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Abstract Scientific understanding of the genetic compo-
nents of aging has increased in recent years, with several
genes being identified as playing roles in the aging process
and, potentially, longevity. In particular, genes encoding
components of the nuclear lamina in eukaryotes have been
increasingly well characterized, owing in part to their clin-
ical significance in age-related diseases. This review focuses
on one such gene, which encodes lamin A, a key component
of the nuclear lamina. Genetic variation in this gene can give

rise to lethal, early-onset diseases known as laminopathies.
Here, we analyze the literature and conduct computational
analyses of lamin A signaling and intracellular interactions
in order to examine potential mechanisms for altering or
slowing down aberrant Lamin A expression and/or for re-
storing the ratio of normal to aberrant lamin A. The ultimate
goal of such studies is to ameliorate or combat laminopa-
thies and related diseases of aging, and we provide a dis-
cussion of current approaches in this review.
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Introduction

The nuclear lamina is an array of intermediate filament
proteins inside the nucleus of eukaryotic cells, which sup-
ports the structure of the nucleus, including its shape and
mechanical stability [1, 2]. In addition, it serves as a scaffold
for the attachment of DNA–protein complexes that regulate
both eu- and heterochromatin histone modifications [3]. The
nuclear lamina is involved in the regulation of many key
biological processes, including DNA replication, transcrip-
tion, cell cycle progression, and chromatin organization [2].
Given the central role of the nuclear lamina in such a wide
range of essential processes, it is not surprising that alter-
ations in the structure can have a significant impact on
normal cellular function, and in some cases can give rise
to disease and even mortality within affected organisms.

Maintenance of the nuclear lamina is essential for most
eukaryotic life forms, and requires the presence of an array
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of specific proteins that are highly conserved evolution-
arily, both in terms of their structure and function. In
particular, major functional components of the nuclear
lamina are fibrous proteins known as nuclear lamins,
which support this structure through interactions with
specific membrane-associated proteins. Lamins are highly
conserved evolutionarily, being represented in all exam-
ined metazoan life forms; thus, their essential functions
likely ensure survival across a broad range of species [4].
Mutations within lamin genes and subsequent alterations
in the structure and function of the proteins they encode
can give rise to a broad range of diseases known as
laminopathies. Such diseases are characterized by a broad
range of severe clinical symptoms and complications,
with some causing mortality early in life. Numerous
laminopathies have been identified in humans during
the last decade, and have been linked to several types
of mutations in causative loci, both within lamin genes
themselves and in genes encoding lamin-binding proteins.
Laminopathies include Emery–Dreifuss muscular dystro-
phy (MIM 181350), dilated cardiomyopathy (MIM
115200), familial partial lipodystrophy (MIM 151660),
Charcot–Marie–Tooth disorder type 2B1 (MIM 605588),
Greenberg skeletal dysplasia (MIM 215140), limb girdle
muscular dystrophy Type 1B (MIM 159001) and mandi-
buloacral dysplasia with type A lipodystrophy (MIM
248370). The molecular mechanisms by which lamins
contribute to these diseases have become increasingly
understood in recent years, particularly in terms of the
genetic mutations and effects therein on both gene ex-
pression and protein structure and function.

Lamin A processing, mutations, and role in diseases

Lamins can be categorized as either A type (lamins A and
C) or B type (lamins B1 and B2). In humans, A-type
lamins are encoded by a single gene—LMNA (Entrez
Gene ID: 4000)—located on chromosome 1q21.2, while
B-type lamins are encoded by two genes—LMNB1 and
LMNB2 (Entrez Gene ID: 4001 and 84823)—located on
chromosomes 5q23.2 and 19p13.3, respectively. The pro-
cesses involved in the expression of lamin genes and their
translation and processing into mature and functional pro-
teins include a series of specific and essential steps,
alterations to which can impact the essential molecular
and cellular functions of these proteins. In the case of
LMNA, one essential step in protein biosynthesis and
maturation is farnesylation at the C-terminus by the en-
zyme farnesyltransferase [5]. This posttranslational modi-
fication plays a role in targeting prelamin A to the inner
nuclear membrane. Farnesylation is followed by several
steps involving the endoproteolytic cleavage of the last

three amino acids by zinc metallopeptidase ZMPSTE24,
carboxymethylation of the C-terminal cysteine by ICMT
methyltransferase, and proteolytic removal of the last 18
amino acids by ZMPSTE24, resulting in the removal of
the farnesyl tail on the C-terminus [6, 7]. Mature lamin A
is then released from its membrane anchor, which allows
it to be properly positioned in the nuclear scaffold. Fac-
tors that interfere with these steps in such a way as to
affect lamin maturation can have negative effects on
nuclear lamin and can ultimately lead to an array of
downstream effects, detrimental to cellular health and in
some cases, longevity.

Within the LMNA gene alone, over 400 different point
mutations have been identified, many of which are underly-
ing causes of laminopathies [8, 9], including restrictive
dermopathy (MIM 275210) and Hutchinson–Gilford proge-
ria syndrome (HGPS; MIM 176670). HGPS presents as a
broad range of clinical features, which most notably include
accelerated aging [10]. HGPS is caused by mutations in the
LMNA gene, the most well-known of which is a de novo
heterozygous point mutation in position 1824C > T
(G608G) [11]. While the G608G mutation does not cause
any change in the encoded amino acid, it does activate a
cryptic splice donor site in exon 11 of the LMNA gene.
Consequently, a splice variant of Prelamin A mRNA is
generated with an internal deletion of 150 base pairs [11].
These transcripts are translated into progerin, the truncated
form of the lamin A protein, with a 50 amino acid internal
deletion near the C-terminus [11]. The internal deletion
eliminates the essential endoprotease ZMPSTE24 recogni-
tion site, resulting in progerin remaining permanently farne-
sylated and anchored to the nuclear membrane [11, 12]. The
accumulation of progerin in cells of patients carrying the
G608G mutation severely impacts the structure of the nu-
clear lamina, culminating in the cellular and disease pheno-
types characteristic of HGPS.

Severe forms of progeria also occur due to a number of
other mutations in LMNA, such as 1821 G > A and 1,968 G
> A, mutations associated with increased ratios of progerin
to normal, wild-type protein [13]. An extremely severe case
of neonatal progeria in which death occurs within the first
year of life has recently been found to be associated with
heterozygosity (1,821 G > A). Examination of patient fibro-
blasts demonstrates an increased ratio of progerin to lamin
A, relative to those levels typically observed in HGPS,
suggesting that disease severity may be determined in part
by the ratio of the farnesylated protein to mature lamin A
[13, 14].

The hallmarks of progeria and its characteristic pheno-
types are broadly associated with alterations in the produc-
tion of progerin relative to mature lamin A, imbalances that
directly impact key biological processes occurring at both
the genetic and cellular levels. Progerin is observed to
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accumulate in all tissues of HGPS patients, acting as a
dominant-negative protein that significantly modifies the
structure of the nuclear lamina [15]. The cellular phenotype
of HGPS patients includes nuclear blebbing, thinning of the
nuclear lamina, loss of peripheral heterochromatin, and
clustering of nuclear pores [16]. Accumulation of progerin
in HGPS as nucleoplasmic aggregates leads to inhibition of
the transport of several factors that play key roles in the
functioning of the nucleus [15]. Examination of fibroblast
cells from patients with HGPS demonstrates deficiencies in
histone modification, alterations in gene expression, delays
in the response to DNA damage, disturbances of mitosis,
and cytokinesis, abnormalities in chromosome segregation
and increases in the occurrence of binucleated cells [9]. The
hallmarks and clinical features of HGPS are therefore deep-
ly rooted in alterations taking place at genetic and protein
biosynthesis levels and, in turn, those subsequent changes
that negatively impact key biological processes further
downstream. While there are significant components to
HGPS that are associated with aging, disease pathogenesis,
and progression is likely to involve several factors not
exclusive to the aging process. While many tissues in HGPS
patients exhibit phenotypes associated with accelerated ag-
ing, not all tissues are typically affected (reviewed by [17]).
In addition, HGPS may not be viewed exclusively as a
disease of accelerated aging, given that certain aspects of
the disease are not typically associated with normal aging;
for example, the presence of clavicular agenesis. Significant
features of HGPS that are associated with normal aging
include increases in DNA damage, defects in DNA repair,
alterations in telomeric dynamics, and increases in cell pro-
liferation, senescence, and tissue homeostasis (reviewed by
[17] and references therein). In this respect, HGPS may be
viewed as a disease that substantially resembles premature
aging, but does not include all aspects of it, and is segmental
in nature.

