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Abstract. Prolonged glucocorticoids (GCs) treatment may 
lead to the formation of posterior subcapsular cataracts. The 
present study aimed to investigate differential gene expres-
sion in lens epithelial cells (LECs) in response to GCs using 
DNA microarray profiling. The gene expression profile 
of GSE13040 was downloaded from the Gene Expression 
Omnibus database, which includes 12 human LECs treated 
with vehicle or dexamethasone (Dex) for 4 or 16 h with six 
samples at each time period, of which three samples were 
treated with vehicle (control group) and three samples were 
treated with Dex (Dex group) at each time point. The differ-
entially expressed genes (DEGs) were identified between the 
control group and the Dex group at each time period with the 
thresholds of P<0.05 and |logFC|>1. The DEGs were further 
analyzed using bioinformatics methods. Firstly, DEGs were 
subject to a hierarchical cluster analysis. Subsequently, 
the functional enrichment analysis was performed for the 
common DEGs between the two time periods. Finally, the 
transcription factors and binding sites of DEGs associated 
with response to GC stimulus were analyzed. A total of 696 
and 949 DEGs were identified at 4 h and 16 h, respectively. 
Hierarchical cluster analysis revealed that DEG expres-
sion was higher in the Dex group than in the control group 
(P<0.05). A total of 13 significant functions were enriched for 
the 72 common DEGs at the two time periods. Chemokine 
(C-C motif) ligand 2 (CCL2), dual-specificity phosphatase-1 
(DUSP1) and FAS were associated with the response to GC 
stimulus and the transcription factor c-Jun bound to promoter 
regulation regions of CCL2, DUSP1 and FAS. In conclusion, 
the transcription factors and binding sites of DEGs associ-
ated with the response of LECs to GCs may provide potential 

gene targets for designing and developing drugs to protect 
against GC-induced cataract formation.

Introduction

Glucocorticoid (GCs) steroid hormones are used in the treat-
ment of diseases, including rheumatoid arthritis, asthma and 
various ocular diseases. It has been widely reported that 
prolonged treatment with GCs can lead to the formation of 
posterior subcapsular cataracts (1-3). Although numerous 
attempts have been made to increase understanding of this, 
the mechanism underlying GC-induced cataract formation 
remains to be elucidated (4,5).

GCs have important roles in numerous biological processes, 
including regulation of anti-inflammatory activity and immu-
nosuppressive action (6,7). GCs exert their effects through 
binding to GC receptors (GR), which modulate the expression 
of target genes (8,9). Alternatively, GCs have been proposed 
to act on the lens indirectly through mechanisms involving 
oxidative stress and depletion of glutathione (10,11). Global 
gene profiling was performed to analyze novel GC-induced 
changes in the gene expression of human lens epithelial cells 
(LECs) (12). Following this study, pathway analysis was 
performed in immortalized and primary human LECs and the 
results demonstrated that GC treatment of LECs activated the 
GR to modulate the expression of mitogen-activated protein 
kinase and phosphatidylinositol-3-kinase/AKT regulators (13). 

To improve the understanding of the mechanism involved 
in the formation of cataracts, GC's induction of vascular 
barrier function requires elucidation. GCs combine with a 
cytoplasmic receptor that alters gene expression in two ways. 
One way is dependent on the receptor binding directly to DNA 
and acts as a transcription factor (positively or negatively). 
The other is dependent on its binding to and interfering with 
other transcription factors (14). Transcription factor p54 is 
essential for GC-mediated expression of occludin, claudin-5 
and vascular barrier induction, and the p54/PSF heterodimer 
may contribute to normal blood-retinal barrier induction 
in vivo (15). Thus, it is necessary to elucidate the transcription 
factors that are activated in response to GCs. 

The present study aimed to identify differentially expressed 
genes (DEGs) and their common transcription factors in order 
to gain a novel insight into the mechanism of action of GCs 
in LECs.
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Materials and methods

Affymetrix microarray data. The transcription profile of 
GSE3040 was obtained from the gene expression omnibus 
(GEO, http://www.ncbi.nlm.nih.gov/geo/) database, which is 
based on the GPL96 [HG-U133A] Affymetrix Human Genome 
U133A Array (Affymetrix Inc., Santa Clara, CA, USA). There 
were 12 samples of human LECs treated with vehicle or 
dexamethasone (Dex) at 4 and 16 h. At each time period, there 
were six samples, of which three samples were treated with 
vehicle (control group) and three samples were treated with 
Dex (Dex group). Freshly isolated human LECs were obtained 
from capsulorhexis specimens following surgery, these were 
the original cells used in the GEO (12).

Data preprocessing and DEG analysis. The GSE3040 
datasets were converted into expression values and 
pre-processing, including background correction and quar-
tile data normalization were performed using the robust 
multiarray average algorithm (16) with default parameters 
in the R language affy package (http://www.bioconductor.
org/) (17,18). The linear models for microarray anal-
ysis (Limma) package in the R language (www.bioconductor.
org/packages/release/bioc/html/limma.html) (19) were used 
to identify DEGs by performing Student's t-test on the 
samples. A fold change value >1 and P<0.05 were selected as 
the cut-off criteria.

