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Tumor necrosis factor receptor-associated factor (TRAF) proteins are a family of signaling
molecules that function downstream of multiple receptor signaling pathways, and they
play a pivotal role in the regulation of intracellular biological progresses. These TRAF-
dependent signaling pathways and physiological functions have been involved in the
occurrence and progression of ischemia-reperfusion injury (IRI), which is a common
pathophysiological process that occurs in a wide variety of clinical events, including
ischemic shock, organ transplantation, and thrombolytic therapy, resulting in a poor
prognosis and high mortality. IRI occurs in multiple organs, including liver, kidney,
heart, lung, brain, intestine, and retina. In recent years, mounting compelling evidence
has confirmed that the genetic alterations of TRAFs can cause subversive phenotype
changes during IRI of those organs. In this review, based on current knowledge, we
summarized and analyzed the regulatory effect of TRAFs on the IRI of various organs,
providing clear direction and a firm theoretical basis for the development of treatment
strategies to manipulate TRAF proteins or TRAF-dependent signaling pathways in
IRI-related diseases.
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BACKGROUND

Tumor necrosis factor receptor-associated factors (TRAFs) were identified as the signaling
adaptors that positively and negatively regulate the signal transduction pathways of various
receptors, including the TNF-R superfamily, Toll-like receptors (TLRs), NOD-like receptors
(NLRs), RIG-I-like receptors (RLRs), and cytokine receptors (Fang et al., 2017; Dhillon et al., 2019;

Abbreviations: ALDOA, aldolase A; aPKC, atypical protein kinase C; ASK1, apoptosis signal-regulating kinase 1; AS-IV,
Astragaloside IV; BBB, blood brain barrier; BMAL1, aryl hydrocarbon receptor nuclear translocator-like protein 1; CK,
creatine kinase; CSFV, classical swine fever virus; EAD, early allograft dysfunction; ER, endoplasmic reticulum; EV71,
enterovirus 71; HBV, hepatitis B virus; HCC, hepatocellular carcinoma; hMSCs, human mesenchymal stem cells; HPV, human
papilloma viruses; H/R, hypoxia/reoxygenation; IBD, inflammatory bowel disease; IFN-I, type I interferon; IPC, ischemic
preconditioning; IPostC, ischemic postconditioning; IRI, ischemia-reperfusion injury; lncRNA, long non-coding RNA; LPS,
lipopolysaccharide; LRIP, limb remote ischemic postconditioning; LV, left ventricular; MAPK, mitogen-activated protein
kinase; Mbd2, methyl-CpG binding domain protein 2; miRNAs, microRNA; MLKL, mixed-lineage kinase domain-like; NAS,
N-Acetylserotonin; NF-κB, nuclear factor-κB; NLR, NOD-like receptor; NLS, nuclear localization signal; OGDR, oxygen-
glucose deprivation reperfusion; ORF3a, open reading frame 3a; PI3K, phosphatidylinositol-3-kinase; PreD-SCP, preactivated
and disaggregated shape-changed platelet; RLR, RIG-I-like receptor; SAB, salvianolic acid B; SARS-CoV, severe acute
respiratory syndrome coronavirus; SLE, systemic lupus erythematosus; Sphk1, sphingosine kinase 1; TAK1, transforming
growth factor-β-activated kinase 1; TGF-β, transforming growth factor-β; TLR, Toll-like receptor; TRAF, Tumor necrosis
factor receptor-associated factor; TUDCA, tauroursodeoxycholic acid.
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Swaidani et al., 2019). There are six typical members (TRAF1–6)
and an atypical member (TRAF7) in mammalian cells (Park,
2018; He et al., 2020). Most TRAFs share a similar C-terminal
TRAF domain, a distinct feature of the typical TRAF proteins
except for TRAF7 (in which seven WD40 repeats replace the
TRAF domain), which contain an N-terminal coiled-coil domain
(TRAF-N) and a highly conserved C-terminal β-sandwich
domain (TRAF-C or MATH domain) (Arkee and Bishop,
2019; Stevers et al., 2019). Furthermore, all TRAF members,
with the exception of TRAF1, contain a similar N-terminal
RING domain, followed by one or more zinc fingers (Zapata
et al., 2018; Arkee and Bishop, 2019; Stevers et al., 2019;
Figure 1). The TRAF domain is responsible for mediating the
oligomerization between the TRAF proteins, as well as their
association with upstream regulators and downstream effectors.
The RING domain is found in many E3 ubiquitin ligases and
is responsible for mediating proteins’ ubiquitination (Lu et al.,
2018; Zapata et al., 2018; Arkee and Bishop, 2019; Stevers et al.,
2019). Due to their structural characteristics, TRAF proteins are
involved in a variety of intracellular pathophysiological processes,
including cell apoptosis, proliferation, differentiation, autophagy,
necroptosis, pyroptosis, immune, and inflammatory responses
(Lan et al., 2017; Robeson et al., 2018; Dhillon et al., 2019;
Li et al., 2019b; Swaidani et al., 2019; Zhang X. et al., 2019).
Specially, since TRAFs were discovered in TNF-R signaling, its
role has been expanded to include involvement in more and
more other inflammatory cytokine receptors, such as receptors
for IL-2, IL-6, IL-1β, IL-17, IL-18, IL-33, type I IFNs, type III
IFNs, M-CSF, GM-CSF, and C-type lectin receptors (Dhillon
et al., 2019; Swaidani et al., 2019). Certainly, as intracellular
scaffolding molecules, TRAFs play an indispensable role via the
complex interactions with the inflammatory cytokine receptors in
regulating pathophysiological processes in many human diseases,
including autoimmune diseases, cancers, atherosclerosis, and
type II diabetes, and they even have been recommended as
suitable targets for therapeutic intervention (Choi et al., 2018;
Nagashima et al., 2018; Zhu et al., 2018; Dhillon et al., 2019; Sajjad
et al., 2019; Sangare et al., 2019). Meanwhile, the biological and
functional roles of TRAFs in ischemia-reperfusion injury (IRI) of
various organs have received much attention in recent years.