The significance of LMNA in human health
and longevity

Several genes have been identified in recent years as influenc-
ing the aging process and possibly longevity [18, 19]. The
potential significance of the LMNA gene in human health and
its potential contribution to susceptibility to many common
diseases is also becoming increasingly appreciated. In partic-
ular, Scaffidi et al. demonstrate that the molecular mechanism
that underlies HGPS also takes place in normal cells at a lower
rate [20]. The nuclei of cells of normal-aged individuals
exhibit defects similar to those of cells of HGPS patients,
including changes in histone modification and increased lev-
els of DNA damage. Age-dependent defects in the nuclei of
cells of healthy individuals are caused by infrequent use of the

same cryptic splice site of Lamin A, whose constitutive acti-
vation generates a Progerin transcript [20]. The over-
expression of normal Prelamin A can lead to growth defects
in human vascular smooth muscle cells [21], similar to those
changes observed in cells producing Progerin [22]. Cytotox-
icity can also be induced by a minor increase in the steady-
state level of one or more intermediate products of Prelamin A
processing [12, 22].

Recent years have shown extensive investigation of the
potential contribution of genetic variability within lamin
genes to disease susceptibility. Disease-association studies
including SNPs at lamin loci, have implicated metabolic
syndrome, dislipidemia, type-II diabetes, obesity, polycystic
ovary syndrome, arterial stiffness, and vascular disease
[23–35]. In addition, there is some evidence for the potential
influence of genetic variation at LMNA on human longevity
and age-related diseases [36–38]. Findings from these stud-
ies have been variable, with the majority focusing on the
1908C > T; rs4641 LMNA SNP. rs4641 has been found in
several cases to be significantly associated with disease
susceptibility and related conditions across a number of
ethnically diverse population cohorts for type II diabetes
and related diseases [23, 24, 26–28, 31]. The rs4641 SNP
is a silent C > T substitution occurring at exon 10 of the
LMNA gene, the exon in which alternative splicing gives
rise to mRNAs that code for either Prelamin A or Lamin C
[39]. The mechanism by which this SNP alters the LMNA
gene product and phenotype to potentially influence suscep-
tibility to these diseases is unknown. However, recent evi-
dence suggests that the C and T alleles of rs4641 are
associated with differential gene expression phenotypes,
with the C allele associated with increased levels of tran-
scripts of Lamin A and Lamin C relative to those detected for
the T allele [40]. While this study demonstrates that differ-
ential, allele-specific expression is present at the LMNA
locus in HGPS, it is unclear whether or not such variability
is directly associated with the rs4641 SNP or if it is rather
associated with other variants located within the same hap-
lotype block. In light of these studies, the relevance of
genetic variation at the LMNA locus to more common dis-
eases affecting populations at large may be significant.
Interestingly, the rs4641 SNP is represented in all popula-
tions that have been examined in the HapMap project to
date, with the minor ‘T’ allele represented at levels ranging
from between 5 and 10 % in African populations, 20–25 %
in Europeans and 23–32 % in South and East Asian pop-
ulations (www.hapmap.org) [41]. Elucidating the role of this
relatively common SNP in disease pathogenesis, longevity,
or related diseases, therefore, may have broad significance.
However, in-depth examination of linkage disequilibrium
between rs4641 and other functional SNPs is required to
delineate the role of this LMNA SNP in human diseases,
metabolic-related, age-related, or otherwise.
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Given the evidence that genetic variation at LMNA con-
tributes to both laminopathies and more common human
diseases, the identification of methods that can therapeuti-
cally alter LMNA structure and restore a healthy homeostatic
balance of aberrant/normal LMNA, warrants further investi-
gation. A multifaceted approach is required to increase
knowledge in this area and further elucidate the functional
relevance and complex characteristics of lamins both in
terms of their expression and functional interactions. In this
way, interventions may be designed and developed to inter-
vene, treat, and ameliorate symptoms of human diseases,
particularly those associated with aging.

Targeting LMNA and associated diseases: a multifaceted
approach

Combating the broad range of consequences associated with
missplicing lamins and altering their gene expression levels
requires a multifaceted approach, which includes targeting
components at the genetic level as well as targeting compo-
nents downstream cell signaling and cellular-level process-
es. Furthermore, unraveling the underlying complexity at
each of these levels and, in turn, targeting specific processes
therein to treat or ameliorate disease symptoms, requires (a)
an in-depth knowledge of the molecular interactions be-
tween nuclear lamins and other proteins and cellular events,
(b) in vitro and in vivo studies demonstrating effectiveness
of the treatment and validating such interventions, and (c)
development and refinement of techniques to manage, limit,
and potentially reverse damage that has already been in-
curred in patients. Here, we perform an analysis of the
existing literature and published data sets, with the goal of
identifying novel targets for treating laminopathies and as-
sociated diseases. In turn, we hope that these findings may
provide a basis for future experimental design, interpretation
of results, and refinement of methods aimed at tackling
severe laminopathies and other age-related diseases.

Computational analysis of LMNA signaling
and intracellular interactions

In this study, we utilized literature searches of the NIH’s
PubMed database in order to examine pathways that regulate
LMNA expression. This was accomplished by using the fol-
lowing keywords during searches: gene expression regulation
LaminA/C or Progerin, and progeria. In order to visualize the
molecular interactions between nuclear lamins and other pro-
teins and identify novel targets, the Ingenuity Pathway Anal-
ysis (IPA, Ingenuity© Systems, www.ingenuity.com)
software and knowledgebase and its pathway designer graph-
ical module were utilized. IPA provided graphical

representations of network interactions of the LMNA protein
with molecules involved in signal transduction pathways and
other intracellular regulatory networks. Data used to generate
pathways and interaction networks in IPA are compiled from
interactions validated in multiple model organisms from peer-
reviewed journals by a team of IPA scientists. Advantages of
this software tool include: (a) each connection displayed on a
graph is documented by a peer-reviewed article, which can be
examined by clicking on the relevant connection and (b) the
Pathway Designer module contains “cell art” elements which
can be used to graphically display connection locations (nu-
cleus, mitochondria, cellular membrane, etc.).

Searches did not identify signaling or metabolic path-
ways in IPA that center on LMNA. However, LMNA was
found to be part of a canonical Apoptosis Signaling pathway
as a target of caspase 6. The LMNA Interactome generated
through this analysis displays 110 direct molecular interac-
tions with LMNA, with all the known molecules that
LMNA/lamin A interacts with, including proteins, protein
modifiers, small molecules, and microRNAs. Some of these
molecules are members of other signal transduction path-
ways, and therefore represent a bridge between LMNA and
these pathways. The most important signal transduction
pathways that target/affect LMNA are shown in Fig. 1. Data
shown in this figure was generated by combining informa-
tion from several individual canonical pathways, the LMNA
Interactome, and additional information from the published
literature, and then repeating several iterations of this pro-
cess to reach a final model. As shown in Fig. 1, WNT/beta-
catenin, TGF beta, Notch, and PI3K represent the key sig-
naling pathways upstream of LMNA, which likely regulate
its expression. The main molecules that interact with the
lamin A protein, and have genetic correlates with some of
the laminopathies we have discussed here, are mainly found
in the nucleus, including Sun1 and Sun2, whose potential
roles in HGPS disorder have been investigated recently [42].
Many of the identified signaling pathways and molecules
that interact with lamin A are known to exert effects on
nuclear lamins by altering their expression levels. To visu-
alize gene expression regulatory points that potentially may
be targeted for intervention, the Pathway Designer module
was applied to the data presented in Fig. 1. Potential inter-
ventions might include following mechanisms: transcrip-
tion, splicing, translation, posttranslational modification,
and degradation via autophagy. Using the overlay function
of IPA, this figure was overlaid with a number of pharma-
ceuticals and drugs that may be used to target key proteins
of any given biological process. While a number of drugs
were identified via the IPA database, more detailed lists of
drugs and agents that may be applicable are listed in
Tables 1, 2, 3, 4 and 5 generated through PubMed searches
using relevant keywords. To expand the literature search and
identify additional known drugs and experimental
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compounds, as well as their side effects, potentially acting
on elements of the pathways involving LMNA gene, we
employed a manually curated proprietary database (Meta-
Core™, GeneGo), and the MetaCore pathway analysis
software.

Targeting Lamin A and Progerin expression via signal
transduction pathways

On the basis of the computational analysis outlined above, a
number of potential targets and therapeutic interventions
have been identified and discussed. Many of these potential
interventions may nonspecifically down-regulate the level
of expression of both Lamin A and its disease-associated
allelic variants, while others have more specific effects on
mutant Lamin A expression.

Restoration of IGF-1 and GH balance

Insulin-like growth factor 1 (IGF-1) signaling is involved in
aging and longevity in many animals, including nematodes,
Drosophila, and mammals (for review see [43]). Zmpste24
(−/−) mice, a mouse model of progeria, exhibits dysregula-
tion of somatotropic axis, characterized by high levels of
circulating growth hormone (GH) and reductions in insulin-
like growth factor-1 (IGF-1) [44]. Application of recombi-
nant IGF-1 restores the balance between IGF-1 and GH, and
this delays the onset of several progeroid characters and
prolongs the lifespan of progeroid animals [44, 45]. How-
ever, applying such an approach as a means of treating
HGPS may be limited, given the diverse biological effects
exerted by this hormone, and in particular, the pathogenic
role of IGF-1 signaling in cancer [46].