Hierarchical cluster analysis of DEGs. Gene hierarchical 
cluster analysis of DEGs was performed using the Pearson 
correlation coefficient algorithm (20) in cluster 3.0 (21). 

Functional enrichment analysis of common DEGs. The 
Database for Annotation, Visualization and Integrated 
Discovery (DAVID; http://david.abcc.Ncifcrf.gov/) (22), a 
high-throughput and integrated data-mining environment, 
analyzes gene lists derived from high-throughput genomic 
experiments. After the common DEGs were selected, DAVID 
was used to identify over-represented gene ontology (GO; 
http://www. geneontology. org/) categories in biological 
processes based on the hypergeometric distribution. The GO 
terms with a value of P<0.05 were selected as significantly 
enriched DEGs.

Transcription factors and binding site analysis. A transcrip-
tion factor is a protein, which binds to specific DNA sequences. 
The TRANSFAC database comprising information about 
transcription factors, target genes and binding sites has been 
developed (23). The TRANSFAC database was used to screen 
transcription factors and binding sites on DEGs in response to 
GCs.

Results

DEG analysis. The publicly available microarray dataset, 
GSE3040, was obtained from the GEO database. Student's t-test 
was used to identify genes specifically differentially expressed 
at 4 and 16 h with the cut-off criteria of P<0.05 and fold change 
>1. The results revealed that 696 and 949 genes at 4 and 16 h, 
respectively, exhibited significant differential expression.

Hierarchical cluster analysis of DEGs between Veh and Dex 
samples at two time periods. As indicated using hierarchical 
cluster analysis, the expression levels of DEGs were mark-
edly increased in Veh samples compared with that of the Dex 
group, at 4 and 16 h (Fig. 1).

Set comparison of DEGs between two time periods. DEGs set 
at 4 and 16 h were compared and presented as a Venn diagram 
(Fig. 2A). There were 72 common DEGs. The expression folds 
of 72 DEGs at 4 and 16 h are shown in Fig. 2B. The results 
revealed that the gene expression trend at 4 h was the same as 
that at 16 h.

GO enrichment analysis. To gain further insight into the 
function of genes in our interaction network, the online 
biological classification tool DAVID was used. A total of 13 
significant GO function enrichment nodes were obtained 
and the distributions of genes is shown in Fig. 3. As Table I 
demonstrates, Chemokine (C-C motif) ligand 2 (CCL2), dual-
specificity phosphatase-1 (DUSP1) and FAS were associated 
with the function of response to GC stimulus (P=0.0496906). 
Expression of CCL2 was downregulated, and DUSP1 and FAS 
were upregulated at 4 and 16 h (P<0.05).

Transcription factor analysis. Using the TRANSFAS data-
base, the transcription factors and binding sites, which were 
associated with the three GC response genes, CCL2, DUSP1 
and FAS, were assessed. As Fig. 4 demonstrates, c-Jun binds to 
the promoter regulatory regions of these three genes and was 
the common transcription factor (Fig. 4).

Discussion

GCs have been used in clinical treatment for decades; 
however, prolonged GC treatment may lead to the formation 
of cataracts (24). In the current study, using DNA microarray 
analysis, the gene expression profiles of human LECs treated 
with Dex or vehicle were analyzed. A total of 13 significant 
GO functions were identified and CCL2, DUSP1 and FAS 
genes were associated with a response to GC stimulus. The 
transcription factor that binds to CCL2, DUSP1 and FAS 

Figure 1. Heat map of cluster analysis of differentially expressed genes 
between Veh and Dex samples. Green, downregulated genes; and Red, 
upregulated genes. Dex, dexamethasone; veh, vehicle.
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Table I. Enriched Gene Ontology terms of the common differentially expressed genes at 4 h and 16 h (P<0.05).

