
RESEARCH ARTICLE

Cost-effectiveness of artificial intelligence

monitoring for active tuberculosis treatment:

A modeling study

Jonathan SalcedoID
1,2, Monica Rosales3, Jeniffer S. Kim4, Daisy Nuno5, Sze-

chuan SuenID
2,6*, Alicia H. Chang5

1 Department of Pharmaceutical and Health Economics, School of Pharmacy, University of Southern

California, Los Angeles, California, United States of America, 2 Leonard D. Schaeffer Center for Health Policy

and Economics, University of Southern California, Los Angeles, California, United States of America, 3 Los

Angeles County Department of Public Health, Office of Health Assessment and Epidemiology, Los Angeles,

California, United States of America, 4 Department of Preventive Medicine, Keck School of Medicine,

University of Southern California, Los Angeles, California, United States of America, 5 Los Angeles County

Department of Public Health, Tuberculosis Control Program, Los Angeles, California, United States of

America, 6 Daniel J. Epstein Department of Industrial and Systems Engineering, University of Southern

California, Los Angeles, California, United States of America

* ssuen@usc.edu

Abstract

Background

Tuberculosis (TB) incidence in Los Angeles County, California, USA (5.7 per 100,000) is

significantly higher than the U.S. national average (2.9 per 100,000). Directly observed ther-

apy (DOT) is the preferred strategy for active TB treatment but requires substantial

resources. We partnered with the Los Angeles County Department of Public Health

(LACDPH) to evaluate the cost-effectiveness of AiCure, an artificial intelligence (AI) platform

that allows for automated treatment monitoring.

Methods

We used a Markov model to compare DOT versus AiCure for active TB treatment in LA

County. Each cohort transitioned between health states at rates estimated using data from

a pilot study for AiCure (N = 43) and comparable historical controls for DOT (N = 71). We

estimated total costs (2017, USD) and quality-adjusted life years (QALYs) over a 16-month

horizon to calculate the incremental cost-effectiveness ratio (ICER) and net monetary bene-

fits (NMB) of AiCure. To assess robustness, we conducted deterministic (DSA) and probabi-

listic sensitivity analyses (PSA).

Results

For the average patient, AiCure was dominant over DOT. DOT treatment cost $4,894 and

generated 1.03 QALYs over 16-months. AiCure treatment cost $2,668 for 1.05 QALYs. At

willingness-to-pay threshold of $150K/QALY, incremental NMB per-patient under AiCure

was $4,973. In univariate DSA, NMB were most sensitive to monthly doses and vocational
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nurse wage; however, AiCure remained dominant. In PSA, AiCure was dominant in 93.5%

of 10,000 simulations (cost-effective in 96.4%).

Conclusions

AiCure for treatment of active TB is cost-effective for patients in LA County, California.

Increased use of AI platforms in other jurisdictions could facilitate the CDC’s vision of TB

elimination.

Background

The United States has one of the lowest tuberculosis (TB) case rates in the world, but there is

still considerable progress to be made before TB can be eliminated from the US, with over

9,000 cases reported in 2017 [1]. One of the challenges continues to be considerable geographi-

cal heterogeneity; for instance, the TB case rate in Los Angeles County (LAC) (5.7 cases per

100,000 population) is significantly higher than the U.S. national average (2.9 cases per

100,000 population). In 2016, there were 550 confirmed TB cases in LAC [2]. LAC had the

highest number of TB cases and the 10th highest TB incidence rate among California’s 61

health jurisdictions. We therefore focus on LAC in the present study on technology to improve

TB treatment.

Directly observed therapy (DOT) is the preferred strategy for active tuberculosis treatment.

