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Abstract  
The mitogen-activated protein kinase (MAPK) signaling pathway plays an important role in the regulation of cell growth, proliferation, differen-
tiation, transformation and death. Mitogen-activated protein kinase phosphatase 1 (MKP1) has an inhibitory effect on the p38MAPK and JNK 
pathways, but it is unknown whether it plays a role in Aβ-induced oxidative stress and neuronal inflammation. In this study, PC12 cells 
were infected with MKP1 shRNA, MKP1 lentivirus or control lentivirus for 12 hours, and then treated with 0.1, 1, 10 or 100 μM amyloid 
beta 42 (Aβ42). The cell survival rate was measured using the cell counting kit-8 assay. MKP1, tumor necrosis factor-alpha (TNF-α) and 
interleukin-1β (IL-1β) mRNA expression levels were analyzed using quantitative real time-polymerase chain reaction. MKP1 and phos-
pho-c-Jun N-terminal kinase (JNK) expression levels were assessed using western blot assay. Reactive oxygen species (ROS) levels were 
detected using 2′,7′-dichlorofluorescein diacetate. Mitochondrial membrane potential was measured using flow cytometry. Superoxide dis-
mutase activity and malondialdehyde levels were evaluated using the colorimetric method. Lactate dehydrogenase activity was measured 
using a microplate reader. Caspase-3 expression levels were assessed by enzyme-linked immunosorbent assay. Apoptosis was evaluated 
using the terminal deoxynucleotidyl transferase dUTP nick end labeling method. MKP1 overexpression inhibited Aβ-induced JNK phos-
phorylation and the increase in ROS levels. It also suppressed the Aβ-induced increase in TNF-α and IL-1β levels as well as apoptosis in 
PC12 cells. In contrast, MKP1 knockdown by RNA interference aggravated Aβ-induced oxidative stress, inflammation and cell damage 
in PC12 cells. Furthermore, the JNK-specific inhibitor SP600125 abolished this effect of MKP1 knockdown on Aβ-induced neurotoxicity. 
Collectively, these results show that MKP1 mitigates Aβ-induced apoptosis, oxidative stress and neuroinflammation by inhibiting the JNK 
signaling pathway, thereby playing a neuroprotective role.
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Graphical Abstract   

MKP1 regulates amyloid beta (Aβ)-induced oxidative stress, inflammation and cell injury by suppressing 
the c-Jun N-terminal kinase (JNK) signaling pathway
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Introduction 
The economic and social burden of Alzheimer’s disease (AD) 
is an important public health problem, particularly as the 
prevalence of AD is increasing along with the aging pop-
ulation. The pathological features of AD include neuronal 
loss, intracellular neurofibrillary tangles and extracellular 
amyloid beta (Aβ) protein deposition (Goedert, 2015; Amit 
et al., 2017; Liu et al., 2017). Aβ plays a pivotal role in AD, 
and aggregated Aβ is observed in brain tissue in the early 
stage of AD (Puzzo et al., 2015; Golde, 2016; Müller et al., 
2017; VanItallie, 2017). Aβ induces neuronal apoptosis, neu-
roinflammation and oxidative stress by regulating multiple 
signaling pathways, including mitogen-activated protein 
kinase (MAPK), protein kinase C and phosphoinositide 
3-kinase/Akt (Smith et al., 2006; Petersen et al., 2007; Shafi, 
2016; Ridler, 2017). However, the molecular mechanisms by 
which Aβ regulates these signaling pathways remain largely 
unknown. Therefore, studies on the complex signaling net-
works that are altered by Aβ are urgently needed to eluci-
date the pathogenesis of AD and aid in the development of 
effective clinical treatments for the disease.

