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Abstract

Unrelated umbilical cord blood transplantation (UCBT) is an alternative to provide transplants

in children with acute leukemia or myelodysplastic syndrome who lack a related donor. Intra-

venous Busulfan (Bu) combined with therapeutic drug monitoring-guided dosing has been

increasingly used, with more predictable bioavailability and better outcomes comparing to

oral Bu. There is still an important variation in Bu pharmacokinetic between patients that is

associated with an increased risk of toxicity and graft failure. The objective of the study was to

analyze the impact of first-dose pharmacokinetic adapted myeloablative conditioning regimen

of intravenous Bu on the different outcomes after transplantation. Data of 36 children who

underwent allogeneic HSCT with Bu plus a second alkylating agent at Sainte Justine Hospital

in Montreal, Canada, between December 2000 and April 2012 were analyzed. For children

with high risk myeloid malignancies receiving an UCBT, first dose Bu pharmacokinetic seems

to be a significant prognostic factor, influencing neutrophil (100% vs 67.9%) and platelet

recovery (95.5% vs 70.5%), non-relapse mortality (0% vs 18.6%), EFS (64% vs 28.6%) and

OS (81.3% vs 37.5%) for a first-dose steady-state concentration (Css) <600ng/mL vs

>600ng/mL, respectively. These data reinforce the importance of Busulfan therapeutic drug

monitoring-guided dosing in pediatric HSCT patients, particularly in the context of UCBT.

Introduction

Unrelated umbilical cord blood transplant (UCBT) after a myeloablative conditioning regimen

is a valid option for treatment of high-risk myeloid malignancies in children without a related

donor, providing survival rates similar to unrelated HSCT donors[1–3].
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Busulfan (Bu), a bi-functional alkylating agent, is used since 1980s in hematopoietic stem

cell transplantation (HSCT) as part of the myeloablative conditioning regimen in acute mye-

loid leukemia (AML) and myelodysplastic syndromes (MDS), both in children and adults[4].

Bu-based conditioning regimens have been proposed in children as an alternative to total

body irradiation (TBI), in order to avoid growth delay and other long lasting side effects

related to the use of TBI [5, 6]. Intravenous (IV) Bu has replaced oral Bu in many HSCT cen-

ters since it has a more predictable bioavailability. IV Bu has been associated with higher event

free survival (EFS), lower transplant-related mortality (TRM) and toxicity compared to oral Bu

[7, 8]. However, there are still important variations in Bu pharmacokinetics (PK) between

patients that are associated with increased risk of graft failure and toxicity, such as hepatic

veno-occlusive disease (VOD) or graft versus host disease (GvHD)[9–11]. Furthermore, intra-

and interpatient Bu PK variability seems to be more important in children[12, 13]. It has been

hypothesized that variability in Bu PK and treatment outcomes might be predicted by genetic

variants of enzymes involved in the metabolism of Bu[14]. To optimize treatment with Bu,

many transplant centers use therapeutic drug monitoring (TDM) and subsequent dose

adjustment.

The objective of this study was to analyze results of myeloablative conditioning regimen

based on IV Bu for AML and MDS, after unrelated UCB transplantation in children, and to

evaluate the impact of Bu PK on the different outcomes after HSCT.

Patients and methods

This was a single-center study including 36 out of 49 children with a myeloid malignancy who

underwent allogeneic HSCT with IV Bu as part of a myeloablative conditioning regimen at

CHU Sainte-Justine in Montreal, Canada, between December 2000 and April 2012. From

2008, data were prospectively collected (Clinicaltrials.gov identifier: NCT01257854). Parents

signed informed consent for collection and inclusion of their child’s HSCT data in our HSCT

data registry. Approval from the Institutional Ethics Board was obtained to perform this study.

Thirteen out of 49 patients who didn’t have signed informed consent were excluded from this

study.