DOT is defined as an in person, direct observation by a health care worker of the patient

ingesting each dose of medication. DOT directs partial responsibility of treatment to the pro-

vider and helps ensure that patients complete an adequate course of TB treatment [3]. While

this is an effective method for ensuring TB treatment adherence– 92.6% of TB patients in LAC

completed treatment within a year in 2013 –DOT is resource-intensive and requires a high

number of nurse-hours per TB patient [4]. Although some DOT sessions are conducted during

patients’ clinic visits, in LAC, DOT is mostly carried out in the field, whereby nurses visit TB

patients at home to directly observe ingestion of TB drugs which in turn incurs travel expenses

and additional time to coordinate home visits [5].

A common alternative to DOT is video directly observed therapy (VDOT), where health-

care professionals observe patients take their medications through a video conferencing soft-

ware. Many recent studies find success and/or adherence rates with VDOT to be comparable

to in-person DOT [6–14]. Some studies have also investigated VDOT costs to the healthcare

system in addition to adherence outcomes. Buchman and Cabello (2017) studied traditional

DOT vs Skype observed therapy (SOT) in 24 patients from Nassau County, New York [15].

They found cost savings under SOT of $1,008 per-month and $42 per-case per-month. Holz-

man, Zenilman, and Shah (2018) conducted a prospective pilot study of a VDOT intervention

called miDOT (emocha Mobile Health Inc.) in three tuberculosis clinics in Maryland [7]. They

followed 28 adult patients receiving active or latent TB treatment. For a standard 6-month

treatment, VDOT saved $1,391 per-patient compared to DOT and adherence rates of 98% and

94% for DOT and VDOT, respectively (P = 0.17). Garfein et al. (2018) studied asynchronous

VDOT—videos of medication ingestion are recorded by the patient and watched by a health

care worker at a later time—versus traditional DOT in five health districts in California (San

Diego, San Francisco, Santa Clara, San Joaquin, and Imperial) [8]. They enrolled a total of 174

adults to VDOT and compared outcomes to 159 historical controls treated with DOT. The
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6-month treatment cost with VDOT (range $3,031-$3,911) was 32% (range 6%-46%) less than

DOT ($3,212-$5,788) across districts.

Recent technological advances have introduced further innovations in this area–artificial

intelligence (AI)-based software that uses computer vision and machine learning to confirm

the patient, the drugs, and ingestion in real time, further reducing health worker burden. How-

ever, there is still limited data on the efficacy of AI-based monitoring methods for TB treat-

ment adherence, and no prior studies to our knowledge have evaluated its cost-effectiveness.

In this study, we examine both for a cohort of pulmonary TB patients tracked by the Los Ange-

les County Department of Public Health (LACDPH) using AiCure (New York, NY), an AI

platform that uses computer vision and machine learning to automatically confirm the patient,

the drugs, and ingestion in real time. Under AiCure, failure in any one of these criteria leads to

an email or SMS text message alert sent to a nurse (see Fig 1 for illustration) who then follows

Fig 1. AiCure artificial intelligence platform. Software automatically observes and confirms patient, medication, and ingestion.

HIPAAHealth Insurance Portability and Accountability Act. Source: AiCure, LLC (New York, NY) with written permission to

use and adapt.

https://doi.org/10.1371/journal.pone.0254950.g001
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up with the patient in real time. Patients can access AiCure using a smart phone application

which uses the device camera to record medication consumption; the platform includes the

option to have the video sent to nurses to review later. This platform is currently used in drug

development trials and population health settings, across multiple therapeutic areas including

neuroscience, cardiovascular, and infectious disease [16–18]. Additional details on AiCure are

provided in the online S1 File. By focusing on LAC, a large metropolitan area with high TB

morbidity and substantial patient heterogeneity, we hope to provide insight into the cost-effec-

tiveness of AI-based treatment monitoring platforms for a critical TB population in the U.S.