Notch signaling inhibitors

Expression of Progerin ectopically activates effectors of
Notch and downregulates the canonical Wnt signaling path-
way, regulating the differentiation of mesenchymal stem
cells [47, 48]. This leads to misregulation of somatic stem
cell differentiation, explaining some of the pathological
defects of HGPS [49]. Thus, inhibitors of Notch signaling
(Table 1) and recombinant β-catenin could potentially ame-
liorate symptoms of HGPS. Notch 2 may also be targeted
for inhibition given its influence on Granzyme B transcrip-
tion [50] and potentially apoptosis; however, the impact of
such an approach on immune function is unclear. Further-
more, there are severe side effects known to be associated
with certain Notch inhibitors, including gastrointestinal
bleeding and skin cancer [51]. Therefore, caution must be
taken when applying such approaches to treating HGPS
patients.

Reactive oxygen species scavengers

Basal levels of reactive oxygen species (ROS) as well as
induced levels of H2O2 are five times higher in HGPS
fibroblasts compared to normal fibroblasts, which leads to
double stranded breaks (DSBs) in DNA and a decrease in
the proliferative capacity of cells [52]. Indeed, HGPS is
accompanied by an elevated quantity of DSBs and attenua-
tion of their repair [53]. On the contrary, the ROS scavenger
N-acetyl cysteine (NAC) has been shown to decrease basal
levels of DSBs and enhance population-doubling times in
fibroblasts derived from HGPS patients [52]. Other effective
ROS scavengers are listed in Table 2. However, the effec-
tiveness of using ROS scavengers for treating progeria
patients and ameliorating intracellular damage and associat-
ed symptoms remains somewhat speculative. In addition,
the complex biochemical effects of some anti-oxidants may
raise some safety concerns. While the anti-oxidative effects
of ascorbic acid are well characterized, pro-oxidative effects
have also been described [54–56] and such properties must
be taken into consideration when developing treatments for
progeria.

Telomerase activators

Progressive attrition of telomeres causes activation of pro-
gerin production in normal human fibroblasts [9]. Active
telomerase prolongs the cellular lifespan of HGPS by de-
creasing progerin-induced DNA-damage signaling and acti-
vation of both the p53 and Rb pathways. These are the two
pathways that mediate the onset of premature senescence in
HGPS [57]. Telomerases can be stimulated by a potent
telomerase activator, TA-65, to extend short telomeres, and
this has been shown to have a positive effect on health span
in mice [58]. Treatment with TA-65 may prevent some
symptoms of HGPS. However, while the results in mice
are promising, the use of this technology in humans may
be limited, particularly in the event of any significant side
effects being identified in future clinical trials.

Rb regulators

Progerin accumulation leads to premature replicative cellu-
lar senescence [59]. Marji et al. suggest, based on global
gene profiling of HGPS fibroblasts, that defects in the lamin
A-Rb signaling pathway may be key factors in the acceler-
ated aging phenotype of HGPS, and perhaps in normal
aging, too [60]. Rb activity can be modified with reagents
such as roscovitine and PD-0332991, inhibitors of Cdk2–
cyclin E and Cdk4/cyclin D1 complexes, respectively, that
phosphorylate and inactivate the Rb tumor suppressor [61].
However, studies indicate that Rb expression is decreased in
fibroblasts in both HGPS and normal aging, with a
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concomitant reduction in phosphorylation [60, 62]. In this
respect, an intervention that increases Rb expression and/or
increases Rb phosphorylation to normal physiological levels
may provide some therapeutic benefit in HGPS.

Apoptosis inhibitors

Nuclear progerin accumulation leads to accelerated aging
and increased apoptosis in individuals suffering from HGPS
[59], and the same observation has been made in aging
HGPS fibroblasts [63]. Theoretically, apoptosis inhibition
(Table 3) may offer some means of extending the cellular
lifespan of HGPS patients. However, the potential for in-
creased risk of developing cancers and other related diseases
would almost certainly limit such an approach.

Inhibitors of translation and autophagy activators

Rapamycin, an immunosuppressant drug, delays cellular
senescence and organismal aging, abrogates nuclear bleb-
bing, and stimulates degradation of progerin in HGPS cells
[64, 65]. This drug can selectively decrease progerin levels
in progeria cells through a mechanism involving autophagic
degradation [66]. Rapamycin treatment decreases the for-
mation of nonsoluble aggregates of progerin and induces
progerin elimination by autophagy in normal fibroblasts

[64]. A safer alternative to rapamycin, rilmenidine, a cen-
trally acting anti-hypertensive drug, was found to induce
autophagy in cell culture via a pathway independent of the
mammalian target of rapamycin [67]. As a natural alterna-
tive to the acid form of tretinoin (all-trans-retinoic acid),
vitamin A has been found to induce autophagy. The essen-
tial oil produced from rose hip seeds is a natural source of
tretinoin and promotes autophagosome maturation through a
pathway independent from the classic nuclear hormone
receptors [68, 69]. Another natural autophagy activator is
vitamin K2 [70]. A comprehensive list of known autophagy
activators is listed in Table 4.

Several small molecules down-regulate lamin A/C pro-
tein via mechanisms of proteolysis. Doxorubicin (also
known as adriamycin) is a topoisomerase II inhibitor used
in anti-cancer therapy whereby it induces activation of cas-
pases, leading to cleavage of lamin A/C [71]. Doxorubicin
has also been identified in a high-content screen for inducers
of autophagy [72]. Sangivamycin is a nucleoside analog that
acts via activation of JNK and protein kinase C delta. In
MCF-7/Adr cells, sangivamycin increases cleavage of hu-
man lamin A/C protein [73]. Tunicamycin and thapsigargin,
endoplasmatic reticulum (ER) stress inducers, increase deg-
radation of mouse LMNA protein via the activation of
caspases [74]. Paclitaxel, a chemotherapeutic agent, induces
cleavage of lamin A/C, enhanced by the synthetic peptides

Fig. 1 Key signaling pathways upstream of LMNA, which regulate its
expression (listedmainly on the top of the figures), and themainmolecules
that interact with lamin A/C protein (listed mainly in the nucleus). Labels
denoting physiological processes in the cell are derived partially from the
IPA listing under category “Top Functions and Diseases”: Mechanical
Stability of the Nucleus, Response to DNA Damage, Gene Transcription,
Cell Cycle Progression. The meanings of the molecular symbols are
described in the figure legend, which is part of the figure. Lines represent
interactions between the molecules. They can have arrows, solid lines or
nothing at the end, which represent directional action, inhibitory action, or
just binding of two molecules, respectively. Red crossing lines in the
nucleus represent a DNA double helix. Entrez Protein Names and their
symbols used in figures, are in parenthesis: Catenin (cadherin-associated
protein), beta 1, 88 kDa (β-catenin), beta-transducin repeat containing (β-
TrCP), eukaryotic translation initiation factor 4E binding protein 1
(eIF4EBP), AHR ligand, aromatic hydrocarbon (AHR Ligand), protein
kinase B/Akt (AKT), Adenomatous polyposis coli, APC (APC), mitogen-
activated protein kinase kinase kinase 5 (ASK1), adenosine 5′-triphosphate
(ATP), axin 1 (Axin), barrier to autointegration factor 1 (BANF1), BCL2-
associated X protein (BAX), B cell CLL/lymphoma 2 (Bcl-2), beta-catenin-
LEF/TCF (Betacatenin/TCF), V-raf-1 murine leukemia viral oncogene
homolog 1(c-Raf), cadherin (E, N, P, VE), calcium-dependent protease,
M calpain (Calpain), CASPASE-1 (Caspase), interleukin 1 converting
enzyme (ICE), caspase 12 apoptosis-related cysteine peptidases (Caspases
2,3,6 and 12), casein kinase I (CKI), cyclic AMP (cAMP), eukaryotic
translation initiation factor 2-alpha kinase 2 (EIF2AK2), eukaryotic trans-
lation initiation factors (eIF 4A, 4B, 4G, and 4E), emerin (EMD), p42/p44
MAP kinase (ERK1/2), filamentous actin (FActin), PTK2 protein tyrosine
kinase 2 (FAK), FBJmurine osteosarcoma viral oncogene homolog (FOS),
frizzled (FZ, FZD), MTOR-associated protein, LST8 homolog (S. cerevi-
siae) (GBL), frequently rearranged in advanced T cell lymphomas (GBP),
glucagon receptor (GCGR), growth hormone receptor (GHR), growth