Myeloablative conditioning regimen consisted of 16 doses of IV Bu, every 6 hours, from

day -9 to day -6 before HSCT, according to age (16mg/m2/dose in infants less than 3 months

old, 0.8 mg/kg/dose if less than 1 year of age, 1 mg/kg/dose for children more than one year

old and 0.8 mg/kg/dose for children more than 4 years old) followed by a PK-guided dose

adjustment (based on this first dose) performed at the fifth dose level[7]. Bu was infused over 2

hours. Blood samples were collected for PK immediately before and at 15, 30, 60, 120, 180, and

240 minutes after the first dose. Plasma Bu concentrations were determined using a modified

high-performance liquid chromatography assay[15] and was usually available before the fifth

dose. Based on the first dose PK parameters, further doses of Bu were adjusted from the fifth

dose onward to achieve a steady-state concentration (Css) between 600–900 ng/mL. This was

achieved by estimating maximum and minimum plasma concentrations of Bu at the ninth

dose based on first-dose clearance in a noncomportmental model for continuous IV infusion.

A factor was calculated for adjustment of these concentrations to have a mean plasma concen-

tration of 600–900 ng/mL at the ninth dose and then doses were adjusted with consideration

of the adjustment factor. Bu PK was not done on subsequent Bu doses after first dose for most

patients.

Bu was combined with Cyclophosphamide (Cy) with a cumulative dose of 200 mg/kg over

4 days, Melphalan 135 mg/m2 or Cy 120 mg/kg and Etoposide 30 mg/kg. Cyclosporin A and

steroids were used as graft-versus host disease (GvHD) prophylaxis and 35 patients received

Busulfan pharmacokinetic
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antithymocyte globulins (ATG). Granulocyte colony-stimulating factor was used until neutro-

phils reached > 5x109/L for 2 days after UCBT for all patients. Prophylaxis for seizure was ini-

tiated 24 hours before Bu IV and continued for at least 24 hours after the end of Bu with

lorazepam or midazolam for all but one patient, who received phenytoin. Fluconazole was

administered as part of a supportive care regimen after the last dose of Bu and antiemetics

were routinely administered throughout the conditioning regimen. Acyclovir was given as

prophylaxis for herpes virus, and trimethoprim/sulfamethoxazole for pneumocystis jiroveci

prophylaxis. Ursodeoxycholic acid was given to every patient as VOD prophylaxis.

Neutrophil recovery was defined as the first of 3 consecutive days of absolute neutrophil

count�0.5 x 109/L. Platelet recovery was defined as the first of 7 consecutive days of platelet

counts�50 x 109/L without transfusion. Primary graft failure or rejection was defined by per-

sistent pancytopenia with no evidence of hematologic recovery of donor cells beyond 42 days

after transplantation and secondary graft failure by a rapid decrease in neutrophil count and

chimerism after successful engraftment. Acute GvHD (aGvHD) grading was based on the

1994 Consensus Conference on Acute GvHD Grading[16]. VOD was diagnosed according to

Seattle criteria[17]. Non-relapse mortality (NRM) was defined as all causes of deaths after

transplant not related to relapse. Time to relapse was calculated from the time between trans-

plant and relapse. Event-free survival (EFS) was defined as the time from transplant until

death, relapse, or graft failure, whichever occurred first. Overall survival (OS) was the time

between transplantation and last contact or death of any cause.

For study variables, median value/range was reported for continuous variable and fre-

quency/percentage for categorical variable. For statistical analysis, each continuous variable

was dichotomized in 2 groups based on median value. A median Css of 576.5ng/mL was

observed after the first Bu dose in the cohort, which did not differ by more than 5% from the

lower limit of the targeted Css range. Hence, 600 ng/mL was chosen as the cut-off to dichoto-

mize patients groups. Cumulative incidence of neutrophil and platelet recovery, grade 2–4

aGvHD, NRM, relapse, hemorrhagic cystitis (HC), VOD, and lung toxicity were calculated

using the cumulative incidence (CI) estimator, with death as a competitive event (relapse for

NRM). Probabilities of OS and EFS were calculated using the Kaplan–Meier method and

log-rank test in univariate analysis. Multivariate analysis for OS and EFS was performed using

Cox proportional hazards regression. Variables included in the multivariate analysis included

Css, median infused nucleated cells per Kg and HLA compatibility (both known to influence

UCBT outcomes after UCBT). Variables with a p<0.05 in univariate analysis were also

included in the model. Two-sided p values were represented and p<0.05 was considered as

statistically significant. Statistical analyses were performed using IBM SPSS Statistics 20 (IBM

Corp, Armonk, NY) and Easy R software[18]. Approval from the Institutional Ethics Board

(“Comité d’éthique de la recherche du CHU Sainte-Justine”) was obtained to perform this

study.