Methods

Model overview

We developed a cohort Markov transition state model in Microsoft Excel (Microsoft Corpora-

tion, Redmond, WA) to compare cost and treatment completion outcomes of traditional in-

person DOT versus AiCure for active TB patients undergoing treatment in LAC. The Markov

model tracked monthly TB outcomes for patients over 16 total months, the longest duration

on treatment we observed in our data. At each month, patients either continued treatment,

defaulted, or successfully completed their treatment; these probabilities were calculated from

deidentified LACDPH surveillance data for active TB patients in one of the LACDPH clinics

at Pacoima, Los Angeles, CA. Both DOT and AiCure patients were assumed to undergo a stan-

dard treatment regimen with an average of 11 observed doses per month. This average

reflected the local practice of using both a daily TB treatment regimen as well as a twice a week

treatment regimen, according to patient and provider preference. We assumed patients ini-

tially unsuccessful on AiCure would be moved to DOT, as is common in clinical practice. We

considered patients unsuccessful on DOT as lost to follow-up. Patients must have had a con-

firmed diagnosis, been without multidrug-resistance (MDR), and been HIV negative to be

included in the study population. Our cost-effectiveness study was ruled exempt from Institu-

tional Review Board (IRB) review by the University of Southern California IRB. The pilot

research study using AiCure for patients with TB was reviewed and approved by the LACDPH

IRB. All experiments were performed in accordance with relevant guidelines and regulations.

Informed written consent was obtained from all subjects in the pilot study or, if subjects were

under 18, from a parent and/or legal guardian.

Costs by treatment arm, including personnel, technology, and licensing fees, were provided

by the LACDPH. We obtained drug costs from the Veterans Affairs Federal Supply Schedule

[19]. We estimated total costs on treatment (2017, USD) and total quality-adjusted life years

(QALYs) by treatment arm. Our outcomes of interest included incremental cost-effectiveness

ratios (ICER) and net monetary benefits (NMB) at various willingness to pay (WTP) values to

compare AiCure to DOT. Outcomes were evaluated from the United States societal perspec-

tive. To address uncertainty and assess robustness of base results, all parameters were fit to

probability distributions and varied in deterministic (DSA) and probabilistic sensitivity analy-

sis (PSA).

Data

Patients and nurses were trained to use the AiCure software in a pilot study of 43 active TB

patients in Pacoima, Los Angeles, CA. In this pilot study, eligible patients were provided with

an internet and camera-enabled smart phone and trained to record their doses using the soft-

ware. This data has not been published elsewhere, and we present it here for the first time. Our

final analysis sample for the AiCure arm of our model included 43 patients confirmed during

2015 to 2017 who either began and completed or began and moved/defaulted from active TB
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treatment. Mean age at diagnosis in this sample was 48.4 years, with 21% of patients having

multiple comorbidities, 21% with diabetes, and 76% with pulmonary TB disease (Table 1).

We compared these patients with a cohort of patients with active TB treated with DOT in

the same clinic, confirmed between 2013 and 2014 (n = 172), the years immediately preceding

the AiCure pilot. To best approximate the population that would have been eligible for AiCure,

we included only patients who clinicians determined to be eligible for AiCure treatment. Our

Table 1. Summary statistics by treatment arm.

DOT AiCure

Mean SD Mean SD P-value

Demographics

Age (years) 50.9 (17.07) 48.4 (19.84) 0.530

Year confirmed 2013.5 (0.50) 2016.7 (0.47) 0.001

Demographics, cont. No. Proportion No. Proportion P-value

Male 45 (0.63) 22 (0.65) 0.895

Previous treatment for TB 0 (0.00) 2 (0.06) 0.039

PZA drug resistance 0 (0.00) 1 (0.03) 0.147

Race/Ethnicity
White 36 (0.51) 19 (0.56) 0.619

Asian 33 (0.46) 14 (0.41) 0.609

Black 1 (0.01) 0 (0.00) 0.487

Other 1 (0.01) 1 (0.03) 0.591

Hispanic 32 (0.45) 16 (0.47) 0.848

Country of birth
United States 2 (0.03) 3 (0.09) 0.176

Mexico 23 (0.32) 7 (0.21) 0.210

Philippines 25 (0.35) 7 (0.21) 0.128

Other 21 (0.30) 17 (0.50) 0.042

Years since arrival in USA 15.0 (11.82) 20.2 (13.78) 0.073

Comorbidities

Pulmonary complications 56 (0.79) 26 (0.76) 0.781

HIV positive 0 (0.00) 0 (0.00) .