The MAPK signaling pathway plays a critical role in the 
regulation of cell growth, proliferation, differentiation, trans-
formation and death (Liu et al., 2012; Li et al., 2014; Thouve-
rey and Caverzasio, 2015; Zhou et al., 2015; Yao et al., 2017). 
In mammalian cells, there are four MAPK signal transduction 
pathways, including the c-Jun N-terminal kinase (JNK, also 
known as stress-activated MAPK), p38 kinase (p38 MAPK), 
extracellular signal-regulated protein kinase (ERK) and large 
mitogen-activated protein kinase (BMK1/ERK5) pathways 
(Tiedje et al., 2014; Zhou et al., 2015; Lanna et al., 2017; La-
trasse et al., 2017). Numerous studies have shown that the 
MAPK signaling pathway plays a major role in the patho-
physiology of AD (Giraldo et al., 2014; Petrov et al., 2016; 
Lee and Kim, 2017). McDonald et al. (1998) found that Aβ 
activates the p38 MAPK pathway in rat glial cells. p38 MAPK 
activation in the hippocampus and cortical region is associ-
ated with neurofibrillary tangles, senile plaques, vacuolar de-
generation and dystrophic neurites in post-mortem AD brain 
tissue (Zhu et al., 2000; Johnson and Bailey, 2003). Moreover, 
Aβ42 injection into the basal ganglia in rats for 7 days leads 
to significant activation of p38 MAPK, accompanied by the 
activation of glial cells and neuroinflammation (Giovannini 
et al., 2002), whereas inhibition of the p38 MAPK pathway 
alleviates Aβ-induced neurotoxicity (Xu et al., 2014). Similar-
ly, JNK signaling is activated by Aβ and is involved in Aβ-in-
duced human neuronal damage (Troy et al., 2001; Tare et al., 
2011). In addition, it has been reported that JNK activation 
results in excessive Aβ deposition, which in turn activates 
a positive feedback loop that accelerates the progression of 
AD (Zhu et al., 2002). These findings indicate that the p38 
MAPK and JNK signaling pathways play important roles in 
the pathogenesis of AD. However, the molecular mechanisms 
underlying these processes are largely unknown.

MAPK phosphatase 1 (MKP1) is a member of the MAPK 
phosphatase family and is the main negative regulator of 
p38 MAPK, JNK and ERK (Chi and Flavell, 2008; Lawan et 

al., 2013; Low and Zhang, 2016). MKP1 is involved in oxi-
dative stress, inflammatory reactions and apoptosis, and it 
plays a key role in the occurrence and progression of many 
human diseases by regulating the MAPK signaling pathway 
(Wancket et al., 2012; Ma et al., 2015; Moosavi et al., 2017). 
However, it is unknown whether MKP1 plays a role in 
Aβ-induced oxidative stress and inflammation in neurons.

In this study, we investigated the role of MKP1 in Aβ-in-
duced neurotoxicity. To this end, we assessed the produc-
tion of reactive oxygen species (ROS), expression of tumor 
necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-
1β), and apoptosis in Aβ-treated PC12 cells. Furthermore, 
we examined the effect of pharmacological inhibition of JNK 
and the effects of MPK1 overexpression and siRNA-mediat-
ed silencing.

Materials and Methods
Cell culture
PC12 cells were obtained from the American Type Culture 
Collection (Manassas, VA, USA) and cultured in Dulbecco’s 
modified Eagle’s medium containing 10% fetal bovine serum 
in a 5% CO2 incubator at 37°C. The experiments were per-
formed in accordance with the “Recommendations for the 
Conduct, Reporting, Editing, and Publication of Scholarly 
Work in Medical Journals”, published by the International 
Committee of Medical Journal Editors (http://www.icmje.
org/recommendations/).

Aβ42 preparation and cell treatment
Aβ42 peptide (Sigma-Aldrich, St. Louis, MO, USA) was in-
cubated in Tris/HCl (50 mM, pH 7.4) at a concentration of 
1 mg/mL at room temperature for a minimum of 2 days for 
aggregation. For the experiments, Aβ42 solution was diluted 
and added to culture media at different concentrations (0.1, 
1, 10 or 100 μM).

Lentivirus infection
PC12 cells were infected with MKP1 short hairpin RNA 
(shRNA), MKP1 lentiviral particles or control lentivirus 
(Hanheng, Shanghai, China) at a multiplicity of infection of 
10 in 5 mg/mL Polybrene (Sigma-Aldrich) for 12 hours and 
treated with 10 µg/mL puromycin (Santa Cruz Biotechnolo-
gy, Dallas, TX, USA) for 21 days, according to the manufac-
turer’s protocol.

Cell counting kit-8 assay
Cells were plated onto 96-well plates (4000 cells/well) the 
day before treatment. After treatment with different concen-
trations (0.1, 1, 10 or 100 μM) of Aβ, 10 μL of cell counting 
kit-8 reagent (Sigma-Aldrich) was added to each well and 
cultured for 2 hours. The absorbance at 450 nm was read on 
a microplate reader (Bio-Rad, Hercules, CA, USA).

