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Abstract

Phenotypic variation within an isogenic bacterial population is thought to ensure the survival of a subset of cells in adverse
conditions. The opportunistic pathogen Pseudomonas aeruginosa variably expresses several phenotypes, including
antibiotic resistance, biofilm formation, and the production of CupA fimbriae. Here we describe a previously unidentified
bistable switch in P. aeruginosa. This switch controls the expression of a diverse set of genes, including aprA, which encodes
the secreted virulence factor alkaline protease. We present evidence that bistable expression of PA2432, herein named bexR
(bistable expression regulator), which encodes a LysR-type transcription regulator, controls this switch. In particular, using
DNA microarrays, quantitative RT–PCR analysis, chromatin immunoprecipitation, and reporter gene fusions, we identify
genes directly under the control of BexR and show that these genes are bistably expressed. Furthermore, we show that bexR
is itself bistably expressed and positively autoregulated. Finally, using single-cell analyses of a GFP reporter fusion, we
present evidence that positive autoregulation of bexR is necessary for bistable expression of the BexR regulon. Our findings
suggest that a positive feedback loop involving a LysR-type transcription regulator serves as the basis for an epigenetic
switch that controls virulence gene expression in P. aeruginosa.
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Introduction

The Gram-negative bacterium Pseudomonas aeruginosa is an

opportunistic pathogen of humans. It can cause infection in a

wide variety of tissues in the immunocompromised host, and is the

leading cause of morbidity and mortality in cystic fibrosis (CF)

patients [1]. This breadth of infectious capacity is thought to result

from differential gene expression, as genomic variability between

clinical and environmental isolates is low and the genome of P.

aeruginosa encodes a high proportion of transcription regulators

[2,3]. Studying the mechanisms and outcomes of transcription

regulation in P. aeruginosa may offer some insight into how cohorts

of virulence factors are coordinately expressed to influence

pathogenesis in a range of pseudomonal infections.

Bacteria are traditionally thought to use transcription regulation

to adapt to changing environmental conditions, such as the

presence of a new carbon or energy source, a change in

temperature or pH, or introduction to a host environment.

However, in harsh environmental conditions that exert a sudden

selective pressure on a population of cells, the time needed to

respond using a genetic regulatory network may prove fatal. The

ability of isogenic populations of bacteria to exhibit phenotypic

variation allows them to cope with such situations by pre-adapting

a subset of the population to the sudden introduction of harsh

conditions. Several examples of phenotypic variation in P.

aeruginosa have been identified, such as the phase-variable

expression of the cupA fimbrial gene cluster under anaerobic

conditions and the transient formation of antibiotic resistant,

hyperadherent rough small-colony variants under antibiotic

exposure [4–7]. These phenotypes may contribute to the ability

of infecting bacteria to withstand chemical or mechanical insults

encountered during colonization of the CF lung. Examples such as

these suggest that phenotypic variation by P. aeruginosa allows the

organism to thrive in a complex environment. However, the

mechanisms by which these phenotypes are variably expressed are

unknown.

Phenotypic variation in bacteria can arise from a variety of

mechanisms, both genetic and epigenetic in nature. Classical

phase-variation is thought to be genetically mediated, such as the

variable expression of the flagellum in Salmonella enterica serovar

Typhimurium, which is mediated by specifically catalyzed changes

in promoter DNA orientation [8]. Phase-variation can also be

mediated by epigenetic mechanisms, such as the one involving

DNA methylation that controls the phase-variable expression of

pyelonephritis-associated pili genes in uropathogenic Escherichia coli

[9,10]. Phenotypic heterogeneity can arise in the absence of DNA

sequence variation or DNA modification in bistable systems (i.e.

systems that can exist in one of two alternative expression states,

and reversibly switch between them), such as in the case of the

lysogenic switch of bacteriophage l [11,12]. Bistability can arise
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when there exists a mechanism for amplifying differences in

protein levels between individual cells and stably propagating these

differences to daughter cells (reviewed in [13]). The bistable

expression of genes can be achieved using a positive regulatory

feedback loop, as is the case in the development of competence

under nutrient limitation in Bacillus subtilis; positive feedback of

ComK, the master regulator of competence, is required for

bistable development of competence in B. subtilis [14,15]. Thus,

the architecture of a particular gene regulatory circuit can enable

stochastic, reversible differentiation of subsets of bacterial

populations into distinct cell types.

Here we uncover a previously unidentified bistable switch in P.

aeruginosa controlled by BexR, a LysR-type transcription regulator.

We demonstrate that bexR is itself bistably expressed in a BexR-

dependent manner and that BexR positively regulates the

expression of its own gene. Using DNA microarrays and

quantitative real-time RT-PCR (qRT-PCR), we define the bistable

regulon of BexR, which contains a diverse set of genes and

includes aprA, which encodes the virulence factor alkaline protease.

We show further that BexR acts directly at the promoters of many

of its regulatory targets, including that of its own gene. Finally, we

describe a series of single-cell population analyses that suggest that

this bistable switch requires bexR autoregulation. We propose a

model for the BexR switch in which positive feedback amplifies

bexR expression in a stochastically determined subset of cells,

giving rise to bistable expression of BexR target genes in an

isogenic population.

Results

BexR Is a Positive Regulator of PA1202 Bistability
In the course of unrelated microarray experiments, we observed