Diabetic 20 (0.28) 7 (0.21) 0.406

Renal impairment 2 (0.03) 0 (0.00) 0.323

Immunocompromised 4 (0.06) 0 (0.00) 0.158

Pleural complications 3 (0.04) 3 (0.09) 0.342

Bone joint complications 1 (0.01) 1 (0.03) 0.591

Meningitis 6 (0.08) 1 (0.03) 0.290

Comorbid 25 (0.35) 7 (0.21) 0.128

Risk factors

Homeless 0 (0.00) 0 (0.00) .

Injecting drug user 0 (0.00) 0 (0.00) .

Non-injecting drug user 0 (0.00) 1 (0.03) 0.149

Risk for alcohol abuse 0 (0.00) 5 (0.15) 0.001

Smoker 10 (0.14) 0 (0.00) 0.021

No risk factors 38 (0.54) 25 (0.74) 0.050

Observations 71 43 114

Category totals may not sum to N due to missing values. P-values are calculated using two-sided, two-sample t-tests for proportions or means with unequal variances.

https://doi.org/10.1371/journal.pone.0254950.t001
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control final sample included 71 patients previously treated for active TB under DOT. Average

age at diagnosis in this sample was 50.9, with 35% having multiple comorbidities, including

28% diabetic and 79% with pulmonary disease (Table 1). We calculated P-values using two-

sided, two-sample t-tests for proportions or means with unequal variances. No demographic

factors including age, gender, or race were statistically significantly different across treatment

arms. Although not selected for, the demographic characteristics and proportion of patients

with comorbidities in each treatment arm were similar. In both arms most patients had no

behavioral risk factors and no major morbidities other than pulmonary complications.

Costs

For both treatment arms, we calculated drug acquisition costs to be $174.16 per-patient per-

month, assuming treatment with the standard regimen of isoniazid (INH), rifampin (RIF),

pyrazinamide (PZF), and ethambutol (EMB) [3, 19]. AiCure-specific fees include licensing for

$750 per clinic per month up to 50 patients, $1,500 per clinic per month for technical support,

a fixed cost of $52 per patient for a phone, and $47.50 per patient per month for phone service.

We estimated the remaining costs in the model using Licensed Vocational Nurse (LVN) or

Registered Nurse (RN) hourly compensation rates provided by LACDPH (Table 2). Additional

details on costs are available in the online S1 File.

Health states and treatment progression

We modeled patient progression from treatment initiation to completion using a Markov

model. In the model, individuals were on-treatment, had completed treatment, or had

defaulted (Fig 2). Consistent with LACDPH active TB treatment guidelines, we assumed a

minimum successful treatment length of five months for all patients [3]. At each 30-day incre-

ment from 4–16 months of treatment, patients had some probability of completing or default-

ing from treatment on each treatment arm (values found using the LACDPH dataset).

Consistent with clinical practice, non-adherent patients on AiCure would be moved to DOT

for the remainder of treatment. See S1 Table in S1 File for detailed transition probabilities by

arm.

Health utilities

We identified health-related quality of life (HR-QoL) utilities for each health state from the

medical literature. The utility for living with active drug-susceptible TB and taking TB treat-

ment was 0.663 and healthy with past TB treatment was 0.942 [20, 21]. A summary of utility

values and sensitivity analysis ranges are provided in Table 2 and S2 Table in S1 File, respec-

tively. We assumed that the health utility for being on AiCure was the same as for DOT, as the

only difference is the method of treatment monitoring. We counted defaulting patients as liv-

ing with active TB for the remainder of the observation period.

