies on
the role of inflammation in cancer progression, little is known regarding inflammation-
independent pathways. Furthermore, the direct, non-inflammatory effects of the resulting
cell necrosis on these processes have yet to be properly understood [129]. Thus far, most re-
searchers have separately focused on the effects of either nutritional deficiency or hypoxia
on angiogenesis and cancer progression [130–136]. Bluman et al. investigated the net
total effect of necrotic cell content induced by a combination of nutrient deficiency and
hypoxia on tumor cell and tumor microenvironment cues [137]. Their results showed that
signals secreted by necrotic cells affected the function of various cancer cells and increased
the angiogenic capacity. An analysis using high-throughput proteomic assays identified
several important angiogenesis- and carcinogenesis-promoting factors that were presented
or secreted by necrotic cells. Moreover, the HMGB1 antagonist carbenoxolone and the
anti-VEGF bevacizumab suppressed tumor growth in combination with necrosis signaling
antagonists and anticancer drugs. These results suggest that tumor cell necrosis itself
facilitates an important process involved in treatment resistance during surgical resection
and acts as a tissue-level cancer resistance mechanism resulting from adjuvant treatment
after surgery.

3.2. Transfusion

Clinical studies related to blood transfusions and outcomes have shown that cir-
cumstances wherein patients receive preoperative blood products could likely affect the
recurrence of cancer. Recurrence may occur depending on the preoperative nutritional and
physical status, preoperative presence or absence of anemia, histology and stage of the can-
cer, resectability of the cancer, anesthesia procedure, volume of blood loss, stress response
during the surgical procedure, and presence of complications after surgery [138–141].
The possible impact of several of the abovementioned confounding factors is complicated
and difficult to deduce from retrospective studies. However, relatively few randomized
trials have examined the association between blood transfusions and cancer recurrence.
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According to earlier studies, most of which were retrospective in nature, allogeneic
blood transfusions were associated with the increased risk of postoperative cancer recur-
rence and death [142–151]. Moreover, previous meta-analyses revealed an association
between perioperative blood transfusions and poor prognosis after surgery for colorectal
cancer and tonsil cancer [152,153]. Such findings have been supported by other retrospec-
tive studies in patients with pancreatic, liver, colorectal, prostate, and head and neck can-
cer [154–158]. In particular, a blood transfusion was found to be an independent predictor
of recurrence and survival in cases of HCC and head and neck cancer. However, these re-
sults were contradicted by investigators who could not identify an association between
cancer recurrence and blood transfusions [159–165]. The best current evidence may per-
haps arise from a large meta-analysis performed by the Cochrane Group, in which pooled
estimates of the effect of a perioperative blood transfusion on recurrence from random-
ized studies yielded an odds ratio (OR) of 1.42 (95% confidence interval (CI) = 1.20–1.67;
p < 0.0001) for transfused patients. Although heterogeneity was observed, a stratified
meta-analysis verified these findings according to the disease site and stage, timing of
blood product administration, type of product administered, and transfusion product
dose. However, considering the heterogeneity of samples and the inability to analyze
the effect of the surgical procedure, the authors were unable to establish a clear causal
relationship [166].

It remains unclear whether differences in the risk of cancer recurrence exist following
allogeneic or autologous transfusions [167,168]. An observational study suggested that,
as compared to an autologous blood transfusion, allogeneic transfusion in patients who
underwent head and neck cancer surgery was associated with a 40% higher cancer recur-
rence [169]. However, this result contradicted the findings of a randomized controlled trial
involving patients with colorectal cancer undergoing surgical tumor resection who were
assigned to receive allogeneic or autologous blood transfusions [170]. Despite the limited
data, preoperative autologous blood collection and an intraoperative autologous blood
transfusion appear to be safe for patients with HCC [171,172]. In fact, a small retrospec-
tive study suggested that patients who received autologous blood had longer long-term
cancer-free survival than those who received allogeneic blood [172]. Intraoperative cell
salvage techniques may be used in patients who refuse major surgery or allogeneic blood
products. However, one concern regarding the use of cell salvage techniques during tumor
surgery has been the possibility of reinjecting malignant cells obtained from the surgical
site [173,174]. For example, cancer cells have been observed in surgically collected and
double-filtered blood samples from patients with HCC who underwent liver transplanta-
tion [175]. However, at least one study has shown a lack of cellular staining for malignant
tumor markers after filtration [176]. Most importantly, intraoperative cell salvage tech-
niques and autologous blood transfusions do not appear to have an empirical impact on
the recurrence rates in patients undergoing cancer surgery [177–179].