Quantitative real time-polymerase chain reaction 
(qRT-PCR)
Total RNA was extracted with Trizol (Invitrogen, Carlsbad, 
CA, USA), and cDNA synthesis was performed using the 
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Superscript III Reverse Transcriptase kit (Invitrogen). The 
relative levels of target gene mRNA to control GAPDH 
mRNA were determined by qRT-PCR using TransStartTM 
SYBR Green qPCR Supermix (Transgene, Beijing, China) on 
the ABI 7500 PCR instrument (ABI, Foster City, CA, USA). 
The data were analyzed with the 2-ΔΔCt method. The primer 
sequences are listed in Table 1.

Western blot assay
Total cellular protein was extracted with RIPA lysis buffer 
(Cell Signaling Technology, Boston, MA, USA), and the 
concentration of total protein was determined by the BCA 
method (Song et al., 2017). Total protein, 15 μg, was sep-
arated by 10% sodium dodecyl sulfate polyacrylamide gel 
electrophoresis and electrotransferred onto polyvinylidene 
fluoride membranes. Membranes were blocked with 5% bo-
vine serum albumin (Boster, Wuhan, China) at room tem-
perature for 2 hours and immunoblotted overnight at 4°C 

with primary rabbit anti-rat polyclonal antibodies (1:1000; 
Abcam) against MKP1, p-JNK (JNK1 + JNK2 + JNK3) and 
GAPDH, followed by incubation with horseradish peroxi-
dase-conjugated goat anti-rabbit polyclonal secondary an-
tibodies (1:4000; Abcam). After extensive washing, protein 
bands were visualized by an ECL plus chemiluminescence 
kit (Beyotime Institute of Biotechnology, Haimen, China). 
Densitometric analysis was performed using ImageJ soft-
ware (National Institutes of Health, Bethesda, MD, USA).

2′,7′-Dichlorofluorescein diacetate (DCFH-DA) detection 
of ROS
To measure intracellular ROS levels, 2 × 105 PC12 cells were 
seeded into 6-well plates. Following treatment, the cells were 
treated with 20 nM DCFH-DA (Sigma-Aldrich) for 30 min-
utes. The green fluorescence signal was observed and photo-
graphed under a fluorescence microscope (Olympus, Tokyo, 
Japan).

Figure 1 Effect of Aβ42 on MKP1 expression 
in PC12 cells.
(A) PC12 cells were treated with the indicated 
concentrations of Aβ42 for 24 hours. Cell via-
bility was assessed with the cell counting kit-8 
assay. (B) PC12 cells were treated with 10 μM 
Aβ42. At the indicated time points, total RNA 
was extracted for quantitative real time-poly-
merase chain reaction for MKP1 mRNA ex-
pression with GAPDH as the internal control. 
The result is expressed as a percentage of the 
value at 0 hours. (C) PC12 cells were treated 
with 10 μM Aβ42. At the indicated time points, 
total protein was extracted for immunoblotting 
of MKP1 protein with GAPDH as the loading 
control. The relative expression of MKP1 to 
GAPDH was assessed by densitometric anal-
ysis using ImageJ software. MKP1 expression 
is shown relative to that at time 0. Data are 
expressed as the mean ± SD (six separate ex-
periments for each time point). Intergroup 
comparison was performed using analysis of 
variance. *P < 0.05, **P < 0.01, vs. control 
group (0 μM Aβ42 or value at 0 hours). Aβ42: 
Amyloid beta 42; MKP1: mitogen-activated 
protein kinase phosphatase 1.