a small set of genes that exhibited variable expression between

replicates of wild-type cultures of P. aeruginosa strain PAO1 (data

not shown). This set includes PA1202, which encodes a

hypothetical protein with homology to a predicted hydrolase of

Escherichia coli, and PA2432 (herein named bexR for bistable

expression regulator), which is predicted to encode a member of the

LysR family of transcription regulators. To confirm that PA1202 is

expressed in a variable manner, we constructed a strain of PAO1

in which lacZ was placed downstream of the PA1202 gene

(Figure 1A). This strain exhibits reversible bistable expression of

the lacZ reporter. Specifically, wild-type cells of this reporter strain

give rise to both blue (‘‘ON’’) and white (‘‘OFF’’) colonies on LB

agar plates containing X-Gal (Figure 1B). When re-streaked on LB

agar with X-Gal, ON colonies give rise to both ON and OFF

colonies, and OFF colonies give rise to both OFF and ON

colonies. Because our initial microarray analyses suggested that

bexR, which encodes a putative transcription activator, co-varied

with PA1202, we hypothesized that BexR may positively regulate

expression of PA1202 and that bistable expression of bexR may be

responsible for the observed bistability in PA1202 expression. To

begin to test this hypothesis, we constructed an unmarked in-frame

deletion of bexR in PAO1 PA1202 lacZ. Compared to the wild-type

reporter strain, the DbexR mutant exhibits constitutively low-level

expression of PA1202 (Figure 1B). Ectopic expression of bexR in

the DbexR mutant resulted in increased PA1202 expression

(Figure 1C), suggesting that BexR positively regulates expression

of PA1202. However, bistable expression of PA1202 is lost when

bexR is expressed ectopically; PAO1 DbexR PA1202 lacZ grows only

as ON colonies on LB agar with X-Gal when carrying a plasmid

containing bexR (data not shown), suggesting that native regulation

of bexR is necessary for bistable PA1202 expression. Quantification

of the frequency at which this switch in expression state occurs

reveals a relatively infrequent switch with a bias in favor of the

OFF to ON transition (Table 1).

The bexR Gene Is Bistably Expressed and Positively
Autoregulated

To determine whether bexR, like PA1202, is expressed in a

bistable manner, we constructed a reporter strain in which the

putative bexR promoter region was placed upstream of a GFP-lacZ

reporter in single copy at the WCTX attachment site in the PAO1

chromosome (Figure 1D) [16,17]. Individual cells of wild-type

PAO1 carrying this PbexR-GFP-lacZ reporter either express the GFP

reporter, or do not, leading to heterogeneity in the cell population

(Figure 1E). Interestingly, cells lacking BexR exhibit constitutively

low-level expression of the reporter, suggesting that bistable

expression from the bexR promoter also depends on BexR. Bistable

expression from the bexR promoter was also observed at the colony

level, suggesting long-term maintenance of the BexR expression

state (Figure S1). The frequency of switching between expression

states is similar for bexR and PA1202, further supporting the

hypothesis that bistable expression of bexR is upstream of PA1202

bistability (Table 1 and Table S1). Truncation of the bexR

upstream sequence indicated that a 195 bp fragment of upstream

DNA is still sufficient to drive expression of a lacZ reporter

(integrated in single copy in the chromosome) when bexR is

expressed from a plasmid, whereas an 88 bp fragment is not

(Figure 1F). Thus, the 195 bp region of DNA immediately

upstream of bexR presumably contains the bexR promoter and

BexR binding site(s). Thus, BexR positively regulates expression of

PA1202 and of its own gene, and bexR is itself bistably expressed,

suggesting that other BexR target genes may also be expressed in a

bistable manner.

BexR Regulates Expression of a Diverse Set of Genes,
Including That Encoding the Virulence Factor AprA

To determine the full extent of the BexR regulon in PAO1, we

compared the mRNA content of PAO1 DbexR cells containing

either a bexR expression vector or an empty vector in both mid-

logarithmic and stationary phases of growth using DNA micro-

Author Summary

Bistable switches allow the expression of a gene, or set of
genes, to switch from one stable expression state to
another and can generate cells with different phenotypes
in an isogenic population. In this work we uncover a
previously unidentified bistable switch that controls
virulence gene expression in the opportunistic pathogen
P. aeruginosa. This switch is controlled by a LysR-type
transcription regulator that we call BexR. As well as
identifying specific genes that are regulated by BexR, we
show that bexR is itself bistably expressed and positively
autoregulated. Furthermore, we present evidence that
positive autoregulation of bexR is necessary for bistable
expression of the BexR regulon. Our findings support a
model for BexR-mediated bistability in which positive
feedback amplifies bexR expression in a stochastically
determined subset of cells, giving rise to heterogeneous
expression of BexR target genes within a cell population.
By generating diversity in an isogenic population of P.
aeruginosa this bistable switch may ensure the survival of a
subset of cells in adverse conditions, such as those
encountered in the host. Our study defines an epigenetic
mechanism for phenotypic variation in P. aeruginosa.

Bistability in Pseudomonas aeruginosa
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arrays. A total of 71 genes exhibited between a 2- and 70-fold

change in expression, with most genes upregulated by ectopic

expression of bexR (Figure S2). PA1202 was upregulated 70-fold

upon ectopic expression of bexR in mid-logarithmic phase. Several

genes downstream of PA1202 were also strongly upregulated by

ectopic expression of bexR, suggesting that these comprise a BexR-

regulated operon. This putative operon includes PA1203, which is

predicted to encode a redox protein, PA1204, which is predicted

to encode a NADPH-dependent FMN reductase, and PA1205,

which is predicted to encode a homolog of pirin, a widely

conserved protein with oxygenase activity [18]. PA2698, which is

also predicted to encode a hydrolase, was upregulated 7-fold by

ectopic expression of bexR, suggesting that a cohort of several

enzymes are coordinately regulated by BexR. Several multidrug

efflux pumps appeared to be regulatory targets of BexR, as

downregulation of mexEF-oprN by 6- to 10-fold and upregulation of

mexGHI-opmD by 7- to 13-fold was observed during ectopic

expression of bexR. Several quorum sensing-regulated genes

encoding secreted proteins were also positively regulated by

ectopic bexR expression, such as PA0572, which encodes a LasR-

regulated Xcp secretion substrate with a predicted Zn-metallo-

protease motif [19–21]. Finally, the LasR-regulated genes aprX,

aprE, aprF and aprA, which encode components of the alkaline

protease production and secretion machinery, were positively

regulated by BexR. aprA, which encodes the alkaline protease

precursor protein, plays a role in virulence in a Drosophila

melanogaster orogastric model of pseudomonal infection, where it

is thought to protect P. entomophila from antimicrobial peptides

[22]. These results suggest that BexR controls the expression of a

diverse set of genes, including some that encode predicted enzymes

and others that encode quorum-regulated secreted proteases.