Results

Median follow-up was 29.8 (0.9–113.4) months. Median age at transplant was 5.9 (0.6–19.3)

years. Of 36 patients, 21 (58.3%) were male. Median weight was 25 (6.9–85.7) kg. There were

23 AML and 13 MDS. Cytogenetics were normal for 10 patients, five had monosomy7, four

deletion 5q, four trisomy 21 and three MLL rearrangements. For four patients, cytogenetics

were associated with a good prognosis, including one case with t(8;21), two with inversion

16, and one patient with t(15;17). Ten and 13 patients with AML were transplanted in first

remission (CR1) or second remission (CR2)/ advanced phase of disease (>CR2 or in relapse),

respectively. Thirty-three patients received a single UCBT. Eight, 13 and 15 patients received a

Busulfan pharmacokinetic
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6/6, 5/6 and 3-4/6 HLA-matched graft. Median infused nucleated cells (NC) and CD34+ cells

were 5.5 (0.51–29.09) x 107/kg and 2.2 (0.77–25.5) x 105/kg of recipient body weight, respec-

tively. Bu was combined with Cy for 33 patients, Melphalan for 2 patients and Cy/Etoposide

for one patient.

Table 1 summarizes the patients and transplant characteristics.

Median Css at the first dose was 576.5 (399–1153) ng/mL. Twenty-two patients had a first-

dose Css below 600 ng/mL, and 14 above. For 9 patients, the initial prescribed dose of Bu was

not changed (n = 5) or changed by less than 10% (n = 4). For 3 patients, initial prescribed dose

of Bu was decreased, and for 24 patients the initial prescribed dose of Bu was increased

(median increase 25%—range: 14%–56.2%). Median Bu clearance was 4.17 (2.06–5.87)mL/

min/kg.

Cumulative incidence (CI) of neutrophil recovery at the 60th day post-transplant was 87.5%

and platelet recovery at day +150 was 85.7%. Median time to neutrophil and platelet recovery

was 22 days and 73 days, respectively. There were one primary and one secondary graft failure.

CI of neutrophil recovery according to Css was 100% for Css<600 ng/mL, and 67.9% for

Css> 600 ng/mL (p = 0.01) and CI of platelet recovery was 95.5% for Css< 600 ng/mL, and

70.5% for Css> 600 ng/mL (p = 0.04). No other variable was associated with neutrophil or

platelet recoveries. Cumulative incidence of grade 2–4 aGvHD at day +180 was 15.1% and was

not associated with any variable, or influenced by Bu PK. CI of hemorrhagic cystitis was

30.6%, and was significantly higher for patients with a Css> 600 ng/mL (50%) comparing to

patients with Css< 600 ng/ml (18%—p = 0.04). Incidence of VOD was 6%, and occurred only

in patients with Css> 600 ng/mL. Two cases of severe lung toxicity (acute respiratory distress

syndrome) were observed, one patient on each group of Css. Cumulative incidence of relapse

was 33.4% at 5 years and there was a trend of less relapse for patients with MDS (p = 0.08) and

for those receiving a 6/6 compatible cord blood (p = 0.07). Cumulative incidence of NRM at 5

years was 11.1%. The only factor influencing NRM in univariate analysis, was Bu Css; the

NRM was 0% vs. 28.6% for Css< and> 600 ng/mL, respectively (p = 0.009) (Fig 1).

Event-free survival (EFS) and overall survival (OS) were 50% and 63% respectively, for the

whole population. Bu Css was shown to be the only predicting variable in univariate analysis:

EFS: 64% vs. 29% for Css< and> 600 ng/mL, respectively (p = 0.006—Fig 2) and OS: 81% vs.

37.5% for Css< and> 600 ng/mL, respectively (p = 0.006- Fig 3).

In multivariate analysis, Css was the only variable to influence OS (HR: 5.2 [95% CI: 1.26–

21.5] p = 0.02) and EFS (HR: 3.83 [95% CI: 1.33–11.05] p = 0.01).