factor receptor-bound protein 2 (GRB2), growth hormone (GH), glycogen
synthase kinase 3 (GSK3), hydrogen peroxide (H2O2), HtrA serine pepti-
dase 2 (HtrA2), I KAPPA B (IκB), insulin-like growth factor 1 (somato-
medin C) (IGF-1), insulin-like growth factor 1 receptor (IGF1R), I kappa
β-NF-kappa β (Iκβ-NFκβ), integrin-linked kinase (ILK), mitogen-
activated protein kinase 8 (JNK1), Jun proto-oncogene (JUN) lamin A/C
(LMNA), LEM domain containing 3 (LEMD3), myelin-associated glyco-
protein (MAG), p53 binding protein homolog (mouse) (MDM2), methyl
CpG-binding protein 2 (Rett syndrome) (MECP2), MAP kinases (MEK1/
2, MKK4/7, MKK4/7), mechanistic target of rapamycin (serine/threonine
kinase) mTORC1 (mTOR), V-myc myelocytomatosis viral oncogene ho-
molog (avian) (MYC), NF-KAPPA B(NF-kB), cyclin-dependent kinase
inhibitor 2A (melanoma, p16, inhibits CDK4) (p14ARF), tumor protein
p53 (p53, TP53), microtubule affinity-regulating kinase 2 (MAP), prolif-
erating cell nuclear antigen (PCNA), 1-phosphatidylinositol 3-kinase
(PI3K), peptidylprolyl cis/trans isomerase, NIMA-interacting 1 (PIN1),
protein kinase C (PKC), phospholipase C gamma, (PLCG), protein phos-
phatase type2a (PP2A), peroxisome proliferator-activated receptor gamma
(PPARG), protein kinase C, alpha (PRKCA), parathyroid hormone (PTH),
parathyroid hormone 1 receptor (PTH1R), regulatory associated protein of
MTOR, complex 1″ (Raptor), p21 Ras (Ras), retinoblastoma 1 (RB1), Ras
homolog enriched in brain (Rheb), (Src homology 2 domain containing)-
transforming protein 1 (SHC), SMAD family members (Smad3 and
Smad4), V-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog
(avian) (Src), sterol regulatory element-binding transcription factor 1
(SREBF1), signal transducer and activator of transcription 4 (STAT4),
Sad1 and UNC84 domain containing 1 (SUN1), Sad1 and UNC84 domain
containing 2 (SUN2), spectrin repeat containing, nuclear envelope 1
(SYNE1), spectrin repeat containing, nuclear envelope 2 (SYNE2), TGF
beta (Tgfβ), thyroid hormone (T3), thyroid hormone receptor (TR), poly-
ubiquitin (Ub), von Hippel–Lindau tumor suppressor (VHL), WNT inhib-
itory factor 1 (WIF1)

�
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Smac/DIABLO [75]. It should be noted that HGPS is char-
acterized by a large increase in the rate of apoptosis [63],
and while application of apoptosis inducers in HGPS treat-
ment is restricted, autophagy inducers can be considered
safe, since they do not induce cell death [72].

cAMP activators

Several hormones have been identified as having effects on
the expression, function, or phosphorylation of Lamin A.
Hormones that increase cAMP levels (glucagon, calcitonin,
vasopressin, and parathyroid hormone (PTH)) decrease
lamin A protein phosphorylation of rat LMNA protein in
renal medullary thick ascending limb cells [76]. cAMP-
dependent phosphorylation controls nuclear lamin associa-
tions, and aberrant phosphorylation could cause remodeling

of the lamina [77]. Therefore, hormone modulation of lamin
A phosphorylation with glucagon, calcitonin, vasopressin,
or parathyroid hormone might be another way to alleviate
laminopathy symptoms.

Thyroid hormone supplementation

Thyroid hormone (T3) decreases expression of mouse
Lamin A mRNA in liver from mice exhibiting hypothyroid-
ism [78]. An association has been reported between low
levels of T3 and DeBarsi syndrome, an autosomal recessive
syndrome characterized by a progeria-like appearance [79,
80]. The endocrine system is affected by aging, and while
T3 has been associated with longevity, deficiencies in, or
suboptimal levels of T3 are more common in older individ-
uals, particularly women. Therefore, supplementation with

Table 1 Notch signaling inhibitors

Compound Mechanism of action References Side effects SE references

SEL-10 Ubiquitin-mediated
protein degradation

[119] N/A –

L-658,458 (transition state mimic) γ-Secretase-inhibitors [120] N/A –

N-[N-(3,5-difluorophenacetyl)-L-alanyl]-
S-phenylglycine t-butyl ester (DAPT)

γ-Secretase-inhibitors [120] N/A, preclinical trials [121]

IL-X (cbz-IL-CHO) γ-Secretase-inhibitors [122] Neutropenia, injection-site reactions [123]

WPE III-31-C γ-Secretase-inhibitors [124] N/A –

Compound E γ-Secretase-inhibitors [124] N/A –

Sulfonamide γ-Secretase-inhibitors [124] Itching, burning, skin rash, redness,
swelling, urinary tract disorders,
haemopoietic disorders, porphyria,
and hypersensitivity reactions

[121, 125]

JLK6 γ-Secretase-inhibitors [124] N/A –

Sulindac sulfide γ-Secretase-inhibitors [124] Stupor, diminished urine output and
hypotension

Information from
the manufacturer

Indomethacin γ-Secretase-inhibitors [124] Nausea, dyspepsia, headache, dizziness [121, 126]

Estrogen Inhibition of Notch
cleavage by γ-secretase

[127] Nausea, vomiting, withdrawal bleeding
(in females)

[121, 128]

RO4929097 γ-Secretase-inhibitors [129] N/A, clinical trials [121]

Table 2 Reactive oxygen species inhibitors

Compound Mechanism of action References Side effects SE references

Tiron (4,5-dihydroxy-1,
3-benzenedisulfonic acid)

ROS scavenger [130, 131] N/A –

Tempol (4-hydroxy-2,2,6,
6-tetramethylpiperydine-1-oxyl)

Superoxide dismutase
mimetic, antioxidant

[130, 132] N/A –

Glutathione (GSH) Antioxidant, reduces
disulfide bonds

[133] N/A, clinical trials [121]

N-acetyl-cysteine (NAC) Antioxidant, breaks
disulfide bonds

[133] Reproductive toxicity, reduction
in fertility

[121, 134]

Vitamin C (ascorbic acid) Antioxidant, reducing
agent

[133] Nausea, vomiting, diarrhea, flushing
of the face, headache, fatigue, and
disturbed sleep

[135]

Vitamin E (tocopherol) Fat-soluble antioxidant [133] No significant side effects [136, 137]
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Table 3 Apoptosis inhibitors

Compound Mechanism of action References Side effects SE references

BBMP [5-(benzylsulfonyl)-4-
bromo-2-methyl-3(2H)-
yridazinone]

Mitochondrial permeability transition pore
(PTP) inhibitor neuroprotective

[138] N/A –

BI-6c9 Bid inhibitor, prevented loss of mitochondrial
outer membrane potential (MOMP) and
mitochondrial fission

[139–141] N/A –

BTZO-1 (1,3-benzothiazin-4-one
derivative)

Activation of antioxidant response element
(ARE)-mediated gene expression

[142] N/A –

Bongkrekic acid solution Inhibitors of mitochondrial permeability
transition (MPT) pore opening

[143–148] N/A –

Pifithrin-α hydrobromide p53 Inhibitor [149] N/A –

NS3694 Inhibitor of apoptosome formation [150] N/A –

Z-ATAD-FMK Inhibitor of apoptosome formation [150] N/A –

N-benzylisatin sulfonamide
analogues

Caspase-3 inhibitor [151] N/A –

5-Dialkylaminosulfonylisatins Caspase-3 and 7 inhibitor [152] N/A –

16F16 Protein disulfide isomerase (PDI) inhibitor [153] N/A –

16F16A Protein disulfide isomerase (PDI) inhibitor [153] N/A –

16F16A-DC Protein disulfide isomerase (PDI) inhibitor [153] N/A –

Thiomuscimol Protein disulfide isomerase (PDI) inhibitor [153] N/A –

Cystamine Protein disulfide isomerase (PDI) inhibitor [153] Loss of appetite, diarrhea,
drowsiness, lack of energy,
nausea, stomach pain,
unpleasant breath odor,
vomiting

[154, 155]

Pifithrin-α p53 Inhibitor [156, 157] N/A –

Pifithrin-μ (PFTmu, 1) Inhibits p53 binding to mitochondria [158] N/A –

S-15176 difumarate salt Inhibits mitochondrial permeability transition [159] N/A –

IDN-6556 Inhibitor of caspase 3 [160] N/A –

Table 4 Autophagy activators

Compound Mechanism of action References Side effects SE references

10-(6′-Ubiquinonyl)decyltriphenyl
phosphonium (MitoQ)

Redox-active ubiquinone
that accumulates in
mitochondria

[161] N/A, clinical trial [121]