The BexR Regulon
Because bexR is itself bistably expressed we would predict that

the expression of BexR target genes in wild-type cells should co-

vary with the bexR expression state. To test this prediction, we

isolated mRNA from cultures of wild-type attB::PbexR-lacZ OFF,

attB::PbexR-lacZ ON and DbexR attB::PbexR-lacZ reporter strains at

both mid-logarithmic and stationary growth phases and profiled

relative transcript abundance by qRT-PCR. We observed an

approximately 10-fold difference in abundance of bexR transcripts

between OFF and ON cultures in mid-logarithmic phase, and an

approximately 6-fold difference between OFF and ON cultures in

stationary phase (Figure 2A). Consistent with the idea that BexR

target genes are expressed in a bistable manner in wild-type cells,

expression of members of the putative PA1202 operon, from

PA1202 to PA1205, all co-varied with bexR expression (Figure 2B),

as did PA0572 and aprA (though for aprA the difference in

transcript abundance between ON and OFF cultures was only 2-

fold) (Figure 2C). We were unable to observe significant bistable

expression of the other apr genes, possibly due to the relatively

modest effect of BexR on their expression. The abundance of the

Figure 1. BexR is a positively autoregulated, bistably ex-
pressed regulator of PA1202. (A) Schematic of PA1202 lacZ reporter
strains. (B) Phenotypes of wild-type and DbexR PA1202 lacZ reporter
strains when plated on LB agar containing X-Gal. (C) Quantification of
PA1202 lacZ expression in cultures of the wild-type reporter strain in
both ON and OFF states, and the DbexR reporter strain with empty
vector and bexR expression vector. (D) Schematic of attB::PbexR-GFP-lacZ
reporter strain. (E) Micrographs of wild-type and DbexR attB::PbexR-GFP-
lacZ fluorescent reporter cells stained with the membrane dye TMA-
DPH. (F) Quantification of PbexR-lacZ expression in PAO1 DbexR using
varying lengths of bexR promoter DNA in cells with empty vector and
bexR expression vector. Error bars in (C,F) represent 1 SD from the mean
b-galactosidase activity.
doi:10.1371/journal.pgen.1000779.g001

Table 1. Switching frequencies.

Strain Genotype Transition
Switching Frequency
(per cell generation, x1024)

PA1202 lacZ OFF R ON 47.863.0

ON R OFF 0.860.2

DbexR PA1202 lacZ OFF R ON ,0.460.1

doi:10.1371/journal.pgen.1000779.t001

Bistability in Pseudomonas aeruginosa
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lasA transcript was not significantly different between DbexR and

wild-type cultures, suggesting that the observed bistability of aprA

and PA0572 (which, like lasA, are LasR-regulated [19]) is not due

to differences in LasR function between ON and OFF cultures

(Figure 2C). Microarray analysis of cells ectopically expressing

bexR suggests that two operons encoding multidrug efflux pumps

are reciprocally regulated by BexR (Figure S2). However, this was

not observed in wild-type cells in the OFF and ON states (data not

shown). Taken together, our data indicate that BexR is responsible

for coordinate bistable expression of a variety of genes in wild-type

P. aeruginosa, including two that encode quorum sensing-regulated

secreted proteases (PA0572 and aprA).

BexR Acts Directly at Target Promoters
To address whether BexR directly regulates transcription of its

target genes, we used chromatin immunoprecipitation (ChIP). We

constructed a strain in which the native chromosomal copy of the

bexR gene has been modified to encode a version of BexR

containing a vesicular stomatitis virus glycoprotein (VSV-G)

epitope tag at its C-terminus (BexR-V). This strain retained the

ability to bistably express PA1202 lacZ on LB agar containing X-

Gal, suggesting that the VSV-G epitope tag does not interfere with

BexR activity (data not shown). We immunoprecipitated BexR-V-

associated DNA from wild-type ON cultures grown to both mid-

logarithmic and stationary phase and quantified occupancy of

BexR-V at candidate target promoters relative to a control region

not expected to bind BexR-V. BexR-V strongly occupies its own

promoter, as well as those of PA1202 and PA0572 (Figure 3).

Furthermore, BexR-V occupied the aprX and aprA promoters, but

not the intervening DNA upstream of aprD. This suggests that

BexR-V has at least two distinct binding sites within the apr locus.

All occupancies were significantly higher than those observed in

both wild-type OFF cultures and in a non-epitope tagged control

strain (Figure S3). These results suggest that BexR regulates many

of its target genes directly.

Positive Feedback of bexR Is Required for Bistability
The evidence presented thus far suggests that bexR encodes a

bistably expressed transcription regulator that positively regulates

its own expression. This is reminiscent of the competence switch in

B. subtilis. In this system, ComK, the master regulator of

competence, positively regulates transcription of its own gene,

thereby enabling a non-linear response to increasing concentra-

tions of ComK, which leads to bistability in the development of

competence. Using single-cell fluorescent reporter analysis, it has

been shown that the ComK positive feedback loop is required for

bistable expression of competence [14,15]. We hypothesized that,

in a similar manner, the positive feedback loop controlling bexR

expression is required for bistable expression of the BexR regulon

(i.e. positive feedback of bexR creates a condition of hypersensitivity

to variation in levels of BexR protein). If this hypothesis is correct a

gradual increase in basal bexR expression should increase the

proportion of ON relative to OFF cells specifically in a strain with

an intact positive feedback loop. In a strain that lacks this positive

feedback loop, a graded increase in bexR expression should lead to

a corresponding increase in expression of bexR-regulated genes

with no detectable bistability.

Wild-type P. aeruginosa cells containing a PbexR-GFP-lacZ reporter

construct integrated in single copy into the chromosome can be

Figure 2. BexR-regulated transcripts vary between the OFF and
ON states. (A) Relative quantity of bexR mRNA in both mid-logarithmic
and stationary phase. (B) Relative quantities of PA1202 operon mRNAs
in mid-logarithmic phase. (C) Relative quantities of quorum sensing-
regulated mRNAs in stationary phase. Error bars represent relative
expression values calculated from +/21 SD from the mean DDCt.
doi:10.1371/journal.pgen.1000779.g002

Figure 3. BexR occupies the promoters of target genes. ChIP of
an epitope-tagged version of BexR reveals preferential binding of the
promoters of target genes over a non-binding control region in vivo at
both mid-logarithmic and stationary phase. Error bars represent 1 SD
from the mean fold enrichment.
doi:10.1371/journal.pgen.1000779.g003