Table 1 Primer sequences

Primer Sequences Product size (bp)

MKP1 Upstream primer: 5′-CTG CTT TGA TCA ACG TCT CG-3′ 301
Downstream primer: 5′-AAG CTG AAG TTG GGG GAG AT-3′

TNF-α Upstream primers: 5′-TCT CAA AAC TCG AGT GAC AAG-3′ 131
Downstream primer: 5′-AGT TGG TTG TCT TTG AGA TCC-3′

IL-1β Upstream primer: 5′-AAC TGT CCC TGA ACT CAA CTG-3′ 350
Downstream primer: 5′-TGG GAA CAT CAC ACA CTA GC-3′

GAPDH Upstream primer: 5′-AAA TTC AAC GGC ACA GTC AA-3′ 398
Downstream primer: 5′-GTC TTC TGG GTG GCA GTG AT-3′

MKP1: Mitogen-activated protein kinase phosphatase 1; TNF-α: tumor necrosis factor-alpha; IL-1β: interleukin-1 beta; GAPDH: glyceraldehyde-3-
phosphate dehydrogenase.
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Detection of mitochondrial membrane potential
Following treatment, the cells were incubated with 10 μg/mL 
JC-1 (Sigma-Aldrich) at 4°C in the dark for 30 minutes. 
After washing with PBS, the cells were subjected to flow 
cytometry with an excitation wavelength of 520 nm and an 
emission wavelength of 596 nm. The median fluorescence 
intensity was recorded by the flow cytometer (BD Bioscienc-
es, Franklin Lakes, NJ, USA).

Assessment of superoxide dismutase (SOD) activity and 
malondialdehyde (MDA) levels
Intracellular SOD activity and MDA levels were measured 
using SOD and MDA assay kits (Jiancheng, Nanjing, China) 
in accordance with the manufacturer’s instructions. In brief, 
after cell lysis and centrifugation at 12,000 × g for 10 min-
utes, the supernatant was added to test reagents and incu-
bated at 95°C in a water bath for 40 minutes. After cooling 
for 10 minutes, the reaction mixture was centrifuged at 4000 
× g for 10 minutes, and the OD of the supernatant was mea-
sured at a wavelength of 532 nm. The SOD and MDA levels 
were calculated according to the OD values.

Detection of lactate dehydrogenase (LDH) activity
To assess damage caused by Aβ to cells, LDH activity 
was measured with the LDH detection kit (Jiancheng) as 
previously described (Song et al., 2016). Briefly, after Aβ 
treatment, 20 μL of the cell culture supernatant was mixed 
thoroughly with 25 μL of detection buffer and 5 μL of coen-
zyme I, and incubated in a water bath at 37°C for 15 minutes. 
Thereafter, 25 μL of 2′,4′-dinitrophenylhydrazine was added 
to the mixture and incubated at 37°C for 15 minutes. Then, 5 
minutes after the addition of 250 μL of 0.4 M NaOH, the ab-
sorbance was measured at 450 nm with a microplate reader.

Enzyme-linked immunosorbent assay (ELISA)
Cells were added to 500 μL of cold carbonate buffer (100 
mM Na2CO3, 50 mM NaCl with pH 11.5) with protease in-
hibitors and homogenized by sonication. The cell lysate was 
centrifuged at 12,000 × g for 45 minutes and the supernatant 
was used for determination of caspase-3 content with the 
Caspase-3 ELISA kit (Abcam, Hong Kong, China) using a 
microplate reader.

Terminal deoxynucleotidyl transferase dUTP nick end 
labeling (TUNEL) staining
Cells were fixed with 4% paraformaldehyde at room tempera-
ture (25°C) for 20 minutes. After washing three times with 
PBS, the cells were permeabilized with 1% Triton X-100 and 
blocked with 3% H2O2 at room temperature for 10 minutes. 
After three washes with PBS, TdT enzyme reaction solution 
(Coolrun, Shenzheng, China) containing TRITC-5-dUTP and 
TdT enzyme was added to the cells and incubated in the dark 
at 37°C for 60 minutes. Following nuclear staining with 5 μg/
mL DAPI, the cells were observed by fluorescence microscopy.

Statistical analysis
SPSS 17.0 for Windows (SPSS, Chicago, IL, USA) was used 
for data processing. The data are expressed as the mean ± 

SD. Intergroup comparison was performed using analysis of 
variance (with α = 0.05).