IRI can occur in a variety of tissues and organs, including
the liver, kidney, heart, lung, brain, intestine, and retina, leading
to severe pathophysiological damage to the primary organ or
even remote organs, partly due to explosive oxidative stress,
inflammation and destruction of the physiological body barrier.
The occurrence of IRI leads to a poor prognosis in many
diseases, such as neuronal damage caused by ischemic shock,
acute cardiopulmonary damage caused by thrombolytic therapy,
and visual impairment caused by retinopathy (Chen et al., 2017;
Li et al., 2019d; Hui et al., 2020; Kohler et al., 2020). However,
there is still no exact treatment method in clinical guidelines due
to the devastating pathological damage and complex molecular
mechanisms involved in IRI. To achieve better therapeutic effects,
increasing attention has been paid to the study of IRI in recent
years. Previous studies have shown that the main mechanisms
of IRI include apoptosis and necrosis (Zhou H. et al., 2017; Li
et al., 2018a; Xu T. et al., 2019), autophagy (Russo et al., 2018;

Yu et al., 2018), and activation of the complement and lymphatic
systems (Gigliotti et al., 2013; Bajwa et al., 2016). The signaling
pathways involved mainly include the nuclear factor-κB (NF-κB)
(Li et al., 2018a; Zhang R. et al., 2018), apoptosis signal-regulating
kinase 1 (ASK1) (Qin et al., 2018), transforming growth factor-
β-activated kinase 1 (TAK1), and autophagy (ATG) pathways
(Li et al., 2018d; Chen et al., 2020). Recently, IRI events have
increasingly been shown to involve newly proposed mechanisms
such as necroptosis (Linkermann et al., 2012; Li et al., 2018c;
Zhou et al., 2018), pyroptosis (Qiu et al., 2017; Tajima et al.,
2019), and ferroptosis (Gao et al., 2015; Tonnus and Linkermann,
2016; Li et al., 2019f), which have attracted substantial attention
and keen interest.

Convincing evidence in recent years has proven that most
TRAF proteins, except TRAF4 and TRAF7, are involved in
the development of IRI by regulating respective molecular
mechanisms to play a similar or opposite effect on various organs
(Figure 2). In this review, we will state and elucidate the specific
role of most TRAF molecules in the IRI of different organs to
provide a theoretical basis for formulating treatment strategies
for diseases related to IRI, and provide directions for further
TRAFs exploration.

Basic Concept and Network Regulate of
TRAFs in Cellular Signaling Cascades
TRAF1
TRAF1, a unique member of the TRAF family, lacks the
N-terminal RING domain, whose expression is low in resting
cells and is only found in activated dendrites, lymphocytes, and
certain epithelia (Kim C. M. et al., 2017; Ivagnès et al., 2018). In
addition, TRAF1 exerts its primary function in specific organs in
mice and humans, including the spleen, lung, and testis (Wang
et al., 2018). Although the structure of TRAF1 is more simple
than other TRAFs and its expression is restricted, it still plays
an indispensable role in regulating certain intracellular biological
progresses, including cellular innate immunity and apoptosis
signaling. For apoptosis, TRAF1 seems to exert conflicting
biologic effects depending on the specific cell type. In immune
cells, TRAF1 shows an anti-apoptotic function in TNFR2
signaling via direct interaction with TNFR2; however, it plays a
pro-apoptotic function in neuronal cell death (Lu et al., 2013; Kim
C. M. et al., 2017). Interestingly, TRAF1-deficient mice showed
hyper-inflammation in obese visceral adipose tissue, failure to
gain weight, and improved insulin resistance (Anto Michel et al.,
2018). Furthermore, a study of septic, TRAF1-deficient mice
showed increased susceptibility to lipopolysaccharide (LPS)-
induced septic shock (Abdul-Sater et al., 2017). Clearly, based
on its physiological function, TRAF1 plays an important role in
many human inflammation and metabolic diseases.

TRAF2
TRAF2 is the most extensively studied member of the TRAF
family in terms of structure and function. Similar to other
TRAF proteins, TRAF2 contains the conventional N-terminal
RING domain, zinc finger domain, and C-terminal TRAF
domain (Bhat et al., 2018; Chen et al., 2018). Recently, a study
showed that the zinc finger domain of TRAF2, instead of the
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FIGURE 1 | Domain organization of TRAF family. A schematic diagram
represents the basic structural features of TRAF1-7. All TRAF members,
except TRAF1, contain a similar N-terminal RING domain, followed by one or
more zinc fingers. Most TRAFs share a similar TRAF domain divided into an
N-terminal coiled-coil domain (TRAF-N) and a C-terminal β-sandwich domain
(TRAF-C or MATH domain), except TRAF7 (in which seven WD40 repeats
replace the TRAF domain). Especially, TRAF3 and TRAF4 contain the nuclear
localization signal (NLS) sequence.

conventional substrate recognition C-terminal TRAF domain,
was responsible for interacting with the aryl hydrocarbon
receptor nuclear translocator-like protein 1 (BMAL1) (Chen
et al., 2018). Therefore, the functions of substrate recognition
domains in TRAF2 differ according to the substrates.

Organizationally, TRAF2 is widely expressed in various
tissues, including the brain, heart, liver, spleen, lung, kidney,
testis, and skeletal muscle, and has the highest expression
in the spleen in mice (Qu et al., 2017). In terms of
regulation, as an E3 ubiquitin ligase, TRAF2 is regulated
by complex managers, including cIAP-1, siah2 and A20 for
ubiquitination and degradation (Zhang et al., 2020), and CYLD,
USP4, USP25 and USP48 for the deubiquitination (Li et al.,
2002, 2018b; Trompouki et al., 2003). Surprisingly, USP48
knockdown increased the abundance of lysine 48 (K48)-linked
ubiquitination but not the K63-linked ubiquitination of TRAF2,
and subsequently reduced its stability (Li et al., 2018b). These
complex managers contribute to TRAF2’s regulation of multiple
cellular responses, such as anoikis, cell proliferation, apoptosis
and necroptosis, and immune and inflammatory responses (Guo
et al., 2017; da Silva et al., 2019), contributing to the pathogenesis
of many diseases, especially cancers, including hepatocellular
carcinoma (HCC) and gastrointestinal cancers (Hirsova et al.,
2017; Schneider et al., 2017; Xu et al., 2017), prostate and
pancreatic cancers (Wei et al., 2017; Chen et al., 2018), lung
cancer (Lu et al., 2018), and ovarian and breast cancer (da Silva
et al., 2019; Zhang et al., 2020).

FIGURE 2 | Different TRAF members are involved in the regulation of IRI in
different organs. TRAF1/2/3/5/6 regulate cerebral and myocardial IRI.
TRAF1/2/3/6 are involved in liver IRI. TRAF2/3/6 participate in the regulation of
intestinal IRI. TRAF2/6 are related to renal IRI. TRAF3/6 are involved in retinal
IRI. TRAF6 is correlated with lung IRI.