Sensivity analyses

To check for robustness of our results, we conducted deterministic and probabilistic sensitivity

analyses. In the scenario in which the base case resulted in a dominant treatment option, the

outcome of interest was changed from ICERs to incremental net monetary benefits (INMB) of

AiCure with willingness to pay (WTP) of $150,000 per QALY [22]. For one-way deterministic

sensitivity analysis, we varied model inputs within their 95% confidence intervals, predicted

ranges, or +/- 50% when neither were available. Probabilistic sensitivity analysis involved
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Table 2. Baseline model parameters.

Description DOT AiCure Source

General Parameters

Patients 100 100 Assumed

Clinic capacity 100 100 Assumed

Doses, monthly 11 11 LACDPH

FDOT proportion 0.69 - LACDPH

FDOT appointment time, hours 0.83 - LACDPH

FDOT miles, per appointment 7.60 - LACDPH

FDOT missed appointment time, hours 0.42 - LACDPH

FDOT missed appointment frequency, PMPM 2.50 - LACDPH

CDOT appointment time 0.25 - LACDPH

CDOT missed appointment time 0.17 - LACDPH

CDOT missed appointment frequency, monthly 2.60 - LACDPH

AI dose time - 0 LACDPH

AI missed dose time - 0.208 LACDPH

AI missed dose frequency, monthly - 1.3 LACDPH

AI appointment frequency, monthly - 1.5 LACDPH

Baseline Completion Probabilitiesa

P(Complete | t� 120 days) 0.000 0.000 LACDPH

P(Complete | 120 < t� 150 days) 0.000 0.000 LACDPH

P(Complete | 150 < t� 180 days) 0.000 0.051 LACDPH

P(Complete | 180 < t� 210 days) 0.217 0.306 LACDPH

P(Complete | 210 < t� 240 days) 0.149 0.120 LACDPH

P(Complete | 240 < t� 270 days) 0.050 0.045 LACDPH

P(Complete | 270 < t� 300 days) 0.684 0.524 LACDPH

P(Complete | 300 < t� 330 days) 0.083 0.600 LACDPH

P(Complete | 330 < t� 360 days) 0.091 0.250 LACDPH

P(Complete | 360 < t� 390 days) 0.600 0.333 LACDPH

P(Complete | 390 < t� 420 days) 0.500 0.500 LACDPH

P(Complete | 420 < t� 450 days) 0.500 1.000 LACDPH

P(Complete | 450 < t� 480 days) 1.000 1.000 LACDPH

Utilities (QALY weights)

Active tuberculosis 0.663 0.663 (20, 21)

Healthy, post treatment 0.942 0.942 (20, 21)

Costs (2017 USD)

Licensed vocational nurse, hourly $35.45 $35.45 LACDPH

Registered nurse, hourly $79.26 $79.26 LACDPH

Mileage, per mile $0.54 $0.54 IRS

Licensing per 50 patients, monthly - $750.00 LACDPH

Phone purchase - $52.00 LACDPH

Phone service, monthly - $47.50 LACDPH

Technical support, monthly - $1,500.00 LACDPH

Pharmaceutical acquisition, monthly $174.16 $174.16 (19)

a See S1 Table in S1 File for complete table of continuation, completion, and default probabilities. LACDPH, Los Angeles County Department of Public Health; FDOT,

field directly observed therapy; CDOT, clinic directly observed therapy; PMPM, per-member per-month; AI, AiCure; QALY, quality-adjusted life year.

https://doi.org/10.1371/journal.pone.0254950.t002
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Fig 2. Markov state transition model for AiCure and DOT arms. AiCure patients (left) could default to DOT treatment (right). DOT directly observed therapy.

https://doi.org/10.1371/journal.pone.0254950.g002
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fitting likely distributions to input parameters and simulating outcomes in 10,000 Monte

Carlo repetitions [23–25].

Scenario analyses

As the number of observed patients on AiCure was relatively small, there exists uncertainty

around the monthly treatment completion rate. We therefore examined several scenario analy-

ses to identify thresholds for which AiCure would still be cost-effective even if monthly treat-

ment rates are lower. In the first scenario, we examined what would happen if monthly AiCure

completion rates are lower by 5 percentage points per month. We repeated this analysis where

AiCure completion rates are lower than observed in our data by 10 percentage points and 15

percentage points.