Results
Aβ42 downregulated MKP1 expression in PC12 cells
To assess the effect of Aβ42 on the viability of PC12 cells, the 
cells were treated with different concentrations of Aβ42 for 24 
hours, and cell viability was assessed. Aβ42 treatment result-
ed in the loss of cell viability in a dose-dependent manner 
(Figure 1A). To evaluate the effect of Aβ on MKP1 mRNA 
and protein expression in PC12 cells, 10 μM Aβ42 was added 
to the cell culture medium, and MKP1 mRNA and protein 
expression was assessed by qRT-PCR and western blot as-
say at different time points. qRT-PCR showed that MKP1 
mRNA expression was significantly downregulated 6 hours 
after Aβ42 addition (P < 0.05), with the lowest expression at 
12 hours (P < 0.01; Figure 1B). Western blot assay showed 
that MKP1 protein expression was significantly downreg-
ulated at 12 hours after Aβ42 exposure (P < 0.01), with the 
lowest expression at 18 hours (P < 0.01) (Figure 1C). These 
results demonstrate that Aβ42 downregulates MKP1 expres-
sion in PC12 cells in a time and concentration-dependent 
manner.

MKP1 suppressed Aβ42-induced oxidative stress
To examine the role of MKP1 in Aβ42-induced oxidative 
stress, we measured intracellular ROS levels in PC12 cells 
with the DCFH-DA assay. Aβ42 treatment resulted in an 
increase in ROS generation compared with untreated control 
cells. In comparison, Aβ42 treatment of PC12 cells with stable 
MKP1 knockdown with shRNA resulted in substantially high-
er ROS production compared with control cells. Conversely, 
cells with stable MKP1 overexpression showed reduced ROS 
generation compared with control cells (Figure 2A).

Mitochondrial membrane potential (ΔΨm) is a cellular 
indicator of oxidative stress, and ROS reduce ΔΨm (Vayssi-
er-Taussat et al., 2002). We found that Aβ42 exposure led to 
a reduction in ΔΨm in PC12 cells, which was significantly 
enhanced by MKP1 knockdown (P < 0.05), and significantly 
suppressed by MKP1 overexpression (P < 0.05; Figure 2B). 
SOD activity and MDA levels in PC12 cells were also mea-
sured. Aβ42 treatment reduced SOD activity, and this effect 
of the peptide was significantly enhanced by MKP1 knock-
down (P < 0.01) and significantly suppressed by MKP1 
overexpression (P < 0.05; Figure 2C). In addition, Aβ42 sig-
nificantly increased MDA levels (P < 0.05). However, MKP1 
knockdown had no impact on this Aβ42-mediated increase 
in MDA levels (P > 0.05), whereas MKP1 overexpression 
significantly diminished the Aβ42-mediated increase in MDA 
levels (P < 0.01; Figure 2D). These results demonstrate that 
MKP1 inhibits Aβ42-induced oxidative stress in PC12 cells.

MKP1 prevented Aβ42-induced neuroinflammation
To assess the effect of MKP1 on Aβ-induced neurotoxicity, 
PC12 cells were treated without (Control) or with 10 μM 
Aβ42 (Aβ42) for 24 hours. Furthermore, PC12 cells stably ex-
pressing MKP1 shRNA (MKP1 KD + Aβ42) or MKP1 (MKP1 
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+ Aβ) were treated with 10 μM Aβ42 for 24 hours. phos-
pho-JNK (p-JNK) levels were then measured by western 
blot assay, and mRNA levels of the inflammatory cytokines 
TNF-α and IL-1β were assessed by qRT-PCR. As shown in 
Figure 3A, Aβ42 increased the p-JNK signal, and this effect 
was significantly enhanced by MKP1 knockdown (P < 0.05) 
and significantly diminished by MKP1 overexpression (P < 
0.05). Aβ42 increased mRNA levels of TNF-α and IL-1β, and 

MKP1 knockdown bolstered this effect of the peptide (P < 
0.05). In contrast, MKP1 overexpression significantly di-
minished the Aβ42-mediated increase in expression of these 
inflammatory cytokines (P < 0.05; Figure 3B).