TRAF3
Anatomically, similar to most TRAF members, TRAF3 contains
a conserved TRAF domain, zinc finger domain, and a RING
domain (Xie et al., 2020). Interestingly, recent studies have
found that the TRAF-C domain of TRAF3 contains the nuclear
localization signal (NLS) sequence (Mambetsariev et al., 2016),
suggesting that TRAF3 may have a biological function in the
nucleus besides its canonical functions in the cell membrane
and cytoplasm. However, probably due to the postnatal lethality
of global TRAF3 deficiency, the functions of TRAF3 are
more elusive than other members (Hu et al., 2016; Wallis
and Bishop, 2018). TRAF3 functions were delayed until the
mature application of gene conditional knockout (Wallis and
Bishop, 2018), and primarily included a role in immune and
inflammatory responses via regulating the NF-κB, mitogen-
activated protein kinase (MAPK) and type I interferon (IFN-
I) pathways (Perez-Chacon et al., 2018; Fochi et al., 2019).
Importantly, TRAF3 plays a master role in regulating the
homeostasis and function of B cells, where it is involved in
their proliferation, survival, and differentiation (Perez-Chacon
et al., 2018; Whillock et al., 2019). Recently, TRAF3 is getting
increasing attention in various viral infections, including severe
acute respiratory syndrome coronavirus (SARS-CoV) (Siu et al.,
2019), hepatitis B virus (HBV) (Xie et al., 2020), human papilloma
viruses (HPV) (Zhang J. et al., 2018; Xiao et al., 2019), and
enterovirus 71 (EV71) (Gu et al., 2017), by regulating the IFN-I or
NF-κB pathways. In SARS-CoV research, TRAF3, but not TRAF2
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or TRAF6, was required for SARS-CoV open reading frame 3a
(ORF3a)-induced activation of NF-κB (Siu et al., 2019). However,
the effects of TRAF3 on NF-κB pathways are controversial.
A prevalent view holds that TRAF3 negatively regulates the non-
canonical NF-κB pathway (Li et al., 2019a,c; Zhang Z. et al., 2019),
but many certified events have shown that TRAF3 can activate
both canonical and non-canonical NF-κB pathways (He et al.,
2004; Bista et al., 2010). NF-κB pathways are vital regulators of
many pathological events, including inflammation and apoptosis,
in ischemic injury (Gong et al., 2015; Xu et al., 2018). Thus, as a
crucial regulator of NF-κB pathways, TRAF3 has attracted much
attention in the study of IRI of various organs.

TRAF4
TRAF4 is a unique member of the TRAF family, in terms
of both structure and function. Firstly, TRAF4 is an ancestral
member, due to the fact that other TRAFs members (except
TRAF6) have evolved to a certain extent (Cai et al., 2017).
Secondly, TRAF4 is the only member that has three cysteine-
rich motifs associated with TRAF and RING domains, followed
by seven zinc fingers (Rousseau et al., 2014; Yang et al., 2015).
In addition, TRAF4 has the canonical NLS sequence, similar to
TRAF3 (Mambetsariev et al., 2016; Das et al., 2019). Moreover,
although it has been confirmed that TRAF4 is widely expressed
in adult tissues, its subcellular localization has been controversial
for years (Shen et al., 2013; Yi et al., 2013). The mainstream
views hold that it is broadly located in the cell membrane,
cytoplasm, and nucleus (Rousseau et al., 2014; Ren et al.,
2015). Perhaps due to the particularity of its structure and
expression, TRAF4 plays an important role in developmental
steps, such as tracheal ring formation, neural tube closure,
and axial skeleton formation (Kim E. et al., 2017). However,
there were no obvious immunological defects or lymphocyte
changes in TRAF4-deficient mice (Kang et al., 2018), suggesting
that TRAF4 may not have a significant impact on immune
function in mice. Moreover, although researchers have confirmed
that TRAF4 did not bind to TNF receptors, or only weakly
interacted with a few TNF receptor family members under
certain conditions (Ren et al., 2015), TRAF4 is a crucial regulator
in the transforming growth factor-β (TGF-β), Wnt-β-catenin,
and phosphatidylinositol-3-kinase (PI3K)/AKT pathways, which
are involved in tumorigenesis and progression (Kang et al.,
2018). However, unlike TRAF1/2/3/5/6, study about TRAF4’s
involvement in IRI is few.

TRAF5
TRAF5 is much less studied than TRAF3, although TRAF5 shares
the highest sequence with TRAF3 in the TRAF family (Foight and
Keating, 2016; Kim et al., 2020). Similarly, TRAF5 contains an
N-terminal RING domain, five zinc fingers at the middle of its
sequence, a coiled-coil domain, and a MATH domain included in
the C-terminal TRAF domain (Xu et al., 2020). TRAF5 mainly
exists in immune organs, including the spleen and thymus,
and is also abundantly expressed in the epidermis, lungs and
kidneys (Nagashima et al., 2018; Xia et al., 2019). Based on its
characteristics of expression, TRAF5 is closely related to many
immune-related diseases, such as systemic lupus erythematosus

(SLE), inflammatory bowel disease (IBD), and the infection of
classical swine fever virus (CSFV) (Wang et al., 2015; Shang et al.,
2016; Lv H. et al., 2018). In addition, TRAF5 plays a vital role
in the progression of various cancers, including HCC, colorectal
cancer, breast cancer, and prostate cancer, via regulating cell
proliferation, apoptosis, and survival (Ling et al., 2018; Jiang et al.,
2020). Interestingly, there have been studies showing that TRAF5
is associated with chronic inflammation-related diseases, which
demonstrate that TRAF5 plays protective roles in atherosclerosis
and obesity-induced non-alcoholic fatty liver disease or non-
alcoholic steatohepatitis (Missiou et al., 2010; Gao et al., 2016).