Bistability in Pseudomonas aeruginosa
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seen to exhibit BexR-dependent bistable expression of this reporter

by fluorescence microscopy (Figure 1E). Consistent with this

observation, quantification of the fluorescence of individual cells

within a culture derived from either an ON colony or an OFF

colony reveals that cells in the ON and OFF expression states can

be distinguished from one another, and that each culture contains

both ON and OFF cells (Figure 4). To analyze the effect of positive

feedback on bexR bistability, we constructed a pair of strains

containing the PbexR-GFP-lacZ reporter construct and an isopropyl-

b-D-thiogalactoside (IPTG)-inducible copy of bexR (also provided

in single copy from the chromosome from a different locus). One

of these strains contained an unmarked, in-frame deletion of bexR

(the minus feedback strain, Figure 5A), whereas the other

contained wild-type bexR at its native locus (the plus feedback

strain, Figure 5B). In the absence of IPTG, only cells of the

reporter strain with the intact positive feedback loop displayed

bistability, and contained two populations of cells corresponding to

those in the ON and OFF expression states (manifest in Figure 5B

[and Figure 6B] as a population of cells with an essentially bimodal

distribution of fluorescence intensities). Furthermore, a gradual

increase in ectopically expressed bexR resulted in an increase in the

proportion of ON relative to OFF cells only in the plus feedback

strain (Figure 5B); in the strain lacking the positive feedback loop,

cells responded relatively uniformly to increasing synthesis of

ectopically expressed bexR (manifest in Figure 5A as a population

of cells with a normal distribution of fluorescence intensities, whose

average fluorescence intensity increases with IPTG concentration).

Importantly, for IPTG concentrations at which the average cell

fluorescence intensity was similar between cells with and without

feedback, two distinct cell populations (ON and OFF) were

observed only in cells with an intact positive feedback loop

(Figure 5). In particular, cells of the plus feedback strain at 0.5 mM

IPTG had a mean fluorescence intensity of 1814 arbitrary units,

which is similar to the mean fluorescence intensity of 1720

arbitrary units exhibited by the minus feedback strain at 4 mM

IPTG. Whereas the mean reporter gene expression of these two

cell populations, and thus the average abundance of BexR protein

per cell, was quite similar under these two conditions, the existence

of two subpopulations of cells occurred only in the presence of bexR

autoregulation (Figure 5). These results suggest that positive

feedback of bexR is necessary for bistability.

Feedback-mediated bistable systems often exhibit a capacity for

history-dependent behavior, or hysteresis [reviewed in 23].

Systems exhibiting hysteretic behavior may have different

responses under identical conditions, depending on the conditions

previously experienced. For example, in bistable expression of the

lac operon of E. coli at low concentrations of a non-metabolizable

lactose analog, the concentration of inducer at which initially

uninduced cells turn on is higher than that at which initially

induced cells turn off [24,25]. The behavior of this system at

concentrations of inducer between these thresholds therefore

depends on conditions previously encountered. Thus, systems with

positive feedback can exhibit memory of previous expression

states. To investigate the possibility that positive feedback of bexR

can impart a memory of previous expression states on the system,

we utilized the plus and minus feedback strains described above

(Figure 5) and observed their response over time to a pulse of

ectopically expressed bexR, induced by a 2 hour exposure to

20 mM IPTG. In cells without an intact positive feedback loop,

the IPTG pulse was sufficient to raise the mean fluorescence

intensity to the level seen in wild-type ON cells (Figure 6A and

Figure 4). However, this degree of expression from the PbexR-GFP-

lacZ reporter was quickly lost upon removal of IPTG and

subculturing of cells into fresh media. In contrast, cells of the

plus feedback strain maintained their induced state for many

generations after the removal of IPTG, suggesting that a brief

period in which cells experience a high intracellular concentration

of BexR is sufficient to induce a long-lasting ON state (Figure 6B).

Indeed, a pulse with IPTG for only 30 minutes is sufficient to

induce a transition to a sustained ON state in the plus feedback

strain (Figure S4). Only after 31 generations following removal of

IPTG, do a portion of the cells begin to transition to the OFF state

(Figure 6B). Taken together, the results of our single-cell

population analyses suggest a mechanism in which variation in

basal expression of bexR in OFF cells is amplified by a positive

feedback loop in a stochastically determined subset of cells that

then transitions to the ON state and is maintained in that state by

continued autoactivation of BexR (Figure 7).

Discussion

The results above characterize a heretofore undescribed bistable

switch in P. aeruginosa that controls virulence gene expression. We

have shown that bexR, which encodes a LysR-type transcription

regulator, is bistably expressed, and that this bistability results in

altered expression of several downstream genes, including those in

the uncharacterized PA1202 operon and aprA, which encodes the

virulence factor alkaline protease. Furthermore, reporter assays

show that BexR can positively regulate its own expression. ChIP

analysis indicates that BexR acts directly at the sites of many target

promoters, including that of its own gene. Finally, single-cell

analyses of the response of a cell population to a graded source of

BexR, or a pulse of BexR, suggests that positive autoregulation is

Figure 4. Automated fluorescence intensity measurement of
single cells reveals bistable expression from the bexR promot-
er. Cultures of wild-type PAO1 (WT), the wild-type attB::PbexR-GFP-lacZ
fluorescent reporter strain (originating from ON and OFF colonies) and
the DbexR attB::PbexR-GFP-lacZ fluorescent reporter strain (see Figure 1D),
were grown and examined and measured for fluorescence upon
reaching mid-logarithmic phase by fluorescence microscopy. Black dots
correspond to the automatically measured fluorescence intensity of
individual cells (in arbitrary units, AU) in a sample size of 250 cells. The
red bar represents the mean fluorescence intensity of cells in a sample.
doi:10.1371/journal.pgen.1000779.g004

Bistability in Pseudomonas aeruginosa
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Figure 5. Positive feedback of bexR is required for bistability of the regulon. Cells of both the minus feedback strain (PAO1 DbexR
attB::PbexR-GFP-lacZ attTn7::TOPLAC-bexR, see diagram in (A), and the plus feedback strain (PAO1 attB::PbexR-GFP-lacZ attTn7::TOPLAC-bexR, see diagram
in (B) were grown in LB media containing IPTG at the indicated concentrations, and examined and measured for fluorescence upon reaching mid-
logarithmic phase by fluorescence microscopy. Black dots on scatter plots correspond to the automatically measured fluorescence intensity of
individual cells (in arbitrary units, AU) in a sample size of 250 cells. The red bar represents the mean fluorescence intensity of cells in a sample.
Representative micrographs of selected samples are shown, with green fluorescence displayed in pseudocolor on the top panels and the
corresponding DIC image on the bottom panels. Scale bar, 3 mm.
doi:10.1371/journal.pgen.1000779.g005