MKP1 alleviated Aβ42-induced neuronal apoptosis
To evaluate the effect of MKP1 on Aβ42-induced cellular 
injury, normal PC12 cells and PC12 cells stably expressing 
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Figure 3 Effect of MKP1 on Aβ42-induced neuroinflammation in PC12 cell culture.
(A) PC12 cells were treated without (Control) or with 10 μM Aβ42 (Aβ42), and PC12 cells stably expressing MKP1 shRNA (Aβ42 + MKP1 KD) or 
MKP1 lentiviral particles (Aβ42 + MKP1) were treated with 10 μM Aβ42 for 24 hours. Total protein was extracted for western blot assay for p-JNK 
with GAPDH as loading control. The relative expression of p-JNK to GAPDH was assessed by densitometric analysis using ImageJ software. 
(B) Cells were treated as in A. Total RNA was extracted for quantitative real time-polymerase chain reaction for TNF-α and IL-1β mRNA with 
GAPDH as internal control. Data are representative images or are expressed as the mean ± SD (six separate experiments for each group of cells). 
Intergroup comparison was performed with analysis of variance. #P < 0.05, vs. Aβ42 group. MKP1: Mitogen-activated protein kinase phosphatase 
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Figure 5 Inhibition of JNK suppressed the aggravating effect of MKP1 knockdown on Aβ-induced neurotoxicity in PC12 cells.
(A) PC12 cells stably expressing MKP1 shRNA were treated without (Control) or with 2 μM of the JNK specific inhibitor SP6001250 in the presence 
of 10 μM Aβ42 for 24 hours. DCFH-DA fluorescence, mitochondrial membrane potential (ΔΨm), SOD activity and MDA levels were then analyzed. 
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MKP1 shRNA or MKP1 were treated with 10 μM Aβ42 for 24 
hours, and cell viability was assessed with the cell counting 
kit-8 assay and by measuring the activity of LDH released 
into the medium. Aβ42 reduced the viability of PC12 cells, 
and this effect of the peptide was significantly enhanced by 
MKP1 knockdown (P < 0.05) and significantly suppressed 
by MKP1 overexpression (P < 0.01; Figure 4A). Moreover, 
Aβ42 increased LDH release. MKP1 knockdown enhanced 
Aβ42-induced LDH release (P < 0.05), whereas MKP1 over-
expression diminished Aβ42-induced LDH release (P < 0.01; 
Figure 4B). In addition, Aβ42 increased caspase-3 levels, 
which was significantly enhanced by MKP1 knockdown (P 
< 0.05) and significantly diminished by MKP1 overexpres-
sion (P < 0.05; Figure 4C). Furthermore, TUNEL staining 
demonstrated that Aβ42 treatment led to the apoptosis of 
PC12 cells. The number of TUNEL-positive cells was sig-
nificantly increased by MKP1 knockdown (P < 0.05) and 
significantly decreased by MKP1 overexpression (P < 0.01; 
Figure 4D).

Inhibition of JNK abolished the effect of MKP1 
knockdown on Aβ42-induced neurotoxicity
The preceding results show that MKP1 attenuates Aβ42-in-
duced oxidative stress, inflammation and cellular injury. To 
explore the role of the JNK pathway in the neuroprotective 
action of MKP1, PC12 cells stably expressing MKP1 shR-
NA were treated with or without the JNK-specific inhibitor 
SP6001250 (2 μM; Sigma-Aldrich) in the presence of 10 
μM Aβ42 for 24 hours, and cell viability, oxidative stress and 
apoptosis were assessed. SP600125 abrogated the MKP1 
knockdown-induced increase in ROS generation and mi-
tochondrial membrane potential. It also increased SOD 
activity and lowered MDA levels in PC12 cells (Figure 5A). 
In addition, SP600125 inhibited the MKP1 knockdown-in-
duced upregulation of TNF-α and IL-1β mRNA expression 
(Figure 5B). Furthermore, SP600125 diminished the MKP1 
knockdown-induced loss of cell viability, and alleviated the 
MKP1 knockdown-mediated increase in LDH release and 
apoptosis (Figure 5C).

Discussion
In the early phase of AD, Aβ accumulates in brain tissue and 
induces activation of MAPK signaling pathways, the genera-
tion of ROS and inflammatory reactions, ultimately leading 
to neuronal apoptosis (Origlia et al., 2009; Ghavami et al., 
2014; Jazvinšćak Jembrek et al., 2015; González-Reyes et al., 
2016; Jarosz-Griffiths et al., 2016). These phenomena have 
been verified in AD animal models and in vitro experiments; 
however, the mechanisms by which Aβ activates the MAPK 
signaling pathway remained unknown.