TRAF6
TRAF6, one of the most evolutionarily ancient members of TRAF
family, is ubiquitously expressed in various tissues and cell types
(Cai et al., 2017; Jiang et al., 2017; Lalani et al., 2018). It contains
a characteristic C-terminal TRAF domain, a similar N-terminal
RING domain, followed by at least four zinc fingers (Hu et al.,
2017; Fu et al., 2018). Similar to TRAF2/3/5, the RING domain of
TRAF6 possesses non-conventional E3 ubiquitin ligase activity.
Generally, K48-linked ubiquitination of TRAF6 is responsible for
the degradation of substrate, whereas K63-linked ubiquitination
is responsible for signaling activation and protein trafficking
(Hu et al., 2017; Lv Y. et al., 2018). However, K63-linked
ubiquitination can also promote the degradation of lysosomal-
mediated substrate proteins (Lu et al., 2017). Interestingly,
TRAF6 can be auto-ubiquitinated through K63-linked ubiquitin
chains, which is a vital prerequisite for its activation (Min
et al., 2018). In addition to being an E3 ubiquitin ligase, TRAF6
is also an adapter protein, which bridges between the TLRs,
TNF-R superfamily, and IL-1 receptors with downstream signal
pathways, especially MAPK and NF-κB pathways, regulating
immune and inflammatory responses (David et al., 2018; Fu et al.,
2018). Unquestionably, these receptors and pathways are fatal for
cell inflammation, survival, and death (Zhou et al., 2015), which
commonly occurs in the pathophysiological processes of IRI.

TRAF7
TRAF7, the latest identified member, is the other unique protein
of the TRAF family besides TRAF4. TRAF7 is also the only
atypical member in TRAF family, as it contains seven WD40
repeat domains instead of the common TRAF domain (Clark
et al., 2013). Similar to the TRAF domain, the WD40 repeat
domains are responsible for the protein-protein and protein-
DNA interactions (Zotti et al., 2017). In addition, TRAF7 also
possesses the N-terminal RING domain and the adjacent zinc
finger, similar to most other TRAF members (Tokita et al., 2018).
Thus far, the biological function of TRAF7 remains elusive and
is under investigation. Most studies at present are about the
correlativity between mutations in TRAF7 and various tumors,
including meningiomas, adenomatoid tumors and intraneural
perineuriomas (Reuss et al., 2013; Klein et al., 2017; Goode
et al., 2018), and all such mutations are heterozygous missense
mutations, which cluster within the mutational hotspots in the
WD40 domains (Klein et al., 2017; Goode et al., 2018). The
latest research showed that, as a E3 ubiquitin ligase like most
other TRAF members, TRAF7 played an important role in the
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regulation of inflammatory response, cell apoptosis, and tumor
progression by the lysosomal degradation of NF-κB essential
modulator and the proteasomal degradation of Krüppel-like
factor 4, respectively (He et al., 2020). In addition, a study
showed that TRAF7 played a major role in the suppression of
endothelial hyperpermeability induced by inflammatory stimuli
and roundabout4, an endothelial cell-specific receptor, which
could enhance the function of TRAF7 (Shirakura et al., 2019).
It can be seen that TRAF7 can cooperate with other molecules
to regulate inflammation and cell apoptosis. It may also play a
role in IRI, but according to our knowledge, there is no relevant
research in this regard now.

Roles of TRAFs and Agents for
Regulating TRAFs in IRI of Different
Organs
TRAF1
According to current research, TRAF1 plays a vital role in
cerebral, liver, and myocardial IRI (Lu et al., 2013; Zhang et al.,
2014; Huang X. et al., 2019; Xu W. et al., 2019). Cerebral IRI is
the main culprit causing ischemic stroke, accounting for ∼80% of
total stroke cases, which has caused adult neurological disability
globally and presented a very high mortality rate yearly (Li et al.,
2019d,e). Current treatment strategies are limited for ischemic
stroke because the mechanisms of cerebral IRI are extremely
complicated. Surprisingly, TRAF1 transgenic (TG-TRAF1) mice
showed enlarged stroke lesions while TRAF1-deficient (TRAF1-
KO) mice showed significant lesion reduction (Lu et al., 2013).
Meanwhile, an in vitro experiment also showed that increased
TRAF1 expression resulting from the infection of adenovirus-
harboring human TRAF1 cDNA (Ad-TRAF1) presented more
neuronal apoptosis than decreased TRAF1 expression caused
by treatment with TRAF1 short hairpin RNA (Ad-shTRAF1)
(Lu et al., 2013). Mechanistically, TRAF1 promoted ischemic
cerebral injury by directly interacting with ASK1 (Lu et al., 2013).
Furthermore, it may be the N-terminal region or kinase domain
of ASK1, rather than the C-terminal region, that is capable of
interacting with TRAF1, and that the TRAF domain is essential
for TRAF1-induced neuronal injury after ischemia. Moreover,
Fas-/FasL-regulated necroptosis was also involved in the process
of TRAF1 cerebral IRI regulation (Lu et al., 2013). Unfortunately,
there was no in-depth exploration of the relationship between
TRAF1 and necroptosis in the study.

Subsequently, it has also been verified that the TRAF1/ASK1
axis promotes liver IRI and myocardial IRI (Zhang et al., 2014;
Huang X. et al., 2019; Xu W. et al., 2019). Liver IRI is a
common pathological process that occurs in hemorrhagic shock,
trauma, liver resection, and liver transplantation, which lead
to early allograft dysfunction (EAD), an important cause of
morbidity and mortality in liver transplant recipients (Monga,
2018; Ni et al., 2019; Nakamura et al., 2020). TRAF1 deficiency
inhibited inflammation and cell death, and TRAF1-KO mice
were resistant to liver IRI (Zhang et al., 2014). In vitro,
the overexpression of miR-214 reduced hepatocyte apoptosis
following hypoxia/reoxygenation (H/R) injury by negatively
regulating the TRAF1/ASK1/JNK pathway (Huang X. et al.,

2019). In myocardial IRI, TRAF1-KO mice showed decreased
cardiomyocyte apoptosis and milder inflammatory response than
the TRAF1 wild-type (WT) mice. Explicitly, TRAF1 aggravated
primary neonatal cardiomyocyte inflammation and apoptosis
via promoting the ASK1/JNK/p38 cascades in response to H/R
(Xu W. et al., 2019). However, TRAF1 is also expressed in
fibroblasts and endothelial cells of the heart. Whether TRAF1
contributes to the regulation of non-cardiomyocytes in IRI is
still unclear. Overall, current research showed that TRAF1 played
an important role in cerebral, liver, and myocardial IRI, and the
TRAF1/ASK1 axis was the common signaling pathway involved
in IRI regulation for these organs.