Bistability in Pseudomonas aeruginosa
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Figure 6. The feedback-mediated BexR switch exhibits hysteresis. Cells of both the minus feedback strain (PAO1 DbexR attB::PbexR-GFP-lacZ
attTn7::TOPLAC-bexR, see diagram, Figure 5A), and the plus feedback strain (PAO1 attB::PbexR-GFP-lacZ attTn7::TOPLAC-bexR, see diagram, Figure 5B)
were grown to early logarithmic phase and were exposed to a pulse of IPTG (20 mM) for 2 hours (2 h IPTG pulse) to induce ectopic expression of
bexR, or not exposed to IPTG (no IPTG pulse). Cells were then washed (to remove IPTG) and grown in fresh media for 31 generations. Cells were
examined and measured for fluorescence after 0, 2, 6, 11, 19, and 31 generations post treatment with or without IPTG by fluorescence microscopy.
For scatter plots, the number of generations of growth in media without IPTG after the pulse is given on the horizontal axes. Black dots correspond to
the automatically measured fluorescence intensity of individual cells (in arbitrary units, AU) in a sample size of 250 cells. The red bar represents the
mean fluorescence intensity of cells in a sample. Representative micrographs of selected samples are shown, with green fluorescence displayed in
pseudocolor on the top panels and the corresponding DIC image on the bottom panels. Scale bar, 3 mm.
doi:10.1371/journal.pgen.1000779.g006

Bistability in Pseudomonas aeruginosa
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necessary for the observed bistability. Taken together, these results

outline a novel feedback-mediated bistable switch in an opportu-

nistic pathogen.

Phenotypic Outcomes of BexR Bistability
Bistability is a mechanism by which bacteria can introduce

phenotypic heterogeneity within an isogenic population, thereby

creating a subset of cells capable of surviving the onset of an

otherwise lethal situation. For example, some bacteria have the

ability to survive antibiotic treatment without evolving bona fide

resistance by stochastically entering a dormant ‘‘persister’’ state

during vegetative growth [26]. A recent study suggests that a bexR

transposon mutant has 2-fold increased sensitivity to the

fluoroquinolone antibiotic ciprofloxacin, which is used in treat-

ment of P. aeruginosa infections in CF patients, though the potential

mechanism for this increased sensitivity was not addressed [27,28].

Although our findings raised the possibility that bistable bexR

expression might lead to heterogeneity in ciprofloxacin resistance,

we found no evidence that bexR contributed to the resistance of P.

aeruginosa to ciprofloxacin, at least in strain PAO1 (data not shown).

Bistable expression of virulence factors has been previously

reported in P. aeruginosa. For instance, the Type III secretion

system is only expressed in a subset of cells grown in inducing

conditions [29]. Additionally, the cupA fimbrial gene cluster is

bistably expressed by P. aeruginosa when grown in anaerobic

conditions [5]. Bistable expression of several virulence factors

independently of one another may create several subtypes of cells

with differing virulence potential within an isogenic population of

infecting bacteria. Thus, bistable expression of virulence factors

may represent a strategy employed by P. aeruginosa to generate cell

types specialized to survive within different niches in the host.

In P. entomophila, AprA has a significant role in virulence in a D.

melanogaster oral model of infection, where it is thought to protect

the bacterium from the effects of host-produced antimicrobial

peptides [22]. Although oral models of D. melanogaster infection

with P. aeruginosa have been used to successfully characterize

bacterial virulence, these models have not been used to test the

role of AprA in P. aeruginosa virulence [30,31]. If alkaline protease

does play a role in defense against antimicrobial peptides in P.

aeruginosa, upregulating aprA ,2-fold in a subset of cells through

BexR-mediated bistability may preemptively adapt a portion of

the cell population to the sudden introduction to a particular host

environment. P. aeruginosa alkaline protease has been shown to

degrade a variety of human proteins and tissues and inhibit

immune cell function, presumably by acting at the cell surface to

modify phagocytic and chemotactic receptors (reviewed in [32]).

Alkaline protease has also been suggested to play a role in corneal

keratitis [33], although this role for AprA has been disputed more

recently by the comparison of isogenic mutant strains [34].

However, our observation that wild-type strains of P. aeruginosa

bistably express aprA may complicate the interpretation of earlier

work. Interestingly, the rhizobacterium P. brassicacearum exhibits

phenotypic variation in expression of an alkaline protease

homolog, though whether this is mediated by bistability of a

BexR homolog is unknown [35]. It has been suggested that

heterogeneous production of extracellular proteases by an isogenic

population of bacteria is an example of cooperative or altruistic

behavior, as these proteases diffuse freely through the growth

medium and can equally benefit all members of the population

[36]. Thus, bistable production of alkaline protease or PA0572, a

predicted protease, may serve to benefit both ON and OFF cells in

a population. Whether bistable expression of aprA, or other

members of the BexR regulon, has a role in mammalian virulence

remains to be seen.

In contrast with aprA, many other regulatory targets of BexR are

poorly characterized hypothetical genes. BexR-mediated bistabil-

ity does not appear to be limited to P. aeruginosa PAO1, as the

homolog of PA1202 in P. aeruginosa PA14, a more virulent clinical

strain, is also bistably expressed in a BexR-dependent manner

(Figure S5). This conservation across diverse strains of P. aeruginosa

suggests an important biological role for BexR-mediated bist-

ability. In this regard, a particularly interesting target of BexR is

the PA1202 operon, which is strongly positively regulated by

BexR. Several genes in this operon, such as PA1202 and PA1205,

are predicted to encode enzymes with catabolic activity directed

against small molecules. This may point to a role for the BexR

regulon in the ability of P. aeruginosa to metabolize and thereby

detoxify certain small molecules. Co-regulation of a diverse set of

genes by BexR may indicate that it is involved in manifestation of

more than one phenotype. That these genes are expressed in a

bistable manner suggests that their expression or repression may

be detrimental to growth under certain conditions.