3.3. Perioperative Period

Studies have suggested that short perioperative periods (defined as days to weeks
after tumor resection) promote the formation of new metastases and growth or the devel-
opment of existing micrometastases through numerous pro-metastasis, pro-angiogenic,
and immunosuppressive mechanisms [180]. Conversely, the surgical removal of the pri-
mary tumor has also been suggested to prevent or decrease metastatic progression through
various mechanisms. These include the cessation of tumor cell shedding into the circulatory
and lymphatic systems; the removal of metastasis-promoting factors, such as IL-6, IL-8,
and VEGF, that are secreted by the tumors; the termination of the immunosuppressive
effects of resected tumors. These multiple metastasis-promoting and anti-metastatic pro-
cesses occur concurrently during short perioperative periods, the cumulative effects of
which may tilt the scale toward either metastatic proliferation or disease arrest or elim-
ination. Patients without obvious metastatic disease have been considered to possess a
dynamic balance (i.e., “preoperative balance”) between pro-metastatic and antimetastatic
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processes that may tilt slightly toward metastatic progression before surgery. In many
cases, however, a storm of metastasis-promoting and -suppressing effects rages before
surgery [181], tipping the scale toward the development of metastasis. Moreover, the pro-
metastatic effects are activated by each other, creating a self-perpetuating “snowball ef-
fect” that promotes disease recurrence. However, perioperative therapeutic interventions
targeting ≥ 1 pro-metastatic process may result in a shift toward disease cessation or
elimination. Thus, the perioperative period is important in determining the risk of post-
operative metastatic disease and provides a window of therapeutic scope for residual
malignant disease. Regrettably, this window of opportunity has been largely undetected
clinically [182].

4. Clinical Indices

Among the clinical indicators of preoperative inflammation that have been identified
as predictive markers of postoperative outcomes, GPS, SII, and NLR are well-known and
are major indicators for several types of cancer. Table 1 shows the relationship between
these indicators and the clinical outcomes.

Table 1. Relationship between clinical indices and clinical outcomes after resection.

Clinical Indices Cancer Types Clinical Outcomes

Glasgow Prognostic Score

NSCLC
Gastric cancer

HCC
Pancreatic cancer
Ovarian cancer
Cervical cancer

Colorectal cancer
Bladder cancer

Poor OS [42,183]
Poor OS [184,185]
Poor OS [186,187]
Poor OS [95,188]

Poor OS [103–105,189]
Poor OS and DFS [109]

Poor OS [190,191]
Poor RFS [192]

Systemic Immune-Inflammation Index

All
NSCLC

Small cell lung cancer
Esophageal cancer

Gastric cancer
Pancreatic cancer
Urological cancer

Melanoma

Poor OS, RFS, DFS [193]
Poor OS [39,193], poor DFS [39]

Poor OS [193]
Poor OS [38,193]

Poor OS [193,194], poor DFS [194]
Poor OS [193]
Poor OS [193]
Poor OS [193]

Neutrophil-to-Lymphocyte Ratio

All
NSCLC

Gastric cancer
HCC

Colorecal cancer
Renal cancer

Poor DFS [195]
Poor RFS [34,36]

Poor OS [196], poor DFS [195,196]
Poor OS [88], poor DFS [87,195]

Poor OS [197], poor DFS [195,197]
Poor DFS [195]

NSCLC, non-small cell lung cancer; HCC, hepatocellular carcinoma; OS, overall survival; DFS, disease-free survival; RFS, recurrence-
free survival.

5. Conclusions

Although the number of clinical reports on the associations between postoperative
recurrence and the inflammatory state of the tumor microenvironment varies according to
cancer type, inflammation was shown to be markedly associated with cancer recurrence
and progression in nearly all the major types of cancer. Further translational studies linking
laboratory data and clinical practice will help to clarify the association between cancer
recurrence and inflammation, as well as to establish more effective postoperative treatment
and identify lifestyle habits to avoid recurrence.
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