TRAF2
Similarly, TRAF2 plays a vital role in regulating IRI of various
organs, including myocardial, intestine, brain, kidney, and liver,
through different molecular mechanisms (Xia et al., 2012; Tzeng
et al., 2014; Tan et al., 2015; Zhou W. et al., 2017; Li et al., 2019b).
Myocardial infarction remains one of the leading health problems
around the world. However, recanalization of previously blocked
blood vessels can cause serious myocardial IRI, which is a
leading risk factor for heart failure (Zhu et al., 2019; Kohler
et al., 2020). An early myocardial reperfusion period can cause
endoplasmic reticulum (ER) stress and subsequently increase
the expression of ER stress markers, including TRAF2 (Wang
Z. H. et al., 2014). Later, a study showed that cardiac-restricted
expression of dominant negative TRAF2 (MHC-TRAF2DN) mice
had significantly worse left ventricular (LV) functional recovery,
increased Evans blue dye uptake, and increased creatine kinase
(CK) release (Tzeng et al., 2014). Conversely, low levels of TRAF2
expression in the mice hearts (MHC-TRAF2LC) significantly
improved LV functional recovery (Burchfield et al., 2010; Tzeng
et al., 2014). Clearly, TRAF2 played a cardioprotective role
in myocardial IRI.

We have also proven the protective effects of TRAF2 in
intestinal IRI, which occurs in a wide variety of clinical
conditions, including hemorrhagic shock, acute mesenteric
ischemia, and organ transplantation, resulting in a high mortality
rate that range from 70 to 80% (Higuchi et al., 2008; Jia et al.,
2020). In our research, we verified that PKCζ, a member of
the atypical protein kinase C (aPKC) subfamily, phosphorylated
TRAF2 at Ser55, rather than at Ser11, activating NF-κB but
inhibiting c-Jun to attenuate cell apoptosis, leading to protection
against the injury induced by intestinal ischemia-reperfusion
(Zhou W. et al., 2017). In terms of cerebral IRI, the role of
TRAF2 seems to be controversial in current research. One study
showed that in an in vitro model simulating cerebral IRI, the
knockdown of TRAF2 in microglia reduced neuronal injury
induced by oxygen-glucose deprivation reperfusion (OGDR),
and the sphingosine kinase 1 (Sphk1)/TRAF2/NF-κB pathway
was responsible for the increased neuronal apoptosis following
OGDR (Su et al., 2017). However, a recent study suggested
that TRAF2 interacted with mixed-lineage kinase domain-like
(MLKL) protein, protecting against cerebral IRI by suppressing
necroptosis (Li et al., 2019b). Thus, it can be seen that TRAF2
may play different roles by interacting with different regulatory
proteins in specific cell types. In renal and liver IRI, TRAF2 is
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only involved as a participant in these pathological processes
(Ben Mkaddem et al., 2010; Kim and Lee, 2012; Xia et al.,
2012; Tan et al., 2015). However, there has been no in-depth
discussion of its specific mechanism. It follows that TRAF2 plays
complicated role in IRI of various organs, and further research
needs to be conducted.

TRAF3
TRAF3 is ubiquitously expressed in multiple organs, primarily
including the brain, liver, heart, lung, and spleen (Liu F. et al.,
2018; Dai et al., 2019). The TRAF3-related IRI was mainly
concentrated in the brain, liver, heart, intestine and retina (Gong
et al., 2015; Hu et al., 2016; Liu X. et al., 2018; Dai et al.,
2019; Ge et al., 2020). In cerebral IRI, TRAF3 is a central
regulator through its interaction with and phosphorylation
of TAK1 (Gong et al., 2015). The TRAF3-TAK1 signaling
pathway promoted neural cell death, inflammatory response, and
oxidative stress in cerebral IRI by regulating the JNK, NF-κB,
and Rac-1/NADPH oxidase pathways, respectively (Gong et al.,
2015). The underlying mechanism by which TRAF3 regulates
canonical NF-κB pathways remains largely unclear in previous
studies. Surprisingly, the cerebral IRI research suggested that
TRAF3 promoted the activation of canonical NF-κB pathways
via phosphorylation of TAK1 (Gong et al., 2015), which provided
new evidence for TRAF3’s role in regulating the canonical NF-
κB pathway. Similarly, TRAF3 promoted the liver damage and
inflammation induced by liver IRI by directly binding to TAK1,
which activated the downstream JNK and NF-κB pathways (Hu
et al., 2016). The effects of TRAF3 on JNK pathways were
focused on myocardial IRI, which showed that TRAF3 promoted
apoptosis, inflammation, and oxidative stress in the hearts of
mice with IRI by JNK activation (Liu X. et al., 2018). Although
TRAF3 initially exerted a negative regulatory effect on the JNK
pathway (Matsuzawa et al., 2008), these IRI studies have shown
that TRAF3 can activate JNK under certain conditions.

Additionally, the effects of TRAF3 on NF-κB pathways
were verified in intestinal IRI. TRAF3’s regulation of NF-κB is
time-dependent in intestinal IRI. Research showed that TRAF3
promoted the expression of NF-κB at 90 min of reperfusion
in vivo; however, it inhibited the expression of NF-κB with
further prolongation, and the results were verified in vitro
(Dai et al., 2019). Moreover, research identified TRAF3 as a
target gene of miR-29b-3p, which plays a protective role in
intestinal IRI by inhibiting the TRAF3 signal pathway (Dai et al.,
2019). The regulation of TRAF3 by non-coding RNA, mainly
microRNAs (miRNAs), and long non-coding RNAs (lncRNAs),
has also received attention in recent research of retinal IRI,
which is common in diabetic retinopathy, glaucoma, and retinal
vascular occlusive disorders, in which it leads to irreversible visual
impairment and eventually results in blindness (Ge et al., 2020).
In one study, methyl-CpG binding domain protein 2 (Mbd2), one
of the DNA methylation readers, aggravated retinal cell apoptosis
by targeting the Mbd2-associated long non-coding RNA 1
(Mbd2-AL1)/miR-188-3p/TRAF3 axis (Ge et al., 2020). However,
the downstream pathways of TRAF3 were unexplored in retinal
IRI. Therefore, based on the above research, it can be concluded
that TRAF3 promotes injury induced by ischemia-reperfusion.