1-Alpha, 25-dihydroxy
vitamin D3

Ca++ regulator [162] Hypercalcemia [121, 163]
VDR modulator

2-Deoxyglucose (2-DG) Binds to hexokinase,
marker for tissue
glucose use

[164, 165] N/A, clinical trials [121]

5-Fluorouracil Inhibits thymidylate
synthase

[166] Nausea, vomiting, diarrhea,
gastrointestinal ulceration
and bleeding, and bone marrow
depression

[121, 167]

6-Hydroxydopamine Neurotransmitter [168] N/A [121]

A23187 ER stress [169] N/A [121]

Amiodarone Anti-arrhythmic drug [170] Abnormal taste or smell, constipation,
decreased sexual interest, dizziness,
dry eyes, flushing of the face,
general body discomfort, headache,
loss of appetite, nausea, tiredness,
trouble sleeping, vomiting

[121, 171]
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Table 4 (continued)

Compound Mechanism of action References Side effects SE references

Ammonia By-product of amino acid
metabolism

[172] N/A [121]

Arsenic trioxide MEK/ERK pathway [173, 174] QT interval prolongation, arrhythmia,
tachycardia, fatigue, fever, edema,
convulsions, muscle weakness,
confusion

[121, 175]
Beclin 1 or Atg7 targets

Induces XCP, not XCA

Aspirin Inhibitor of mTOR and
activator of AMP-activated
protein kinase

[176] Black, bloody, or tarry stools,
coughing up blood or vomit, nausea,
stomach pain, fever, upset stomach,
heartburn, headache, tinnitus

[121, 177]

Atorvastatin AMP-activated protein kinase [178] Muscle pain, memory problems, fever,
unusual tiredness, dark-colored
urine, swelling, thirst, dry mouth,
nausea

[121, 179]

Aurintricarboxylic
acid (ATA)

ERK1/2 activation [180] Adverse effect for focal nodular
hyperplasia

Information from
the manufacturer

AZD-8055 mTOR ATP-competitive
inhibitor

[181] N/A, clinical trials [121]

Benzaldehyde Formation of autophagosome [182] N/A, clinical trials [121]

Bortezomib PSMB5 inhibitor, 26S
proteasome inhibitor

[183, 184] Nerve problems, dry cough, trouble
breathing, headache, vision
problems, bleeding, fever, fast or
slow heart rate, nausea, diarrhea

[121, 185]

Brefeldin A Endoplasmic reticulum
(ER)-to-golgi traffic
inhibitor

[186] N/A –

Ca2+ Via Ca++ channels ref in [187,
188]

N/A –

Capsaicin Through the AMPKα-mTOR
signaling pathway and the
accumulation of p53 in the
nucleus

[189] Nausea, vomiting, abdominal pain
burning diarrhea, eye exposure

[190]

Carbamazepine
(CBZ)

Radiation protector and
mitigator

[191, 192] Dizziness, drowsiness, dry mouth,
nausea, unsteadiness, vomiting

[121, 193]

Anti-epilepsy and mood-
stabilizing drug

Ceramide Protein kinase B inhibition [194, 195] N/A –

Cetuximab EGFR inhibitor [196] Changes in fingernails or toenails,
constipation, cough, diarrhea,
dry mouth, headache, indigestion,
nausea, pain, swelling, stomach
pain or upset, vomiting, weakness,
weight loss

[121, 197]

Cisplatin DNA-damaging agent [198] Diarrhea, loss of appetite, nausea,
vomiting, weakness

[121, 199]

Chlorpromazine Used to treat the symptoms
of schizophrenia

[200] Agitation, constipation, dizziness,
drowsiness, dry mouth, enlarged
pupils, jitteriness, nausea, stuffy nose

[121, 201]

Cholecalciferol Vitamin D [202] Constipation [121, 203]

Clonidine G(i) signaling activator [204] Anxiety, confusion, constipation,
dizziness, drowsiness, dry mouth,
general weakness, nausea, ringing in
the ears, sweating, tiredness, vomiting

[121, 205]

Cucurbitacin STAT3 inhibitor [206] N/A –

Deforolimus,
Ridaforolimus

MTOR inhibitor [207] Tiredness and feeling weak, loss of
appetite, sore mouth and throat, rash,
a drop in blood cells causing an
increased risk of infection, tiredness
and breathlessness, diarrhea, fatigue,
anorexia

[205, 208]
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Table 4 (continued)

Compound Mechanism of action References Side effects SE references

Delta-9-
tetrahydrocannabinol
(THC)

Psychoactive ingredient in
marijuana

[209] CNS adverse Information from
the manufacturer

Dexamethasone Glucocorticoid hormones [210] Problems with vision, swelling,
pancreatitis, depression, bloody
stools, low potassium, high blood
pressure

[121, 211]

Digeranyl
bisphosphonate

Inhibitor of geranylgeranyl
diphosphate synthase
(GGDPS)

[212] Renal toxicity, acute-phase reactions,
gastrointestinal toxicity, and
osteonecrosis of the jaw

[213]

D-Glucose ER stress [165] N/A, clinical trials [121]

Docosahexaenoic
acid (DHA)

Through p53/AMPK/mTOR
signaling

[214] Back pain, flu, infection, pain, angina
pectoris, dyspepsia, eructation, rash,
taste perversion

[121, 215]

Doxorubicin Antitumor antibiotic,
chemotherapy drug

[216] Cardiac failure, arrhythmias,
thrombocytopenia, leukopenia,
nausea, vomiting, ulceration in the
gastrointestinal tract, hyperuricemia,
nephropathy

[217]

Epothilone B Microtubule-stabilizing agent [218] N/A, clinical trials [121]

Esomeprazole
magnesium

Proton-pump inhibitor [219] Headache, diarrhea, abdominal pain Information from
the manufacturer

Etoposide Topoisomerase inhibitor [220] Loss of appetite, back pain, blue or
purple discoloration of the skin,
diarrhea, hair loss, increased
sweating, nausea, tightness in
throat, voice changes, vomiting

[121, 221]

Everolimus MTOR inhibitor; FKBP1A
binder

[222] Stomatitis, rash, diarrhea, fatigue,
edema, abdominal pain, nausea,
fever, andheadache

[223]

Fluspirilene Diphenylbutylpiperidine
antipsychotic drug

[200, 224] Sleepiness, movement disorders, pain
where the injection is given

[225, 226]

GNE477 Dual PI3K/mTOR inhibitors [181] N/A –

Glucose-6-phosphate Glucose homeostasis [227] N/A –

Gossypol Natural phenol BCL2 inhibitor [228] N/A, clinical trials [121]

GSK2126458 Dual PI3K/mTOR inhibitors [181] N/A, clinical trials [121]

Hydrogen peroxide Reactive oxygen species,
signaling molecule

[229] Nausea and vomiting, burns in the
mouth, throat, esophagus, and
stomach, bleeding in the stomach,
inflammation of the intestines

Information from
the manufacturer

INK 128 mTOR ATP-competitive inhibitor [181] N/A, clinical trials [121]

Imatinib PDGFRA, PDGFRB inhibitor [230] Nausea, vomiting, diarrhea, loss
of appetite, dry skin, hair loss,
swelling, and muscle cramps

[121, 231]
BCR/ABL tyrosine kinase
inhibitors

Ionomycin Potent a Ca++ ionophore [232] Changes in lung function,
i.e., pneumoconiosis

Information from
the manufacturer

Lactacystin Enhanced degradation of
aggregated proteins

[187] N/A –

Lanosterol Regulates mitochondrial
function

[233] Changes in lung function,
i.e., pneumoconiosis

Information from
the manufacturer

L-Arginine Amino acid [234] N/A, clinical trials [121]

Leupeptin Protease inhibitor [235] N/A –

Lipopolysaccharide
(LPS)

Bacterial endotoxin [236] LPS is an adjuvant for both humoral
and cell-mediated immunity. It
augments the immune response to
both protein and polysaccharide
antigens. It is too toxic and

Information from
the manufacturer
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Table 4 (continued)

Compound Mechanism of action References Side effects SE references

pyrogenic, even in minute doses,
to be used as an adjuvant in humans

Lithium, lithium
chloride

Treatment of bipolar
disdorders

[237] Tremor, muscle hypertonicity, ataxia,
choreoathetotic movements, cardiac
arrhythmia, hypotension, peripheral
circulatory collapse, anorexia,
nausea, vomiting, gastritis

[121]

Loperamide Opioid-receptor agonist [200] Constipation, drowsiness and nausea [121, 238]

LY294002—morpholine
derivative of quercetin

PI3K inhibitor [198] N/A, preclinical [121]

Melphalan Reversible inhibitor of PI3Ks
DNA-damaging drug

[239] Vomiting, ulceration of the mouth,
diarrhea, and hemorrhage of the
gastrointestinal tract

[121, 240]

Mesoridazine [200] Emesis, muscle tremors, decreased
food intake

Information from
the manufacturer

Metformin Activator of AMP-activated
protein kinas (AMPK)