Feedback-Mediated Bistability and the BexR Switch
We propose that positive feedback of bexR provides a

mechanism for amplification and propagation of cell-to-cell

variability in BexR levels. This regulatory circuit is similar to the

one governing competence development in B. subtilis. Experiments

Figure 7. A model for the switch to the ON state. Wild-type P.
aeruginosa is hypersensitized to BexR levels by virtue of positive
feedback at the bexR locus. Cell-to-cell variability in basal bexR
expression results in a stochastically determined subset of cells
activating the positive autoregulatory loop by BexR binding to its
own promoter and activating transcription. At this point, the ON state is
maintained by direct positive feedback. Transcription of downstream
genes such as aprA, PA0572, and the PA1202 operon is upregulated in
the ON state by BexR binding to their promoters and activating
transcription.
doi:10.1371/journal.pgen.1000779.g007
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in this system have suggested that noisy expression of comK results

in ComK levels in a subpopulation of cells crossing a threshold

level for comK autoactivation, causing differentiation into the

competent state [14,15,37]. Noise in bexR expression may also

provide the basis for generating cell-to-cell variability in BexR

levels. The frequency of the BexR switch differs from that of the

ComK switch. Whereas B. subtilis has been directly observed to

enter a competent state in approximately 3.6% of cell division

events [38], P. aeruginosa enters into the BexR-ON state

approximately 10-fold less frequently, and the BexR-OFF state

even less so (Table 1 and Table S1). These low frequencies are on

par with classical phase-variation systems, but in the case of BexR,

the expression state stability appears to be epigenetically mediated.

This low switching frequency may be a function of the high degree

of hysteresis observed in the BexR switch. Biological systems

capable of hysteretic behavior can retain a memory of previous

exposure to inducing conditions, and this has been observed in

both naturally occurring and synthetic systems [25,39]. Strictly

speaking, hysteresis is not a necessary characteristic of bistable

systems, as a synthetic feedback-mediated bistable system was

observed to exhibit clear bistability but display no history-

dependent response [40]. Nevertheless, hysteresis is often associ-

ated with bistable systems, and that it is observed in the BexR

switch may suggest that retaining memory of previous conditions is

beneficial to the cell.

In B. subtilis, regulation of ComK levels is achieved by

degradation of ComK by the MecA/ClpCP complex and the

inhibition thereof by ComS [41,42]. Our single-cell population

analyses indicate that directly modulating BexR levels by

induction of ectopic synthesis can affect the frequency at which

cells differentiate into the ON state (Figure 5). Modulation of BexR

levels or activity in wild-type cells may provide a mechanism for

fine-tuning the dynamics of this bistability. There may be

accessory factors, perhaps themselves BexR-regulated, that affect

BexR levels or activity. A mechanism for modulating BexR

autoactivation dynamics may allow P. aeruginosa to regulate

switching frequency in response to external conditions. As LysR-

type transcription activators often bind to small molecules to alter

their DNA-binding and regulatory properties, it is possible that the

dynamics of the BexR switch may be tunable by a coinducer

molecule [43]. However, no such molecule has yet been identified.

The results presented here outline a model for differentiation

into the BexR-ON state, but do not address the mechanism by

which a BexR-ON cell can revert to the BexR-OFF state. Previous

studies suggest that escape from a positive feedback loop is often

mediated by an accessory process. For example, escape from

competence in B. subtilis occurs when reduction in ComS levels

promotes ComK proteolysis by the MecA/ClpCP complex,

relieving ComK autoactivation [38]. The switch from BexR-ON

to BexR-OFF may also involve some antagonistic process. Unlike

several other feedback-mediated bistable switches, the switch from

ON to OFF in the case of BexR appears to occur only in a

stochastically determined subset of cells. For example, escape from

competence in B. subtilis occurs because comS transcription is

repressed by ComK in the competent state and ComS protein

gradually depletes in all cells [38]. In contrast, the BexR-ON state

is relatively stable and heritable, and is lost only in a subpopulation

of cells. The existence of a stochastic process mediating the switch

to BexR-OFF that is distinct from the one mediating the switch to

BexR-ON, is further supported by the ,60-fold directional bias in

switching frequencies (Table 1). This process may take the form of

transcription regulation of bexR or post-translational modulation of

BexR levels or activity, and we are currently investigating these

possibilities.

Materials and Methods

Bacterial Strains and Plasmids
P. aeruginosa strains PAO1 and PA14 were provided by Arne

Rietsch (Case Western Reserve University). E. coli DH5a F’IQ

(Invitrogen) was used as the recipient strain for all plasmid

constructions, whereas E. coli strain SM10 (lpir) was used to mate

plasmids into P. aeruginosa.

The PA1202 lacZ reporter strain (PAO1 PA1202 lacZ) contains

the lacZ gene integrated immediately downstream of the PA1202

gene on the PAO1 chromosome and was made by allelic

exchange. PCR products 486 bp and 513 bp in length flanking

the 39 end of PA1202 were amplified and spliced together to add

KpnI, NcoI and SphI sites two bases after the PA1202 stop codon.

This PCR product was cloned as a SacI/PacI fragment into

pEXG2 [44]. The lacZ gene was subsequently cloned into this

construct as a KpnI/SphI fragment derived from pP18-lacZ (Arne

Rietsch, unpublished work), generating plasmid pEXF1202-lacZ.

This plasmid was then used to create reporter strains PAO1

PA1202 lacZ and PA14 PA1202 lacZ by allelic exchange.

The deletion construct for the bexR gene (PA2432) was

generated by amplifying regions 398 bp and 360 bp in length

that flank bexR in the PAO1 genome by the PCR and then splicing

the flanking regions together by overlap extension PCR; deletions

were in-frame and contained the 9-bp linker sequence 59-

GCGGCCGCC-39. The resulting PCR product was cloned on

an EcoRI/BamHI fragment into plasmid pEX18Gm [45], yielding

plasmid pEXM2432. This plasmid was then used to create strains

PAO1 DbexR, PAO1 PA1202 lacZ DbexR and PA14 PA1202 lacZ

DbexR by allelic exchange [45]. Deletions were confirmed by the

PCR.