As a secondary scenario analysis, we also examined the “best case” and “worst case” sce-

nario where the non-transition probability parameters from one-way DSA are at their 95%

confidence interval bounds to either make AiCure/DOT perform well or poorly. Outcomes of

interest in all scenario analyses were the variation in ICER and cost-effectiveness outcomes for

AiCure.

We additionally include a third scenario analysis, a comparison of AiCure to VDOT, where

we examine the cost-effectiveness outcomes if additional resources were needed in adopting

AiCure in a new location. Any jurisdiction seeking to adopt an AI treatment monitoring sys-

tem may have nurses monitor patient video records (similar to VDOT) to ensure the AI system

is operating correctly. We therefore examine the scenario where nurses must review patient

video on the AiCure platform, spending 7 minutes per video.

Results

Among AiCure patients, average total days on treatment was 252.5 (SD = 69.4, range 94 to

401), slightly higher but not statistically significantly different from the DOT average of 247.1

(SD = 89.1, range 8 to 456) (p = 0.729) (Table 3). Among those who successfully completed

treatment, mean days were 258.9 (SD = 64.4) and 270.5 (SD = 67.4) for AiCure and DOT,

respectively (p = 0.395).

Using the model, we found that AiCure results in greater benefits at a lower cost over DOT.

In our base case analysis, AiCure cost an average of $2,668 per-patient, while DOT cost 83%

Table 3. Result statistics by treatment arm.

DOT AiCure

No. Prop. No. Prop. P-value

Treatment status counts

Completed 62 (0.87) 38 (0.88) 0.869

Moved 6 (0.08) 3 (0.07) 0.777

Defaulteda 3 (0.04) 2 (0.05) 0.914

Days on treatment for TB Mean SD Mean SD P-value

Total 247.1 (89.07) 252.5 (69.36) 0.729

Completers 270.5 (67.39) 258.9 (64.44) 0.395

Defaultersa 124.0 (3.00) 130.5 (51.62) 0.888

Observations 71 43 114

a Default is defined as patients who refused continued treatment, were lost to follow-up, or went off protocol for medical reasons during our observation period.

Category totals may not sum to N due to missing values. Movers were excluded from transition probability calculation. P-values are calculated using two-sided, two-

sample t-tests for proportions or means with unequal variances.

https://doi.org/10.1371/journal.pone.0254950.t003
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more, at $4,894 per-patient over the 16-month horizon (Table 4). Our model results indicated

AiCure produced 1.05 QALYs per patient over the 16-month time horizon and DOT produced

1.03 QALYs.

Incrementally, AiCure patients gain an additional 0.02 QALYs at cost savings of $2,226

over DOT. At WTP of $50K, $100K, and $150K per QALY, resulting in incremental NMB per

patient under AiCure versus DOT that were all above zero ($3,142, $4,057, and $4,973

respectively).

In univariate DSA, no variation in the model inputs within reasonable ranges resulted in a

negative incremental NMB for AiCure. The model was most sensitive to the number of doses

taken per-member per-month (11 in the base case). Varying this parameter between 5.5 and

16.5 doses per-month resulted in an NMB range of $3,633 to $6,313 WTP of $150K/QALY.

The model was also highly sensitive to hourly wage for licensed vocational nurses (LVN) of

$35.45; varying this value (+/- 50%) resulted in an NMB range of $3,885 to $6,061 (see tornado

diagram in S1 Fig in S1 File). These results suggest much of the cost savings from AiCure can

be attributed to the significant decrease in personnel costs required per dose. As DOT treat-

ment requires LVNs or other skilled personnel to engage in significant travel, the trip fre-

quency/distance and hourly rate of these individuals drives large cost differences.