[176, 241] Epigastric discomfort, nausea, and
vomiting, diarrhea, drowsiness,
weakness, dizziness, malaise, and
headache

[121, 242]

Minoxidil K + ATP channel opener [204] Rapid heartbeat, faintness, dizziness,
chest pain, nausea, sweating, trouble
breathing, easy bruising or bleeding

[121, 243]

Modified
Yeoldahanso-tang

Neuroprotection [187] N/A –

Nelfinavir HIV protease inhibitors
(HIV PIs)

[244] Diarrhea, gas, loss of appetite, nausea,
stomach pain

[121, 245]

Niclosamide Anthelmintic [170] Abdominal pain, anorexia, diarrhea,
and emesis

[246]

Niguldipine Ca++ channel blocker [200] Discontinued [121]

Nortriptyline Tricyclic antidepressant [200] Card dizziness, drowsiness, dry
mouth, headache, impotence,
nausea, pupil dilation, sensitivity
to sunlight, sweating, upset
stomach, vomiting, weakness,
weight loss

[121, 247]

OSI-027 MTOR ATP-competitive
inhibitors

[181] N/A –

Oxidative stress Ref in
[187]

N/A –

Oxaliplatin Inhibiting phosphorylation
of mTOR

[248] Constipation, decreased appetite,
diarrhea, dizziness, fatigue, gas,
hair loss, headache, heartburn,
hiccups, increased tears, mild
stomach pain, muscle or joint
aches, nausea, runny nose, taste
changes, trouble sleeping,
vomiting, weight loss

[121, 249]

Pepstatin A Inhibitors of cathepsin
proteases B and D

[212] N/A –

Perifosine Akt inhibitor [250] Nausea, fatigue, vomiting,
diarrhea, anorexia

[121, 251]

Perhexiline Inhibiting mitochondrial carnitine
palmitoyltransferase-1

[170] Nausea, transient dizziness,
hypoglycemia in diabetic
patients

[121, 252]

PI-103 Dual PI3K/mTOR inhibitors [181] N/A, preclinical [121]

N(10)-substituted
phenoxazine
(10-NCP)

Akt inhibitor [200] N/A –

Phorbol myristate
acetate (PMA)

Protein kinase C (PKC)
activator

[253] N/A, clinical trials [121]
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Table 4 (continued)

Compound Mechanism of action References Side effects SE references

Phosphatidylinositol-
3-phosphate

Membrane phospholipid [254] N/A –

Pimozide Antipsychotic drug of the
diphenylbutylpiperidine class

[200] Constipation, drowsiness, dry
mouth, restlessness

[255]

Promazine Phenothiazine class of
antipsychotics

[200] Extrapyramidal symptoms,
drowsiness, weight gain, dry
mouth, constipation, endocrine
effects, hemolytic anemia

[121, 256]

Promethazine Antihistamine of the
phenothiazine family

[200] Mild depression of CNS and
cardiovascular system, profound
hypotension, respiratory depression,
unconsciousness

[121, 257]

Propranolol Cardiodepressant [258] Bradycardia, cardiac failure,
hypotension, and bronchospasm

[121, 259]

Rapamycin (Sirolimus) Antibiotic [181, 260] N/A, clinical trials [121]

Reactive oxygen species DNA damage [206] N/A –_

Resveratrol Nature phytoalexin [261] N/A, clinical trials [121]

Rilmenidine Anti-hypertensive drug [67] Asthenia, palpitations, insomnia,
drowsiness, fatigue on exercise,
epigastric pain, dryness of the
mouth, diarrhea, skin rash

[262]

Rottlerin Kinase inhibitor [170] N/A –

Saquinavir Antiretroviral protease
inhibitors

[263] Anxiety, blurred vision, body fat
changes, changes in sexual desire,
constipation, diarrhea, dizziness, dry
lips or skin, gas, headache,
heartburn, mouth sores, nausea,
night sweats, sleeplessness, stomach
discomfort, taste changes, tenderness
or bleeding of the gums, tiredness,
vomiting, warts, weight gain

[121, 264]

Sodium selenite Activation of DAPK via PP2A-
mediated dephosphorylation
at Ser(308)

[265] N/A, clinical trials [121]

Sorafenib Multikinase inhibitor [266] Diarrhea and dermatologic events [121, 267]

Spermidine Inhibition of mTOR or
activation of AMPK

[261, 268] N/A –

Staurosporine Kinase inhibitor [269] N/A –

Superoxide Oxidative stress [270] N/A –

Tamoxifen Anti-estrogen [271] Hot flashes, hypercalcemia, peripheral
edema, distaste for food, pruritus
vulvae, depression, dizziness,
lightheadedness, headache

[121, 272]

Temsirolimus MTOR binder [271] Hypersensitivity, hyperglycemia,
interstitial lung disease,
hyperlipidemia, bowel perforation,
renal failure

[121, 273]

Thapsigargin Non-competitive inhibitor of
sarco/endoplasmic reticulum
Ca++ ATPase

[232] N/A, preclinical [121]

Thioguanine Nucleoside analog induces DNA
mismatch repair

[274] Nausea, vomiting, malaise,
hypotension, and diaphoresis

[2, 275]

Thioridazine Antipsychotic drug belonging to
the phenothiazine drug

[200] Agitation, blurred vision, confusion,
constipation, difficulty breathing,
dilated or constricted pupils,
diminished flow of urine, dry mouth,
dry skin, excessively high or low
body temperature, extremely low
blood pressure, fluid in the lungs,
heart abnormalities, inability to

[121, 276]
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Table 4 (continued)

Compound Mechanism of action References Side effects SE references

urinate, intestinal blockage, nasal
congestion, restlessness, sedation,
seizures, shock

Trehalose Natural disaccharide implicated
in anhydrobiosis

[277] N/A, clinical trials [121]

Tretinoin Retinoic acid [68, 69] Headache, fever, weakness, and fatigue [121, 278]

Triflupromazine Antipsychotic medication of
the phenothiazine class

[200] Agitation, convulsions, difficulty
breathing, difficulty swallowing, dry
mouth, extreme sleepiness, fever,
intestinal blockage, irregular heart
rate, low blood pressure, and
restlessness

Information from
the manufacturer

UCN-01
(7-hydrostaurosporine)

Akt inhibitor [279] N/A –

Valinomycin K(+)-selective ionophore [280] N/A –

Valproic acid Anti-epilepsy and mood-
stabilizing drug

[192] Constipation, diarrhea, dizziness,
drowsiness, headache, increased or
decreased appetite, mild hair loss,
nausea, sore throat, stomach pain or
upset, trouble sleeping, vomiting,
weakness, weight gain

[121, 281]

Verapamil Cardiodepressant [258] Chest pain, arrhythmia, heart attacks,
significant water retention, dizziness

[282]

Vitamin K2
(menaquinone-4)

Vitamin [70] N/A, clinical trials [121]

Vorinostat HDAC6 inhibitor [283] Diarrhea, nausea, anorexia, weight
decrease, vomiting, constipation,
thrombocytopenia, anemia

[121, 284]

VX-680 Aurora-B kinase inhibitor [285] N/A, clinical trials [121]

WJD008 Dual PI3K/mTOR inhibitors [181] N/A –

Y 27632 ROCK inhibitors [286] Discontinued for hypertension [121]

zVAD Pan-caspase inhibitor [287, 288] N/A –

Zoledronate Inhibitor of farnesyl diphosphate
synthase (FDPS)

[212] Hypocalcemia, hypophosphatemia,
hypomagnesemia

[121, 289]

68093 ND [290] N/A –

169676 Eg5 inhibitor possibly [290] N/A –

175493 ND [290] N/A –

363998 ND [290] N/A –

4-Piperidinone Mitotic inhibition [290] N/A –

Aatiram ND [290] Adverse effect for allergic contact
dermatitis

[121] Information
from the
manufacturer

Acridine Yellow DNA damage [290] N/A –

Bafilomycin A1 Vacuolar ATPase inhibitor [290] N/A –

Bepridil Ca++ channels [290] Dizziness, lightheadedness, diarrhea,
heartburn, nausea, blurred vision,
muscle cramps, headache, fatigue,
drowsiness, ringing in the ears,
flushing, trembling, or shaking hands

[291]

Diosgenin BK Ca++ channel [290] N/A –

E6 Berbamine Calmodulin inhibitor [290] N/A –

Fluspiriline Potassium channels [290] Gynecomastia, impotence,
agranulocytosis, galactorrhea,
tachycardia, blurred vision,
pyrexia, cataracts, dyskinesia

[225]

Loperamide Ca++ channels [290] Constipation, decreased urination, red,
swollen, blistered, or peeling skin,
stomach bloating, swelling, or pain

[121, 238]
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Table 4 (continued)

Compound Mechanism of action References Side effects SE references

Monensin Na+ ionophore [290] Adverse effect for myoglobinuria [121] Information
from the
manufacturer