Term Function Count P-value Genes

GO:0048545 Response to steroid hormone stimulus 7 0.000240124 KCNMA1, CCL2, DUSP1,
    LEPR, ESR1, FAS, CD24
GO:0009725 Response to hormone stimulus 9 0.000255726 KCNMA1, CCL2, DUSP1, 
    LEPR, ESR1, FOXC2, 
    FAS, CD24, STAT1
GO:0009719 Response to endogenous stimulus 9 0.000494549 KCNMA1, CCL2, DUSP1, 
    LEPR, ESR1, FOXC2,
    FAS, CD24, STAT1
GO:0042981 Regulation of apoptosis 12 0.000955092 KCNMA1, PRUNE2, CCL2,
    DUSP1, MCL1, SOS2, 
    ESR1, FOXC2, FAS, 
    CD24, STAT1, ANGPTL4
GO:0043067 Regulation of programmed cell death 12 0.001035716 KCNMA1, PRUNE2, CCL2,
     DUSP1, MCL1, SOS2, 
    ESR1, FOXC2, FAS, CD24, 
    STAT1, ANGPTL4
GO:0010941 Regulation of cell death 12 0.001067374 KCNMA1, PRUNE2, CCL2,
     DUSP1, MCL1, SOS2,
     ESR1, FOXC2, FAS, 
    CD24, STAT1, ANGPTL4
GO:0043627 Response to estrogen stimulus 5 0.001353113 KCNMA1, DUSP1, LEPR,
     ESR1, CD24
GO:0010033 Response to organic substance 10 0.005300596 KCNMA1, CCL2, DUSP1, 
    MCL1, LEPR, ESR1,
     FOXC2, FAS, CD24, STAT1
GO:0031960 Response to corticosteroid stimulus 4 0.006933831 KCNMA1, CCL2, DUSP1, 
    FAS
GO:0043065 Positive regulation of apoptosis 7 0.013655682 KCNMA1, PRUNE2, DUSP1,
     SOS2, FAS, CD24, STAT1
GO:0043068 Positive regulation of programmed 7 0.01409138 KCNMA1, PRUNE2, DUSP1,
 cell death   SOS2, FAS, CD24, STAT1
GO:0010942 Positive regulation of cell death 7 0.01438722 KCNMA1, PRUNE2, DUSP1,  
    SOS2, FAS, CD24, STAT1
GO:0051384 Response to glucocorticoid stimulus 3 0.049690594 CCL2, DUSP1, FAS

CCL2, chemokine (C-C motif) ligand 2; DUSP1, dual specificity protein phosphatase 1.

Figure 2. DEGs in lens epithelial cells in response to dexamethasone. (A) Venn diagram depicting common DEGs. The black and red circles represent DEGs at 4 h 
and 16 h treated with dexamethasone, respectively. (B) Correlation of gene expression of common DEGs between 4 h and 16 h. X-axis, log(FC) of DEGs at 4 h; and 
Y-axis, log (FC) of DEGs at 16 h. DEGs, differentially expressed genes; FC, fold change. 
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Figure 3. Pie chart depicting the hierarchical clustering of enriched functions involving common differentially expressed genes in the lens epithelial cells 
treated with dexamethasone.

Figure 4. Map of transcription factor binding on the promoter regulatory regions of CCL2, DUSP1 and FAS. Green bars represent the binding sites. Red arrows 
represent transcription initiation sites and directions. CCL2, chemokine (C-C motif) ligand 2; DUSP1, dual specificity protein phosphatase 1.
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were also analyzed. The results demonstrated that c-Jun was a 
common transcription factor between these genes. 

CCL2 is also known as monocyte chemotactic protein-1 
and is secreted by endothelial cells, fibroblasts and mono-
cytes (25). It has been reported that CCL2 expression and 
macrophage accumulation were inhibited by treatment with 
Dex in cholesterol-fed rabbits (26). GRs may bind specifically 
to CCL2 mRNA and the inflammatory response of the GR 
was mediated by regulation of CCL2 mRNA stability (27). 
CCL2 was detected in the sample obtained from patients 
following cataract surgery (28). DUSP1 is a member of 
the threonine-tyrosine dual-specificity phosphatases (29). 
Increased expression of GILZ mRNA and DUSP1 mRNA and 
protein was observed in immortalized and donor immortal-
ized primary LECs (13). The induction of DUSP1 is dependent 
on the GR and typically occurs within ≤1 h (30). The FAS 
receptor is an important cell surface receptor protein of the 
tumor necrosis factor receptor family (31). Yang et al (32) 
reported that FAS ligand expression was inhibited by retinoic 
acid and GCs.

In the present study, c-Jun was observed to bind the 
promoter regulatory regions of CCL2, DUSP1 and FAS. The 
c-Jun gene encodes a basic region-leucine zipper transcription 
factor implicated in numerous cellular processes. C-Jun regu-
lates gene expression and cell function by being involved in 
the formation of a variety of dimeric complexes, which exhibit 
high affinity sequence specific DNA-binding activity (33). 
It has been reported that c-Jun attenuated MG132-induced 
activation of activator protein-1 and expression of CCL2 (34). 
The Hepatitis C virus core protein expression activated 
MAP kinase phosphatase, increased DUSP1 expression and 
increased cell proliferation, which was accompanied by an 
activation of c-Jun (35). The expression of dominant-negative 
c-Jun in melanoma cells efficiently increased Fas expres-
sion (36). The present results demonstrated that c-Jun may be 
the critical transcription factor, which affected gene expres-
sion in LECs in response to GCs. 

In conclusion, the gene expression profiles of LECs 
following GC treatment were analyzed using bioinformatics 
analysis and it was found that CCL2, DUSP1 and FAS are 
involved in the response to GC stimulus. The transcription 
factor c-Jun, when bound to CCL2, DUSP1 and FAS, may 
affect their expression. CCL2, DUSP1, FAS and transcription 
factor c-Jun may be used as specific therapeutic molecular 
targets in order to treat cataracts induced by GCs. However, 
further studies are required to confirm the present results.
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