In this study, Aβ42 neurotoxicity towards PC12 cells was 
concentration-dependent, and it decreased both MKP1 
mRNA and protein expression. A previous study showed 
that MKP1 expression is downregulated in the brain tissue 
of patients with Huntington’s disease (Taylor et al., 2013), 
but it was unknown whether MKP1 expression is affected in 
AD. Our results revealed that MKP1 expression is downreg-

ulated following Aβ exposure, suggesting that MKP1 may be 
involved in the pathogenesis of AD.

There is substantial evidence that oxidative stress induced 
by ROS overproduction combined with the low antioxida-
tive capacity of cells plays an important role in AD (Aliev et 
al., 2014; Luque-Contreras et al., 2014; Ganguly et al., 2017; 
Rojas-Gutierrez et al., 2017). Excessive oxidative stress leads 
to lipid peroxidation of the cell and organellar membranes, 
thereby affecting the function of nerve cells (Shichiri, 2014; 
Di Domenico et al., 2017). Moreover, oxidative stress results 
in nitration of proteins and damage to nucleic acids (Stepien 
et al., 2017; Wu and Tang, 2018). These combined negative 
effects eventually lead to the functional impairment or loss 
of neurons. Aβ catalyzes the generation of ROS via the α-he-
lical structure, with evidence demonstrating that the oxida-
tive stress in the brains of AD patients and animal models is 
mainly produced by Aβ (Prasad and Bondy, 2014). In this 
study, Aβ induced the generation of ROS in PC12 cells. In-
triguingly, ROS generation in PC12 cells was substantially 
increased after MKP1 knockdown, while it was abolished 
by MKP1 overexpression. Moreover, ROS reduce ΔΨm, 
a biological indicator of oxidative stress. We found that 
MKP1 knockdown enhanced, while MKP1 overexpression 
inhibited the Aβ42-induced decrease in ΔΨm. In addition, 
MKP1 knockdown enhanced, while MKP1 overexpression 
inhibited the Aβ42-induced decrease in SOD activity in PC12 
cells. Furthermore, MKP1 overexpression prevented the in-
crease in MDA levels induced by Aβ42. These results indicate 
that MKP1 plays an important role in Aβ-induced oxidative 
stress in neurons.

Chronic inflammation in the brain is another important 
pathological feature of AD (Bagyinszky et al., 2017; Fraga et 
al., 2017; Shamim and Laskowski, 2017). Epidemiological 
studies have shown that nonsteroidal anti-inflammatory 
drugs significantly reduce the incidence of AD, and nonste-
roidal anti-inflammatory drugs and corticosteroids reduce 
Aβ deposition and suppress the activation of glial cells, as 
well as the release of inflammatory factors and free radicals 
in the brains of AD animal models (Doost Mohammadpour 
et al., 2015; Heneka et al., 2015). JNK plays an important 
role in inflammation (Cano and Mahadevan, 1995) and is 
involved in the regulation of transcription of inflammatory 
genes via phosphorylation of the downstream target c-Jun 
(Coffey, 2014). In this study, we demonstrated that Aβ pro-
motes JNK activation. Furthermore, MKP1 modulated the 
Aβ-induced activation of the JNK pathway, accompanied 
with changes in the expression of the inflammatory cyto-
kines TNF-α and IL-1β. JNK is also involved in apoptosis 
(Chen, 2012), and the inhibition of the JNK pathway alle-
viates Aβ-induced neuronal apoptosis (Bozyczko-Coyne et 
al., 2001). In this study, the JNK specific inhibitor SP600125 
prevented the MKP1 knockdown-induced increase in ROS 
generation. It also reduced oxidative stress and the gener-
ation of inflammatory factors, and it prevented apoptosis 
caused by Aβ. These findings suggest that JNK modulates 
the action of MKP1 in Aβ-induced toxicity.

There are some limitations to this study. The mechanisms 
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by which Aβ downregulates MKP1 need to be further clari-
fied. Furthermore, an in vivo study should be conducted to 
evaluate the neuroprotective effects of MKP1 in AD.

In summary, Aβ downregulates MKP1 expression. MKP1, 
in turn, alleviates Aβ-induced oxidative stress, inflammation 
and cellular injury by suppressing the JNK signaling path-
way. Our findings provide insight into the mechanisms by 
which the MAPK signaling pathway is activated by Aβ. The 
MKP1/JNK signaling axis may be a promising therapeutic 
target for the development of novel drugs for AD.
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