In PSA, AiCure produced more QALYs per patient at a lower cost than DOT in 93.5% of

10,000 simulations (Fig 3). At WTP/QALY of $50K, $100K, and $150K, the probability of

AiCure being cost-effective is 95.3%, 95.9%, and 96.4%, respectively. These results suggest the

base scenario is robust to univariate and probabilistic variations in the input parameters. How-

ever, we find there is some probability that DOT is the more cost-effective choice as the WTP

for a QALY decreases (see cost-effectiveness acceptability curve [CEAC] in Fig 3B).

Our scenario analyses also suggest that the most a clinic could lose by adopting AiCure

would be relatively small (Table 4). In the “worst case” scenario, we find that AiCure would

not be cost-effective, generating 0.01 more QALYs per patient for $3,672 more dollars than

DOT (AiCure ICER of $433,646). On the other hand, clinics could stand to gain much more

by adopting AiCure: in the “best case” scenario, we find that AiCure could generate 0.03 more

QALYs per patient for $7,603 less costs than DOT. The difference in health outcomes are quite

small in both the “best” and “worst” cases, indicating that patient health would not be substan-

tially affected with or without AiCure, although the financial impact could be large. See the

online S1 File for additional details on our primary and secondary scenario analyses.

In the third scenario analysis, we compared AiCure to VDOT, where nurses monitor

patient video records to ensure the AI system is operating correctly. We find that even with

Table 4. Model results under base case and scenario analyses.

Scenario AiCure DOT AiCure vs. DOT

Cost (2017 USD) QALYs Cost (2017 USD) QALYs Cost (2017 USD) QALYs ICER (2017 USD)

Base case $2,668 1.05 $4,894 1.03 -$2,226 0.02 AI Dominant

AI 5% worsea $2,860 1.03 $4,894 1.03 -$2,034 0.00 AI Dominant

AI 10% worsea $3,011 1.02 $4,894 1.03 -$1,882 -0.01 $244,651 (DOT)

AI 15% worsea $3,164 1.01 $4,894 1.03 -$1,730 -0.02 $89,889 (DOT)

AI WC/DOT BC $5,278 1.08 $1,607 1.08 $3,672 0.01 $433,646 (AI)

AI BC/DOT WC $2,883 1.01 $10,485 0.98 -$7,603 0.03 AI Dominant

a x% worse implies an x percentage-point decrease in all monthly completion probabilities up to 15 months, with a floor of zero. The worst/best scenario involves model

one-way sensitivity parameters tested at their 95% confidence interval lower or upper bounds. All costs and QALYs are reported per-patient. AI, AiCure; DOT, directly

observed therapy; ICER, incremental cost-effectiveness ratio, QALY, quality-adjusted life year; BC, best case;WC, worst case.

https://doi.org/10.1371/journal.pone.0254950.t004
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this additional monitoring the system would still be cost saving. If 7 minutes were spent

reviewing each dose (as observed in LA County’s system after AiCure’s initial adoption during

implementation of the parent research study), AiCure still saved $1,517 per patient relative to

DOT. This 7-minute figure per-dose is included in the “worst case” scenario analysis previ-

ously described and is comparable to figures found for VDOT in previous studies. AI monitor-

ing systems could potentially save a few hundred dollars per patient compared to VDOT

systems. Consistent with prior studies, we estimate that there would be a cost savings of

roughly $1,500 per patient if nurses reviewed video of each dose, which is about $700 less sav-

ings than using the AI monitoring system in our base case [7, 8, 15]. This could amount to sub-

stantial savings for large health systems if AI monitoring was used at scale.

Discussion

The data from LAC patients suggest that AiCure would be an effective method of reducing

nurse and patient burden and achieving similar levels of DOT success. Patients on AiCure

completed treatment in a statistically indistinguishable amount of time as DOT (p = 0.729)

while costing $2,226 less, on average. Sensitivity analysis results showed that despite the uncer-

tainty around completion times due to the limited number of patients in the LAC data, AiCure

would be the cost-effective strategy over 95% of the time with willingness-to-pay levels over

$50,000 per QALY. Even in cases where DOT was cost-effective over AiCure, the largest

amount DOT could save over AiCure over all possible input values was modest ($3,672 saved

per-patient) relative to the largest savings for AiCure over all possible input values ($7,603

saved per-patient).