The attB::PbexR-lacZ reporter strains contain fragments of the

bexR promoter fused to the lacZ gene and integrated in single copy

into the attB locus in the PAO1 chromosome and were made by

site-specific integration followed by backbone excision through

transient synthesis of FLP recombinase from plasmid pFLP2

[17,45]. PCR products spanning from 91, 198 or 297 bp to 3 bp

upstream of the bexR start codon were amplified and cloned as

EcoRI/XhoI fragments into mini-CTX-lacZ [17], which contains a

consensus Shine-Dalgarno sequence upstream of lacZ, yielding

plasmids mini-CTX-PF2432-lacZ.1, mini-CTX-PF2432-lacZ.2 and

mini-CTX-PF2432-lacZ.3, respectively. These plasmids were then

used to create reporter strains PAO1 attB::PbexR.1-lacZ, PAO1

DbexR attB::PbexR.1-lacZ, PAO1 attB::PbexR.2-lacZ, PAO1 DbexR

attB::PbexR.2-lacZ, PAO1 attB::PbexR.3-lacZ and PAO1 DbexR

attB::PbexR.3-lacZ. An EcoRI/XhoI fragment of mini-CTX-

PF2432-lacZ.3 was subcloned into mini-CTX-GFP-lacZ [16],

yielding plasmid mini-CTX-PF2432-GFP-lacZ.3. This plasmid

was then used to create the fluorescent reporter strains PAO1

attB::PbexR.3-GFP-lacZ and PAO1 DbexR attB::PbexR.3-GFP-lacZ.

The BexR-VSV-G integration vector was generated by first

cloning a PCR-amplified DNA fragment containing ,300 bp of

sequence from the 39 portion of the bexR gene on a HindIII/NotI

fragment into plasmid pP30D-YTAP [4], generating plasmid

pP30D-BexR-TAP. This HindIII/NotI fragment was then sub-

cloned into pP30DFRT-MvaT-V [46], generating plasmid

pP30DFRT-BexR-V. This plasmid was used to make strain

PAO1 PA1202 lacZ BexR-V by homologous recombination at the

bexR locus followed by backbone excision through transient

synthesis of FLP recombinase from plasmid pFLP2 [45].

Production of the BexR-V protein was confirmed by Western

blotting with an anti-VSV-G antibody (Sigma).

Plasmid pBexR is a derivative of pPSV35 [44] and directs the

synthesis of the BexR protein under control of the IPTG-inducible
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lacUV5 promoter. The plasmid was made by subcloning an EcoRI/

HindIII DNA fragment containing a consensus Shine-Dalgarno

sequence and the bexR gene into pPSV35.

The attTn7::TOPLAC-bexR strains contain a construct which

directs the synthesis of the BexR protein under control of the

IPTG-inducible TOPLAC promoter stably integrated into the

genome in single copy at the attTn7 locus. The TOPLAC promoter

in this construct is a derivative of the lac promoter that contains

two lac operator sequences centered at positions 263.5 and +11.

The sequence of this promoter is 59-CACTACGTGCTC-

GAGGGTAAATGTGAGCACTCACAATTTATTCTGAAAT-

GAGCTCTTTACACGTCCTGCTGCCGGCTCGTATGTTG-

TGTGGAATTGTGAGCGGATAACAATTAAGCTTAGTCGA-

CAGCTAGCCGGATCC-39, where the -35 and -10 sequences are

underlined and the lac operator sequences are shown in bold. The

bexR gene is inserted downstream of the TOPLAC promoter with a

consensus Shine-Dalgarno sequence. This construct was inserted

between the ends of the Tn7 transposon on pUC18-mini-Tn7T-

LAC [47], generating plasmid pUC18-mini-Tn7T-TOPLAC-

bexR. This plasmid was used to make strains PAO1 attB::PbexR.

3-GFP-lacZ attTn7::TOPLAC-bexR and PAO1 DbexR attB::PbexR.

3-GFP-lacZ attTn7::TOPLAC-bexR by site-specific recombination

[47].

b-Galactosidase Assays
Cells were grown with aeration at 37uC to mid-logarithmic

phase in LB supplemented as needed with gentamicin (25 mg/ml)

and IPTG (0.1 mM). Cells were permeabilized with sodium

dodecyl sulfate and CHCl3 and assayed for b-galactosidase activity

as described previously [48]. Assays were performed at least twice

in triplicate on separate occasions. Representative data sets are

shown.

RNA Isolation
Cultures of PAO1 DbexR attB::PbexR.3-lacZ and PAO1 attB::

PbexR.3-lacZ in the OFF and ON states were inoculated in

quadruplicate at starting OD600 of <0.01 and grown with

aeration to an OD600 of <0.55 (representing mid-logarithmic

phase) and to an OD600 of <2.4 (representing stationary phase) at

37uC in LB. Cells were then harvested by centrifugation and RNA

prepared essentially as described [49]. Transcripts were quantified

by quantitative real-time RT-PCR as described [50].

Switching-Frequency Calculations
Switching-frequency calculations were performed essentially as

described [51], except that cells were plated on LB agar plates

containing 50 mg/ml X-Gal and grown at 37uC. Error values

represent 1 standard deviation (SD) from the mean switching

frequency.

Microarray Experiments
Cultures of PAO1 DbexR containing plasmid pPSV35 [44] or

pBexR were grown with aeration at 37uC in LB containing

gentamicin (25 mg/ml). Triplicate cultures of each strain were

inoculated at a starting OD600 of <0.01 and grown to an OD600 of

<0.5 (representing mid-logarithmic phase) and to an OD600 of

<2.3 (representing stationary phase). RNA isolation, cDNA

synthesis, and cDNA fragmentation and labeling were performed

essentially as described previously [49]. Labeled samples were

hybridized to Affymetrix GeneChip P. aeruginosa genome arrays

(Affymetrix). Data were analyzed for statistically significant

(p,0.05, fold change .2) changes in gene expression using

GeneSpring GX.

Chromatin Immunoprecipitation (ChIP)
Cultures of PAO1 PA1202 lacZ BexR-V in either the ON or

OFF state were inoculated in quadruplicate at a starting OD600

of <0.01 and grown with aeration to an OD600 of <0.5

(representing mid-logarithmic phase) and to an OD600 of <2.0

(representing stationary phase) at 37uC in LB. ChIP was then

performed with 3 ml of culture and fold enrichment values were

measured by quantitative PCR relative to the PA2155 promoter

essentially as described [46].