Discussion

Conditioning regimens including total body irradiation (TBI) in combination with high dose

chemotherapy have been used in patients with AML since the 1970s, and such regimens are

known to be effective in achieving engraftment and eradicating disease[6]. Bu-based myeloa-

blative regimens given before HSCT, are used in children as a TBI alternative to avoid late side

effects such as growth impairments, cataracts, endocrinopathies, cognitive delay, and increased

incidence of secondary malignancies associated with exposure to irradiation[6, 19]. There is

no evidence of an advantage of using TBI on children with AML beyond CR1, since no signifi-

cant difference in outcomes (EFS, OS, relapse) comparing TBI with Busulfan based condition-

ing regimen has been reported[6].

Oral Bu has a large inter-individual variability, with higher plasma concentrations associ-

ated with toxicity, whereas lower concentrations result in an increased risk of graft failure or

relapse[8, 12, 20–24]. This might be particularly important in UCBT that carries a higher risk

of graft failure. Intravenous formulation of Bu has gained popularity as pharmacokinetics is

Busulfan pharmacokinetic
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Table 1. Patients demographic characteristics (n = 36).

Demographic characteristics Patients N(%) or median (min-max)

Gender

Female 15 (41.7)

Male 21 (58.3)

Ethnic background

White Caucasian 33 (91.7)

Asiatic 1

American Indian 1

Moroccan 1

Diagnosis

AML 23(63.9)

MDS 13(36.1)

Cytogenetic characteristics

Normal 10

Monosomy 7 5

Deletion 5q 4

Trisomy 21 4

Rearrangement MLL 3

Others 9

Cytogenetic characteristics associated with good prognosis 4

t(8,21) 1

Inv 16 2

t(15,17) 1

Age at HSCT (years) 5.9(0.6–19.3)

Umbilical cord blood transplant

Single 33(91.6)

Double 3

HLA compatibility

6/6 8(22.2)

5/6 13(36.1)

3-4/6 15(41.6)

NC dose x 109/Kg 5.52(0.51–29.09)

CD 34 dose x 109/Kg 2.22(0.77–25.49)

Disease status at HSCT for AML

CR1 10

CR2 or advanced phase of disease (�CR2 or relapse) 13

Conditionning

Bu+Cy 33(91.7)

Bu+Mel 2

Bu+Cy+VP16 1

Css ng/mL 576 (399–1153)

AML, acute myeloid leukemia, MDS, myelodysplastic syndrome, CR1, first complete remission, CR2, second

complete remission, Bu, Busulfan, Cy, Cyclophosphamide, Mel, Melphalan, HSCT, hematopoietic stem cell

transplant, NC, nuclear cells, Css, steady-state concentration

https://doi.org/10.1371/journal.pone.0193862.t001

Busulfan pharmacokinetic
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more predictable[19]. Nevertheless, inter- and intra-individual variability still exists, mostly in

children. IV Bu dose with adjustment based on first-dose pharmacokinetics reduces the vari-

ability of Bu exposure among patients[25–27], improving engraftment, EFS and survival rates

[20, 25].

Bu is primarily metabolized by liver glutathione S-transferase (GST) enzymes, predomi-

nantly by its variant GSTA1. This process depletes hepatocyte glutathione stores. Bu metabo-

lism is influenced by GST enzyme activity, age, disease condition and co-medication[13].

Body surface area and body weight also contribute to PK variability[28]. Children appear to

have a higher Bu clearance, resulting in a lower systemic exposure. The higher GST activity in

children might explain the difference[12, 29]. GST polymorphisms influencing GST activity

could partly contribute to the unexplained Bu variability[25, 30, 31]. A study of the European

Blood and Marrow Transplant Group, confirmed that GST gene variants (GSTA1 and

GSTM1) influence Bu PK and outcomes of HSCT in children[13].