Nigericin Induces intracellular acidification [290] N/A –

Purpurine ND [290] N/A –

Pyridine derivative ND [290] N/A –

Rottlerin PKC delta inhibitor [290] Suppressed cell/tissue growth or
development

Stannane Aquaporin inhibitor [290] N/A –

Tetrandrine Ca++ channels [290] Immunosuppressant activity [292]

Tetrocarcin A BCL-2 inhibitor/ER stress [290] N/A –

Thalicarpine p-Glycoprotein inhibitor/DNA
damage

[290] N/A –

Trichostatin-A Histone deacetylase inhibitor [290] N/A, clinical trials [121]

Trifluoperazine Calmodulin inhibitor possibly [290] Agitation, constipation, dizziness,
drowsiness, dry mouth, enlarged
pupils, headache, jitteriness, loss
of appetite, nausea, stuffy nose,
tiredness

[293]

Tyrphostine 9 PDGF-R tyrosine kinase inhibitor [290] N/A –

Table 5 Methyl transferase inhibitors

Compound Mechanism of action References Side effects SE references

5-Azacytidine (Vidaza) Nucleoside inhibitors—[DNMT]
enzyme trapping and degradation

[294] Nausea, anemia, thrombocytopenia,
vomiting, fever, diarrhea, neutropenia

[295]

5-Azadeoxycytidine
(decitabine)

Nucleoside inhibitors—[DNMT]
enzyme trapping and degradation

[294] Constipation, cough, diarrhea, dizziness,
hair loss, headache, joint or muscle pain,
loss of appetite, nausea, stomach pain or
upset, trouble sleeping, vomiting

[296]

Zebularine Nucleoside inhibitors [294] N/A –

Procaine Mask DNMT target sequences [294] Chest pain or slow, irregular heartbeats,
dizziness, anxiety, nausea, convulsions

[297]

Epigallocatechin-
3-gallate (EGCG)

Green tea’s active ingredient [294] Nausea and indigestion, neural tube defect [298]

RG108 DNA methyltransferase inhibitor [294] N/A –

Procainamide Drug for treatment of cardiac
arrhytmia, non-covalent inhibitor
of Na+channel

[299] Rash, myalgia, fever. Treatment with
procainamide can cause antibody
production against cellular components,
accounting for the systemic lupus
erythematosus-like adverse reactions

[300]

Parthenolide Modulation of NF-kappa β activity,
microtubule interfering

[301] Vomiting, abdominal pain, and indigestion [302]

Curcumin Natural phenol, gives yellow color to
turmeric, interferes with NF-kappa
β, mTOR inhibitor

[303] Mild nausea or diarrhea, iron deficiency [304]

MithramycinA Antineoplastic antibiotic, RNA
synthesis inhibitor

[305] Changes in lung function, reduction in the
number of white blood cells and platelets
and bleeding

[306]

NSC 14778 Non-covalent inhibitor with a new scaffold [307] N/A –

Nanaomycin A Antifungal antibiotic, DNMT3B inhibitor [308] N/A –
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T3 might have beneficial effects on progeria symptoms, as
well as aging [81, 82].

PI3K pathway inhibitors

In T98G cells stimulated with the growth factor PDGF,
inhibition with a small molecule inhibitor of PI3K
(LY294002), which prevents Akt phosphorylation, has
been found to decrease expression of human LMNA
mRNA induced by the PDGF-BB. This demonstrates that
LMNA may be regulated through the phosphatidylinositol
3-kinase PI3K pathway [83]. It has been suggested that
aberrant phosphorylation of Ser458 of Lamin A by Akt1
contributes to striated muscle laminopathies caused by
LMNA mutation [84]. Therefore, inhibition of Akt1 by
LY294002 might be beneficial to this and similar
laminopathies.

Epigenetics marks reversal

Reversal of epigenetic marks may represent a novel anti-
aging target. In an animal model of progeria, Zmpste24-
deficient mice show hypermethylation and transcriptional
silencing of rDNA genes. This effect is reversible through
treatment with methyltransferase inhibitors [85]. Therefore,
methyltransferase inhibitors (Table 5) could prevent HGPS
symptoms. In the same animal model it has been noted that a
delayed DNA damage response is a result of histone H4
acetylation defect. Reversal of this defect by supplying the
histone deacetylase inhibitor sodium butyrate in drinking
water ameliorated aging-associated effects, and extended
the lifespan in the animal model. In addition to accumula-
tion of progerin, aged mice show hypoacetylation of the
histone H4K16 [86]. Therefore, treatment with methyltrans-
ferase inhibitors (Table 5) and histone deacetylase inhibitors
could potentially reduce HGPS symptoms. However, such
interventions could give rise to significant side effects and
would have to be carefully evaluated and refined before
transfer to the clinical setting.

Targeting posttranslational modification: farnesylation
inhibitors

Ionafarnib (SCH-66336), a farnesyltransferase inhibitor, has
been shown to inhibit prelamin A farnesylation in buccal
mucosa cells [87]. Other studies demonstrate that inhibitors
of farnesyltransferase (FTIs) ameliorate the phenotype of
transgenic G608G LMNA mice [88]. This model is charac-
terized by extensive and progressive loss of vascular smooth
muscle cells (VSMCs) of large arterial media [89], similar to
effects observed in human HGPS patients [90, 91]. FTIs
have also been shown to improve survival and bone integ-
rity in LMNA HG/+ [92, 93] and in ZMPSTE24−/− mouse

models [94]. The compound FTI-277 may completely re-
store localization of nuclear antigens in HGPS fibroblasts
[59]. The combination of statins and aminobisphosphonates
has been shown to inhibit the production of farnesylation
and geranylgeranylation modifications of prelamin A and
progerin in Face-1/Zmpste24-defective mice, decreasing
senescence-like symptoms and increasing the lifespan of
affected mice [95, 96]. Unfortunately, the FTI treatment
has harmful side effects such as centrosome separation and
bipolar spindle formation defects, nuclear dysmorphy, and
cytotoxicity [97]. In addition, mice, expressing nonfarnesy-
lated progerin variants (LMNA(nHG/+)), still reveal
progeria-like phenotypes, which are not ameliorated by
FTI [98].

Directly and selectively targeting mutant Lamin A

Targeting mutant Lamin A RNA: antisense oligonucleotides,
RNAi, miRNA, and siRNA

Inhibition of the LMNAmiss-spliced site reverses senescence-
associated defects in cell nuclei [20]. Fong et al. demonstrated
the effectiveness of antisense oligonucleotide technology and
identified an antisense oligonucleotide which is complementa-
ry to a site in exon 11 at a 5′ position relative to the alternate
splice site in LMNA transcripts. This may be used to decrease
alternative splicing in HGPS fibroblasts andmoderately reduce
progerin levels [99]. Splicing-based therapeutical approaches
have been examined using a genetically modified mouse strain
that carries an HGPS mutation. Antisense morpholino-based
therapy has been developed with the aim of preventing path-
ogenic LMNA splicing, and alleviating the progeroid pheno-
type [100].

For the past decade, cancer treatments have been devel-
oped based on RNA interference (RNAi)—a mechanism
that effectively “shuts down” malfunctioning genes with
small noncoding RNA molecules from the families of
microRNAs. LMNA transcripts have a myriad of micro-
RNAs with which they specifically interact; hence, an RNAi
approach offers potential for targeting misspliced LMNA
transcripts. In the brain, the Prelamin A transcript is regu-
lated by the brain-specific microRNA miR-9. The tight
shutdown of the LMNA transcript observed in the brain
using miR-9 may explain the lack of central nervous system
pathology in mouse models of HGPS [101]. Recently, Wei-
defield et al. have reported on the generation of a condition-
al inducible microRNA (RNAi) system for the controlled
inactivation of LMNA [102]. There is also evidence of
differential expression of miRNAs in control versus
LMNA-related laminopathy [103]. A systemic application
of siRNA, specifically targeted to tissues of interest may
offer promising potential in future therapeutic applications.
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Targeting mutant protein accumulation: chemical protein
binding

A proteomics approach using matrix-assisted laser-
desorption-ionization time of flight (MALDI-TOF) MS
[104] has identified that lamin A belongs to a family of poly
(ADP-ribose) binding proteins. Nuclear lamin A was found
to be covalently bound to acetaminophen (APAP), and also
appears to become phosphorylated upon arylation. Lamin A
may be associated with disruption of nuclear membrane
organization, which may be triggered by the translocation
of the 55- to 58-kDa APAP-protein adduct, leading to cell
death [105]. Direct lamin A/chemical binding may be ex-
plored by designing a molecular sponge that sequesters
mutant lamin A, i.e., progerin from the cell.