However, these results may not be generalizable to all TB clinics and all patients. The

cohorts used for comparison in this study were not perfectly statistically similar across all

Fig 3. Probabilistic sensitivity analysis results. Panel a: Incremental values per-patient of AiCure relative to DOT. Panel b: Cost-effectiveness acceptability curve

(CEAC) by treatment arm.DOT directly observed therapy,QALY quality-adjusted life year.

https://doi.org/10.1371/journal.pone.0254950.g003
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characteristics, constitute a small sample of all patients, and indeed may not be fully representa-

tive of the LAC TB patient population. We limited our analyses to non-drug resistant pulmo-

nary TB cases only, as most TB cases in LAC are not complicated by extra-pulmonary TB or

drug resistance–in 2015, 71.5% of TB patients had exclusively pulmonary disease. These would

also be the most likely patients to be first shifted to an AI Platform, as their treatment regimens

are relatively simpler. The cost savings and treatment outcomes in this analysis may not apply

to a patient population with more complicated case histories or comorbidities, nor to health

programs less geographically sprawling than those in LAC–the costs included those of LVN

travel (an average of $35.45 per hour and 54 cents per mile in the base analysis). However, while

cost-savings may be lower in smaller counties, variation in travel costs or nurse wages in the

sensitivity analyses did not lead to DOT becoming cost-effective over AiCure in any scenario.

We also wish to acknowledge the assumptions in our model. We do not consider in the model

possible side effects or delays in appropriate care due to a reduction in frequency of patient-nurse

contacts, as we assume that patients’ monthly clinic visits are sufficient to address any treatment

complications. We note that our base case may underestimate the true cost savings of AI treat-

ment monitoring platforms for patients with more than 2–3 DOT field or clinic appointments per

week; an increased frequency of clinic or field visits would only widen cost differences through

necessary LVN and RN personnel hours. Recent ATS/CDC TB treatment guidelines recommend

the use of daily rather than intermittent (such as twice or thrice weekly) TB therapy [26, 27]. This

recommendation has been difficult to implement fully due to staff capacity. As LACDPH increas-

ingly meets this standard, we would expect the true cost savings of AiCure to increase. We do not

consider transmission in this analysis, with the assumption that both intervention arms effectively

limit spread of TB soon after the patient starts treatment. We also assume that all patients who

complete care would have roughly equivalent quality of life post-treatment whether on DOT or

AiCure, and we therefore only consider the 16-month treatment for the time horizon.

Despite these limitations, our analysis suggests that AiCure would be a cost-saving alterna-

tive to DOT with no sacrifice in quality of care, provided it is offered to uncomplicated non-

drug resistant pulmonary TB cases. Increased access to and implementation of AI treatment

monitoring systems could potentially reduce the costs of already resource-constrained public

health systems and free nurses to perform skilled tasks instead of traveling to patients or

reviewing videos of patient to ensure adherence. These results suggest that the AiCure plat-

form may be a reasonable option to consider for patients beyond those in the pilot study.

Conclusions

The evidence from this pilot study suggests that AI treatment monitoring platforms for TB

may be worth investing in as cost-savings under typical operation should be substantial com-

pared to DOT without degradation of patient outcomes. Our findings contribute to a growing

literature on the value and application of artificial intelligence in medicine to improve clinical

decision-making, implement efficiencies, and drive behavioral modification across large

patient populations, especially with regards to remote treatment options for conditions which

disproportionately affect disadvantaged populations in the US. Future work may look at the

heterogeneity in outcomes by patient population and the value of conducting additional,

larger-scale multi-arm studies to reduce uncertainty around efficacy and cost estimates.

Supporting information

S1 File. Supplementary information for cost-effectiveness of artificial intelligence moni-
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