In this study, we showed that Bu Css of the first dose seems to influence different outcomes

after UCBT. A Bu Css below 600ng/mL associates with a better EFS, OS, NRM, and hemato-

poietic (neutrophil and platelet) recovery. On the other hand, there is no association between a

Fig 1. Non-relapse mortality according to concentration at the steady state.

https://doi.org/10.1371/journal.pone.0193862.g001

Busulfan pharmacokinetic
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lower first-dose Css and graft failure. However, since patients in this series had received a graft

with a total dose of cells according to recommendation for a UCBT, this might have prevented

a graft failure in most of patients. Unfortunately, there are missing data concerning the PK

results on subsequent Bu doses in our study to confirm that the first dose Css, rather than the

cumulative received Bu dose, explains the difference on the different outcomes. In a previous

study including children who underwent HSCT with UCBT and UBMT for malignancies and

non-neoplastic diseases, it was showed that Bu concentrations of the majority of children were

in the targeted therapeutic range in subsequent doses[7]. The prognostic effect of the measured

Bu Css was not due to an effect on relapse, since it was not affected by Css, similarly to what

has been already described before[22, 32]. Rather, Bu Css at first dose seems to influence toxic-

ity, as NRM occurred only in patients with a first-dose Css> 600 ng/mL. In adults, an associa-

tion between higher Bu exposure and toxicity had been showed[11, 33]. But in pediatric

patients, most authors reported absence of this association[34, 35]. Since all but two patients

received Cy after IV Bu, glutathione (GSH) depletion in tissues, due to oxidative stress, might

also have aggravated the tissue damage by Cy, initiating toxic events such as VOD, mucositis,

hemorrhagic cystitis, lung toxicity, and others. Thus, the NRM seen with Css> 600 ng/mL

could in fact be related to Cy toxicity after a GSH depletion by Bu, associate or not with a direct

effect of Bu itself. It is known that Cy toxicity is highly dependent on GSH levels[36]. As some

GST polymorphisms are associated with a lower Bu clearance, we can speculate that a higher

Fig 2. Event free survival according to concentration at the steady state.

https://doi.org/10.1371/journal.pone.0193862.g002
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Css is a surrogate marker for these polymorphisms[13]. Replacing Cy by other chemotherapy,

such as fludarabine or tailored the first dose with an algorithm including demographics data as

well as pharmacogenomics might improve the results of UCBT after Bu conditioning.

We showed that cumulative incidence of neutrophil and platelet recovery was higher when

Bu Css was < 600 ng/mL. In contrast, in a study on 45 adults with chronic myeloid leukemia,

there was no influence of Bu plasma levels on engraftment[21]. Similarly, Perkins et al reported

that there was no correlation between first dose Bu AUC and bone marrow or lymphocyte chi-

merism studies around day 30 or day 100 after transplant with Bu and Fludarabine as condi-

tioning before HSCT in adults[37]. The higher graft failure rate for those with first dose Bu Css

>600 ng/mL can be explained by the higher NRM in the peri-engraftment period for these

patients.

Differences in population and conditioning regimen might explain the differences between

studies. Notwithstanding, our results are consistent with some studies conducted in children

concerning the PK monitoring and individualization of Bu dosage regimen, where no graft

rejection or graft failure were observed in pediatric bone marrow transplant recipients who

received a lower total dose of Bu than those usually recommended[5]. Pediatric PK studies are

Fig 3. Overall survival according to concentration at the steady state.

https://doi.org/10.1371/journal.pone.0193862.g003

Busulfan pharmacokinetic
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however not uniform and large enough to define the relationship between Bu exposure and

target therapeutic levels in children associated with optimal outcomes. Our study, including

mainly Caucasian patients who received HSCT with only unrelated umbilical cord blood, with

a uniformly PK targeted IV Bu and mostly together with Cy as myeloablative conditioning reg-

imen, is unique to better define association between Bu exposure and outcomes of allogeneic

UCBT. These are results from a single center, with uniform supportive care.

In conclusion, UCBT remains a useful treatment to patients with high-risk myeloid malig-

nancies without a matching sibling donor, providing survival rates comparable to other graft

sources. For patients receiving Bu and Cy as conditioning regimen before UCBT, initial first

dose Bu PK (before adjustment to the cumulative dose) seems to be a significant prognostic

factor in children, influencing neutrophil and platelet recovery, NRM, EFS and OS. A direct

toxic effect of Bu and/or a synergistic toxic effect with Cy might explain the worst outcome

when first dose IV Bu has a Css higher than 600ng/mL. It will be important to validate these

results in a multicenter larger study and also to compare these results with patients who

received a fixed dose of Bu. Finally, our data reinforces the importance of Bu therapeutic drug

monitoring-guided dosing in pediatric HSCT patients.
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