Gene therapy: nanotherapy, viral vectors, protocells,
and targeting progerin for autophagy

Several gene therapies and nanotherapies targeting cellular
proteins are currently in development. One such approach to
the aggregation of misfolded proteins has been applied in
the case of a Hungtinton’s neurodegeneration (HD) mouse
model (HDR6/1) by targeting proteins for autophagic pro-
teosomal degradation using intrabodies. This may represent
an effective strategy if modified for clearance of progerin
instead [106]. Genome customization and targeted gene
modification of Lamin A mutant alleles using gene-specific
engineered nucleases such as zinc finger nucleases or tran-
scription activator-like effector nucleases (TALENs, Cellec-
tis) represents another possible approach [107].

The assortment of gene delivery vehicles for gene thera-
py products are expanding, and include lentivirals and
adeno-associated viral vectors [108] in addition to non-
viral gene delivery systems such as lipoplexes, polyplexes,
inorganic nanoparticles, quantum dots, and protocells
[109–111]. However, despite significant progress in recent
years, limitations still persist in refining this technology for
use in the clinical setting both in terms of patient safety and
efficacy.

Future directions

The role of lamin A is to maintain nuclear structure and
integrity and in doing so, contribute to the health and sur-
vival potential of individuals within a population. The con-
sequences of defectiveness in lamin A structure and function
are observed, therefore, to be extremely severe, manifesting
at several broad-ranging and essential biological levels,
which include cell signaling and gene expression. As such,
any intervention successful in ensuring the maintenance of
LMNA protein function and/or the reduction of LMNA’s

downstream effects must work within key parameters at
each of these regulatory levels. Our analysis has identified
potential targets for therapeutic intervention by addressing
both causes and effects of LMNA defectiveness. Our find-
ings provide a framework for targeting LMNA defective-
ness directly at the genetic level and further downstream by
targeting signaling events and other processes which give
rise to cellular insult and ultimately disease.

By means of a computational analysis of multiple bio-
logical pathways, we have identified a number of plausible
therapeutic targets, and outlined 12 possible interventions
for regulating defective LMNA expression and protein ac-
cumulation (see Fig. 2). These are: (1) IGF-1 and GH
balance restorers, (2) Notch signaling inhibitors, (3) reactive
oxygen species scavengers, (4) telomerase activators, (5) Rb
inhibitors, (6) apoptosis inhibitors, (7) translation- and
autophagy-activator inhibitors, (8) cAMP activators, (9)
thyroid hormone supplementation, (10) PI3K pathway
inhibitors, (11) epigenetics marks reversal, and (12) farne-
sylation inhibitors. While these targets are highly specific in
many cases, collectively they are wide ranging and cover the
biological complexities that characterize LMNA-related dis-
eases and the levels at which they manifest. Furthermore, we
have presented a comprehensive list of compounds known
to act on specific targets within these biologic pathways. A
combinatory approach may be applied using this data to
develop a therapy or therapies consisting of a combination
of several key compounds, potentially including: farnesyla-
tion inhibitors, autophagy activators, apoptosis inhibitors,
and telomerase activators.

Extensive in vitro studies characterizing the effectiveness
of these compounds are required before moving towards
translation into clinical practice. In particular, the effects of
these compounds on progerin accumulation is of particular
interest and may be used as a measure of treatment efficacy;
in part, it could also be used in the validation of such
interventions. However, there are several outstanding ques-
tions that must be answered in order to validate the effec-
tiveness of such interventions and the mechanisms by which
they provide benefit. Outstanding questions in this field
concern the molecular mechanisms by which laminopathies
and related diseases manifest and the processes in which
progerin alters cellular phenotype and biological age.

In addition to identifying molecular targets, the approach
outlined here has also focused on identifying molecules that
can carry out specific functions. The use of small molecules
to activate/inhibit the signal transduction pathways that reg-
ulate LMNA expression itself represents one such approach.
In this manner, lamin A in addition to progerin may be
down-regulated to levels that effectively influence cellular
homeostasis to a point at which cells are healthy, producing
lower levels of both laminA and progerin, and therefore
potentially lowering the rate at which aging occurs. There
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are many small molecules/drugs presently available and
approved by the FDA (albeit for other purposes), which
may be used to target signaling pathways in this way
(Tables 1, 2, 3, 4 and 5). However, as part of this strategy,
it will be necessary to further characterize the significance of
the ratio of progerin/laminA in disease pathogenesis. A
long-term goal may be to develop a method of directly
targeting of the underlying causes of progeria and related
conditions. This requires a technological platform that tar-
gets and discriminates progerin and other products of
disease-causing Lamin A alleles, from functional lamin A.
There are potential tools available at present that may be
tailored further for this purpose. In particular, it is feasible
that progerin may be specifically targeted at the mRNA
level using RNAi tools. In order to target toxicity associated
with mutant protein accumulation, designer proteases may
also be developed to specifically degrade the mutant protein.
In addition, the use of intrabodies to bind and target progerin
for autophagy also represents a potential means for achiev-
ing these aims. Delivery mechanisms will also be key to any
such therapeutic intervention, and the use of viral vectors
and nanotherapeutic delivery approaches hold much prom-
ise as they are developed and refined into the future. Anti-
sense morpholino-based gene therapy also holds much
promise. By directing this technique to prevent pathogenic
LMNA splicing, Osorio et al. have achieved reductions in
progerin accumulation and associated nuclear defects, ame-
lioration of progeroid phenotypes, and an extension of life-
span [100]. While the gene therapy approach requires
further refinement, this technology clearly represents the
most likely means of ensuring correct splicing and localiza-
tion of defective LMNA. Drugs which enhance autophagic
mechanisms to achieve reductions in progerin accumulation
also show considerable potential; however, safer analogues
are required [112]. Another approach may be the use of
small molecules to ameliorate the effects of progerin accu-
mulation, such as those listed in this review. However
promising, further evaluation of the potential impact of
these molecules on the disease phenotype are required prior
to application in the clinical setting, either individually or in
combination with other therapies. Currently, a number of
clinical trials are underway to examine the potential thera-
peutic effects of using statins, FTIs, and bisphosphonate in
combination to treat progeria [113, 114]. Similarly, some of
the molecules highlighted in this study may be incorporated
into future clinical trials or treatments.

The overall focus of this review has been to identify and
highlight different methods that may be used for treating
laminopathies, and to a lesser extent, other LMNA-
associated human diseases and aging. While some treat-
ments may act to target the downstream effects of progerin
accumulation, other treatments may be used to directly alter
the ratio of progerin/wild-type protein. Indeed, the most

effective method of treating laminopathies would be to
target and counteract progerin accumulation directly. How-
ever, the targeting of LMNA expression in general also holds
potential for treating patients given that disease severity may
be determined in part by the ratio of progerin to mature
lamin A. In order for future treatments to significantly alter
the ratio of wild-type/mutant protein in favor of cellular
health and longevity, mechanisms that achieve increments
comparable to wild-type protein levels may be required in
addition to also reducing progerin levels. Modulating the
expression of Lamin A may also be effecive for the treat-
ment to other human diseases associated with LMNA, given
that differential allele-specific expression has been identi-
fied at the LMNA locus [40]. For example, alleles repre-
sented at relatively high frequencies in human populations
have been associated with a number of relatively common
human diseases (e.g., rs4641). In this respect, development
of methods of increasing expression of wild-type LMNA
may offer a means of treating both laminopathies and other
human diseases association with genetic variation at this
locus.

The consequences to intervening to alter the ratio of
Progerin/LMNA expression are likely to be significantly
influenced by a host of factors, including underlying differ-
ences in cell-type and tissues to which treatment is directed.
In particular, LMNA expression is known to be developmen-
tally regulated, being expressed in differentiated cells while
being absent from early embryonic stem cell compartments
and at low to negligible levels in hematopoietic systems
[115–117]. This points to the importance of LMNA expres-
sion in the maintenance of the differentiated cell state [115].
In HGPS, it has been suggested that stem-cell-driven tissue
regeneration may be reduced and tissue-specific differences
in apoptosis or regenerative potential may give rise to the
tissue-specific segmental aging pattern [118]. Any treatment
developed to therapeutically alter the Progerin/LMNA ratio
should therefore consider the potential for distinctive role(s)
for Lamin A in different tissue compartments.

Conclusions

In conclusion, our analysis describes a range of potential
therapeutic approaches that may be used to modulate the
expression and accumulation of defective lamin A and/or
modify its downstream effects in laminopathies and age-

Fig. 2 Presented are steps of the gene expression cycle of Lamin A/C
that can be targeted for additional regulation: transcription, splicing,
translation, posttranslational modification, and degradation via autoph-
agy. See text for a description for strategies for targeting each of these
steps with already-available drugs to minimize the deleterious effects
of altered Lamin A expression in laminopathies, and possibly aging.
Gene names and symbols are the same as those listed in Fig. 1. Red
dots represent farnesylation residues on lamin A/progerin

�
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related diseases. However, careful evaluations of these
approaches and the potential side effects of drug treatments
discussed here are required before consideration as thera-
peutic treatments in a clinical setting.
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