Quantitative Fluorescence Microscopy
For fluorescence micrograph analysis, cultures were fixed with

formaldehyde and glutaraldehyde at 2.4% and 0.04%, respective-

ly, and cells were allowed to fix for 30 minutes at room

temperature. Cells were washed three times with PBS and imaged

on a Nikon TE2000 inverted microscope outfitted with a Nikon

Intensilight illuminator, a Coolsnap HQ2 charge-coupled device

camera from Photometrics and a Nikon CFI Plan Apo VC 6100

objective lens (1.4 NA) for differential interference contrast (DIC)

imaging. For GFP images the ET-GFP filter set (Chroma 49002)

was used. Images were captured using Nikon Elements software,

which was also used for quantification of fluorescence in individual

cells. This was done by automatically defining cell boundaries

using the DIC image, excluding cells that were poorly focused,

narrower than 0.5 mm, longer than 4.0 mm or shorter than

0.5 mm, and using those regions to quantify the GFP image.

Values given are subtracted for background fluorescence. At least

400 cells were imaged for each timepoint, and the fluorescence

intensities of a random subset of 250 cells are displayed in scatter

plots. Images were exported to Adobe Photoshop CS4 for

preparation.

For the hypersensitivity experiment (Figure 5), cells were grown

with aeration at 37uC to mid-logarithmic phase in LB supple-

mented as needed with IPTG and prepared for microscopy as

described above. The experiment was performed at least twice in

duplicate on separate occasions. A representative data set from a

single replicate is shown.

The hysteresis experiment (Figure 6) was performed by growing

cells with aeration at 37uC in LB and either treating them with

20 mM IPTG for 2 hours or 30 minutes immediately before

reaching mid-logarithmic phase, or not treating them with IPTG.

A sample was then taken and prepared for microscopy

(corresponding to the 0 generation time point) as described above

while the remaining cells were washed with LB to remove the

IPTG, and inoculated into fresh media at a 1:4 dilution. Cells were

then grown continuously for 2 generations to mid-logarithmic

phase, a sample was taken and prepared for microscopy

(corresponding to the 2 generation time point) and a fresh culture

was inoculated at a 1:16 dilution with the remaining cells. Cells

were then grown continuously for 4 generations to mid-

logarithmic phase, a sample was taken and prepared for

microscopy (corresponding to the 6 generation time point) and a

fresh culture was inoculated at a 1:16 dilution with the remaining

cells. Cells were then grown continuously for 5 generations to late-

logarithmic phase, a sample was taken and prepared for

microscopy (corresponding to the 11 generation time point) and

a fresh culture was inoculated at a 1:32 dilution with the remaining

cells. Cells were then grown continuously for 5 generations to late-

logarithmic phase and a fresh culture was inoculated at a 1:16

dilution. Cells were then grown continuously for 3 generations to

mid-logarithmic phase, a sample was taken and prepared for

microscopy (corresponding to the 19 generation time point),

remaining cells were allowed to grow for 1.5 generations to early

stationary phase and used to inoculate a fresh culture at a 1:100
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dilution. Cells were then grown continuously for 7 generations

(overnight) and used to inoculate a fresh culture at a 1:100

dilution. Cells were then grown continuously for 3.5 generations to

mid-logarithmic phase and a sample was taken and prepared for

microscopy (corresponding to the 31 generation time point). The

experiment was performed at least three times in duplicate on

separate occasions. A representative data set from a single replicate

is shown.

Supporting Information

Figure S1 bexR is bistably expressed on solid media in a bexR-

dependent manner. The bexR promoter was fused to lacZ and

stably integrated in single copy into the PAO1 chromosome. The

phenotypes of wild-type and DbexR strains of this reporter plated

on LB agar containing X-Gal are shown.

Found at: doi:10.1371/journal.pgen.1000779.s001 (1.71 MB TIF)

Figure S2 BexR regulates expression of a diverse set of genes.

Cells of PAO1 DbexR with either empty vector or bexR-

overexpression vector were grown to mid-logarithmic (ML) and

stationary (ST) phase, and mRNA content was profiled by

microarray.

Found at: doi:10.1371/journal.pgen.1000779.s002 (0.09 MB PDF)

Figure S3 BexR occupies the promoters of target genes. Cells of

PAO1 PA1202 lacZ BexR-V in both ON and OFF states were

grown to mid-logarithmic and stationary phase, and DNA

associated with BexR-V was analyzed by ChIP. A mock IP

control was performed with cells of ON-state PAO1 PA1202 lacZ

which do not synthesize VSV-G-tagged BexR. Error bars

represent one standard deviation from the mean fold enrichment.

Found at: doi:10.1371/journal.pgen.1000779.s003 (8.17 MB TIF)

Figure S4 A 30 minute pulse of IPTG is sufficient to induce

hysteresis. Cells of the plus feedback strain (PAO1 attB::PbexR-GFP-

lacZ attTn7::TOPLAC-bexR, see diagram, Figure 5B) were grown to

early logarithmic phase and were exposed to a pulse of IPTG

(20 mM) for 30 minutes (30 min IPTG pulse) to induce ectopic

expression of bexR, or not exposed to IPTG (see Figure 6B, no

IPTG pulse). Cells were then washed (to remove IPTG) and grown

in fresh media for 31 generations. Cells were examined and

measured for fluorescence after 0, 2, 6, 11, 19, and 31 generations

post treatment with or without IPTG by fluorescence microscopy.

For scatter plots, the number of generations of growth in media

without IPTG after the pulse is given on the horizontal axes. Black

dots correspond to the automatically measured fluorescence

intensity of individual cells (in arbitrary units, AU) in a sample

size of 250 cells. The red bar represents the mean fluorescence

intensity of cells in a sample. Representative micrographs of

selected samples are shown, with green fluorescence displayed in

pseudocolor on the top panels and the corresponding DIC image

on the bottom panels. Scale bar, 3 mm.

Found at: doi:10.1371/journal.pgen.1000779.s004 (6.44 MB TIF)

Figure S5 The PA1202-orthologous PA14_48760 operon also

exhibits bexR-dependent bistability in P. aeruginosa strain PA14. (A)

Schematic of PA14_48760 lacZ reporter strains. (B) Phenotypes of

wild-type and DbexR PA14_48760 lacZ reporter strains when

plated on M63 minimal agar containing X-Gal. (C) Quantification

of PA14_48760 lacZ expression in cultures of the wild-type and

DbexR reporter strains. Error bars represent one standard

deviation from the mean b-galactosidase activity.

Found at: doi:10.1371/journal.pgen.1000779.s005 (3.13 MB TIF)

Table S1 Switching frequencies.

Found at: doi:10.1371/journal.pgen.1000779.s006 (0.03 MB

DOC)
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