TRAF5
In addition to chronic inflammatory diseases, TRAF5 also
plays important roles under various stresses, such as cerebral
and myocardial IRI (Wang L. et al., 2013; Xu et al., 2020).
However, based on the current research, TRAF5 seems to play
a contradictory role in cerebral and myocardial IRI (Figure 3).
In cerebral IRI, neuron-specific TG-TRAF5 mice exhibited
aggravated blood brain barrier (BBB) disruption, more neuronal
apoptosis, and increased inflammatory response compared with
TRAF5-KO mice (Wang L. et al., 2013). Furthermore, cerebral
IRI research proved that the deletion of TRAF5 inhibited NF-
κB activity, but enhanced the Akt/FoxO1 pathway, in which
FoxO1 is phosphorylated by p-Akt, leading to nuclear export
and inhibiting transcription factor activity (Wang L. et al., 2013;
Figure 3). Conversely, in myocardial IRI, TRAF5 deficiency both
in vivo and in vitro exacerbated cardiomyocyte inflammation and
apoptosis by activating the NF-κB pathway while inhibiting the
Akt/FoxO1 pathway (Xu et al., 2020; Figure 3). The inconsistent
effects of TRAF5 in cerebral and myocardial IRI are possibly
due to the organ-specific function of TRAF5. Moreover, the
expression of TRAF5 is low in various cell types of the heart,
including fibroblasts, cardiomyocytes, and endothelial cells.
Cardiomyocytes, along with other non-cardiomyocytes, possibly
contribute to the synergistic effects of TRAF5 in myocardial IRI
(Xu et al., 2020).

Additionally, the effects of TRAF5 on the NF-κB pathway
are controversial. In agreement with the view about its
role in myocardial IRI, TRAF5 deficiency aggravated cardiac
dysfunction partly by activating NF-κB-dependent inflammatory
responses under pressure overload, and the same view was
verified in the research of inflamed colons (Bian et al., 2014;
Shang et al., 2016). Meanwhile, there are studies suggesting that
TRAF5 promoted the activation of the NF-κB pathway (Shang
et al., 2016), which is more in line with the view of its role in
cerebral IRI. Therefore, the effects of TRAF5 on IRI and the NF-
κB pathway might be tissue- or disease-specific and need to be
studied more thoroughly in the future.

TRAF6
As an intermediate mediator between receptors and pathways,
TRAF6 is highly involved in IRI of various organs. For example,
according to our knowledge, the TLR4/MyD88/TRAF6/NF-κB
axis contributes to the injuries induced by ischemia-reperfusion
of multiple organs, including the myocardia, liver, kidney, and
retina (Li et al., 2010; Qi et al., 2014; Wang X. et al., 2014;
Shao et al., 2016). Meaningfully, many drugs or compounds can
reduce cerebral IRI targeting the axis, including Astragaloside
IV (AS-IV), bicyclol, salvianolic acid B (SAB), and dioscin
(Zhang et al., 2013; Tao et al., 2015; Wang et al., 2016; Li M.
et al., 2017; Figure 4). Moreover, aloin and N-Acetylserotonin
(NAS) were respectively involved in the regulating of liver and
intestinal IRI by targeting TRAF6 (Du et al., 2019; Sukhotnik
et al., 2019; Figure 4), which provides targets for clinical
treatment of liver and intestinal IRI-related diseases. In addition,
miRNA-based treatments for IRI are very popular in recent
years (Huang Z. et al., 2019; Liang et al., 2019). Many studies
have shown that the increased expression of miR-146a could
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FIGURE 3 | The contradictory roles of TRAF5 in cerebral and myocardial IRI. TRAF5 is activated with cerebral and myocardial ischemia-reperfusion. Activated
TRAF5 procedurally phosphorylates and promotes the NF-κB pathway and inhibits the Akt/FoxO1 pathway, which promotes the transcription activity of FoxO1,
leading to neuronal injury via promoting inflammation and apoptosis. The contradictory effects of TRAF5 are present in cardiomyocytes.

inhibit TRAF6 to alleviate IRI of various organs, including
the myocardia, kidney, intestine, and liver (Chen et al., 2013;
Wang X. et al., 2013; Jiang et al., 2014; Dai et al., 2016;
He et al., 2018). However, it is possible that TRAF6 was
not significantly involved in the miR-146b/NF-κB pathway in
regulating liver IRI (Zhang et al., 2017). For IRI treatments
other than drugs, other treatment strategies are also extremely
important, such as ischemic preconditioning (IPC) and ischemic
postconditioning (IPostC). A study has shown that IPC could
inhibit the TLR4/TRAF6 pathway to alleviate intestinal IRI
(Liu S. Z. et al., 2017). Analogously, limb remote ischemic
postconditioning (LRIP) played a protective role in cerebral IRI
by inhibiting the MyD88/TRAF6/p38-MAPK pathway (Chen
et al., 2016). Therefore, the above studies have demonstrated that

targeting the TRAF6 pathway may provide a clear direction and
excellent effect for IRI treatment.

However, there is a major challenge for the treatment of lung
IRI, a common disorder in patients with lung transplantation,
resuscitation for circulatory arrest, cardiopulmonary bypass,
and pulmonary embolism, due to the fact that its molecular
mechanisms may be more complicated than other organs (Liu
X. et al., 2017; Shen et al., 2018). Moreover, the lungs seem
especially vulnerable to IRI because of their dual blood supply
systems and higher physiological demand for gas exchange and
oxygen uptake (Liu X. et al., 2017). Fortunately, studies have
shown that reducing the K63-linked ubiquitination of TRAF6
and inhibition of the downstream NF-κB and MAPK pathways
could relieve the inflammatory response amplified by autophagy
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FIGURE 4 | Various compounds target TLR4/MyD88/TRAF6/NF-κB axis to alleviate IRI of diverse organs. Astragaloside IV (AS-IV), bicyclol, salvianolic acid B (SAB),
and dioscin relieve the neuro-inflammation by inhibiting the axis. Aloin and N-Acetylserotonin (NAS) reduce hepatocyte apoptosis and intestinal epithelial cell injury via
targeting the axis, respectively.

in lung IRI (Liu X. et al., 2017; Shen et al., 2018), suggesting that
the ubiquitinated activation of TRAF6 and its management of
autophagy are important underlying molecular mechanisms in
lung IRI. Similarly, inhibition of the E3 ligase activity of TRAF6
significantly reduced cerebral and liver IRI (Li T. et al., 2017;
Liu et al., 2020). Interestingly, TRAF6 could be inhibited by

human mesenchymal stem cells (hMSCs)-derived exosomes, a
kind of microvesicle with a diameter of about 30–100 nm, thereby
reducing autophagy and apoptosis, playing a protective role in
myocardial IRI (Jiang et al., 2018). Given all the above factors,
we believe that the biological functions of TRAF6 and its related
signaling pathways play a fatal role in the process of IRI.
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TABLE 1 | Genetic alterations of TRAF molecules in IRI or H/R models.

TRAFs IRI or H/R Mice or cells genotype Disease phenotype Signaling pathways References

TRAF1 Cerebral IRI or H/R of
primary neurons

Mice: neuron-specific TG-TRAF1;
TRAF1-KO; Cells: Ad-TRAF1;
Ad-shTRAF1

TRAF1 enlarged ischemic lesions and
elevated neuronal apoptosis.

TRAF1/ASK1 Lu et al., 2013

Liver IRI or H/R of
primary hepatocyte or
AML12 cells

Mice: hepatocyte-specific
TG-TRAF1; TRAF1-KO; Cells:
Ad-shTRAF1; Ad-TRAF1;
pcDNA-TRAF1

TRAF1 aggravated liver histological
injury, increased serum ALT/AST levels,
and promoted cell apoptosis and
inflammation.

TRAF1/ASK1/JNK;
miR-
214/TRAF1/ASK1/JNK

Zhang et al.,
2014; Huang X.
et al., 2019

Myocardial IRI or H/R of
primary cardiomyocytes

Mice: TRAF1-KO; Cells: Ad-TRAF1 TRAF1 aggravated the heart function,
and promoted inflammation, and
cardiomyocytes apoptosis.

TRAF1/ASK1/JNK/p38 Xu W. et al.,
2019

TRAF2 Myocardial IRI Mice: MHC-TRAF2LC;
MHC-TRAF2DN

MHC-TRAF2LC mice had a lower LV
developed pressure, a lower CK
release, and a lower Evans blue dye.

TRAF2/NF-κB Burchfield
et al., 2010;
Tzeng et al.,
2014

Intestinal IRI or H/R of
Caco-2 cells

Cells: phospho-mutant TRAF2
plasmids: TRAF2-S55A (abolish
phosphorylation); TRAF2-S55
(mimic phosphorylation)

TRAF2 Ser55 phosphorylation reduced
cell apoptosis.

TRAF2/NF-κB/c-JUN Zhou W. et al.,
2017

Cerebral IRI or H/R of
primary microglia and
neurons or HT-cells

Mice: TRAF2 shRNA lentivirus;
Cells: TRAF2 shRNA lentivirus for
HT-cells or TRAF2 siRNA plasmid
for microglia

TRAF2 knockdown increased
neuroinflammation, infarct volumes, and
the necroptosis of microglial and
HT-cells but reduced neuronal
apoptosis.

TRAF2/MLKL;
Sphk1/TRAF2/NF-κB

Su et al., 2017;
Li et al., 2019b

TRAF3 Cerebral IRI or H/R of
primary neurons

Mice: neuron-specific TG-TRAF1;
neuron-specific TRAF1-KO;
TRAF3f lox/flox mice; Cells:
Ad-TRAF3; mutated TRAF3
(Ad-TRAF3-M); Ad-shTRAF3

TRAF3 aggravated neuronal loss,
enlarged infarcts and promoted
neuronal apoptosis.

TRAF3/TAK1 Gong et al.,
2015

Liver IRI or H/R of
primary hepatocyte

Mice: hepatocyte-specific TRAF3
knockout (TRAF3-LKO); myeloid
cell-specific TRAF3 knockout mice
(LysM-TRAF3-KO);
hepatocyte-specific TRAF3-TG
(TRAF3-LTG); TRAF3f lox/flox mice;
Ad-TRAF3; Ad-TRAF3-M; Cells:
Ad-TRAF3; Ad-TRAF3-M

TRAF3 aggravated liver histological
injury, increased serum ALT/AST levels,
and promoted inflammation and cell
death.

TRAF3/TAK1/JNK/NF-
κB

Hu et al., 2016

Myocardial IRI or H/R of
primary cardiomyocytes

Mice: TRAF3 siRNA in vivo
transfection; Cells: TRAF3 siRNA

TRAF3 knockdown reduced the
infarction, attenuated cardiac
histological, decreased CK-MB release,
and alleviated cell apoptosis,
inflammation and oxidative stress.

TRAF3/JNK Liu X. et al.,
2018

Intestinal IRI or H/R of
IEC-6 cells

Cells: TRAF3 overexpression and
siRNA plasmid

TRAF3 promoted inflammation and cell
apoptosis.

miR-29b-3p/TRAF3 Dai et al., 2019

TRAF5 Cerebral IRI Mice: neuron-specific TG-TRAF5;
TRAF5-KO

TRAF5 aggravated BBB disruption,
augmented infract volumes, increased
neuronal apoptosis inflammatory
response.

TRAF5/Akt/FoxO1 Wang L. et al.,
2013

Myocardial IRI or H/R of
primary cardiomyocytes

Mice:TRAF5-KO Cells:Ad-TRAF5 TRAF5 relieved infract size, improved
cardiac dysfunction, reduced
cardiomyocytes apoptosis inflammatory
response.

TRAF5/Akt Xu et al., 2020

TRAF6 Liver IRI or H/R of
RAW264.7 cells

Cells: TRAF6 siRNA TRAF6 silencing reduced
proinflammatory cytokine production.

miR-
146a/TRAF6/IRAK1

Wang X. et al.,
2013

Cerebral IRI or H/R of
primary neurons

Mice: neuron-specific TG-TRAF6;
neuron-specific TRAF6-KO; Cells:
Ad-TRAF6; Ad-TRAF6-M;
Ad-shTRAF6

TRAF6 increased infract volumes,
neurological deficit scores, promoted
inflammation, oxidative stress and cell
apoptosis.

TRAF6/Rac1 Li T. et al., 2017

H/R of IEC-6 cells Cells: Ad-TRAF6 Overexpression of TRAF6 promoted
cell apoptosis.

miR-
146a/TLR4/TRAF6/NF-
κB

He et al., 2018

Myocardial IRI or H/R of
HCM cells

Cells: pcDNA3.1-TRAF6 Overexpression of TRAF6 promoted
inflammatory response cell apoptosis.

lncRNA ROR/miR-124-
3p/TRAF6

Liang et al.,
2019
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CONCLUSION

IRI is a common pathological process which occurs frequently
in ischemic stroke, surgical treatment such as resection and
transplant, thromboembolic events, and various other clinic
events requiring the restoration of blood supply after ischemia,
causing serious damage to various organs and even tissues
throughout the body, thereby leading to a poor prognosis and
high mortality. However, the pathogenesis of IRI is extremely
complicated and varies in each organ, which brings enormous
challenges to its treatment.

Explosive oxidative stress and inflammation response caused
by various abnormal stimuli are common in the pathological
process of IRI. Excessive accumulation of reactive oxygen species
(ROS) and reactive nitrogen species are important pathological
factors causing IRI in various organs, including retina, cerebral,
myocardial, liver, kidney, lung and intestine (Jia et al., 2019, 2020;
Li et al., 2020; Li et al., 2019d; Lonati et al., 2019; Qin et al.,
2019; Yi et al., 2020). Oxidative stress may promote the expression
of pro-inflammatory regulatory factors, and inflammatory cells
may similarly induce the overproduction of ROS, thus forming
a vicious circle to promote the occurrence and development of
various diseases, including IRI. TRAFs are important mediators
of inflammatory signaling and ROS regulation. For example,
TRAF2 and TRAF6 are major components of ASK1 signalosome,
which is very sensitive to oxidative stress and promote subsequent
apoptosis (Noguchi et al., 2005; Sakauchi et al., 2017). Moreover,
TRAF1 knockout effectively alleviate acute lung injury via
inhibiting oxidative stress, inflammation and apoptosis (Bin et al.,
2019). Further, as the adaptor proteins and the RING type E3
ubiquitin ligases, the TRAF family plays an indispensable role
in the pathogenesis of IRI. The functions and activations of
TRAFs are complex. Commonly, TRAFs are now recognized
to be involved in a variety of signal cascades and act as
central regulators of inflammation and immunity, including
innate immune and adaptive immune. For instance, as the
three main pattern recognition receptors (PRRs) of the innate
immune system, TLRs, RLRs, and NLRs recruit TRAFs via
MyD88 or TRIF, MAVS, and RIP2, respectively (Xie, 2013).
TRAFs thereby regulates the downstream signaling pathways,
including NF-κB, MAPK and interferon-regulatory factors (IRFs)
pathways, to exert different biological effects, such as apoptosis,
autophagy, necroptosis, and ferroptosis (Xie, 2013), which are
fatal pathological processes in IRI.

Based on current research, we and other researchers have
confirmed that most members of the TRAF family, except TRAF4
and TRAF7, play important roles in IRI by regulating different
physiological mechanisms, including apoptosis, autophagy,
necroptosis, and ferroptosis. Although TRAF proteins possess a
similar structure, for IRI in diverse organs, each TRAF member
exerts different effects by regulating different mechanisms, and
even the same TRAF protein may cause different effects in
different context. Visibly, TRAF2 knockdown increased the
necroptosis of microglial and HT-cells under ischemic condition,
but reduced neuronal apoptosis-induced by OGDR. Moreover,
TRAF5 appeared to have a contradictory role in regulating
cerebral and myocardial IRI. Therefore, TRAF proteins may exert

different effects depending on the cell type and context-specific.
Through gain and loss of function approaches, many studies
have confirmed the definite molecular signaling pathways and
effects of different TRAF members in regulating IRI of various
organs, and the results have been summarized in Table 1, which
showed that deletion or overexpression of TRAF molecules can
cause obvious phenotypic differences in the models of various
IRI, both in vivo and in vitro. In summary, the content presented
in this review provides a compelling theoretical basis for IRI
research and suggests clear targets for the treatment of IRI-
related diseases.

PERSPECTIVES

IRI is extremely common in clinical treatment and can cause
serious consequences. Although many studies have shown that
some treatments, such as IPC and IPostC, could improve
IRI, there is still a lack of precise treatment strategies in the
clinical setting currently. The points presented in this review
indicated that TRAFs have an important influence in the
development of IRI. Manipulation of TRAF proteins or the
molecular pathways they regulate can provide new ideas for the
treatment of IRI-related diseases. In fact, studies have shown
that IPC and LRIP could significantly improve intestinal and
cerebral IRI by targeting TRAF6 pathways (Chen et al., 2016;
Liu S. Z. et al., 2017). In addition, a recent study showed
preactivated and disaggregated shape-changed platelet (PreD-
SCP) therapy effectively reduced the renal IRI by inhibiting the
TLR4/MyD88/TRAF6 signaling pathway (Chen et al., 2019). In
addition to the research on treatment methods, small agonists
and antagonists targeting TRAFs have also became a focus
in recent years. Numerous studies have shown that different
miRNAs could reverse the effects of targeting respective TRAFs
and reduce the IRI of various organs, including the liver, heart,
intestine, kidney, and retina (Dai et al., 2016, 2019; Huang Z.
et al., 2019; Liang et al., 2019; Ge et al., 2020). Moreover, many
drugs or compounds played a protective role in IRI by targeting
the TRAFs pathways. Illustratively, tauroursodeoxycholic acid
(TUDCA), a classical conjugated bile acid, can effectively alleviate
liver IRI via inhibiting IRE1α/TRAF2/NF-κB pathway activity
(Xu et al., 2018). Furthermore, AS-IV, bicyclol, SAB, and dioscin
all played protective roles in cerebral IRI by inhibiting the
TLR4/MyD88/TRAF6/NF-κB axis (Zhang et al., 2013; Tao et al.,
2015; Wang et al., 2016; Li M. et al., 2017; Figure 4). Additionally,
the latest research showed that TRAF6 was also involved in
the regulation of aloin and NAS preconditioning to reduce
liver and intestinal IRI, respectively (Du et al., 2019; Sukhotnik
et al., 2019; Figure 4). The above research indicated that TRAFs
have received much attention in the treatment of IRI, and
new treatment methods and related mechanisms have been
continuously discovered. However, the targets of TRAF proteins
in various organs and the signaling pathways they regulate are
variational; even TRAF proteins may have opposite effects in
different organs, which brings great obstacles to the research
of drugs or strategies for the treatment to IRI-related diseases.
Moreover, it is still unclear whether TRAF4 or TRAF7 could also

Frontiers in Cell and Developmental Biology | www.frontiersin.org 10 November 2020 | Volume 8 | Article 586487

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-586487 October 30, 2020 Time: 15:47 # 11

Zhou et al. Roles of TRAFs in IRI

play an important role in IRI like other TRAF members, and what
kind of specific role they would play. Therefore, the role of TRAFs
in IRI needs more in-depth studies in the future.
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