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Abstract 
Utilization of specific codons varies significantly across organisms. Cancer represents a model for 

understanding DNA sequence evolution and could reveal causal factors underlying codon 

evolution. We found that across human cancer, arginine codons are frequently mutated to other 

codons. Moreover, arginine restriction—a feature of tumor microenvironments—is sufficient to 

induce arginine codon-switching mutations in human colon cancer cells. Such DNA codon 

switching events encode mutant proteins with arginine residue substitutions. Mechanistically, 

arginine limitation caused rapid reduction of arginine transfer RNAs and the stalling of ribosomes 

over arginine codons. Such selective pressure against arginine codon translation induced a 

proteomic shift towards low arginine codon containing genes, including specific amino acid 

transporters, and caused mutational evolution away from arginine codons—reducing translational 

bottlenecks that occurred during arginine starvation. Thus, environmental availability of a specific 

amino acid can influence DNA sequence evolution away from its cognate codons and generate 

altered proteins.  
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MAIN TEXT 
 
Introduction 
 
Genomes of organisms are enriched in certain codons over others. The origins of such codon usage 

biases have been attributed to both sequence-specific mutational biases that are thought to 

dominate over long time-scales as well as to organism-specific tRNA availabilities as encoded in 

the genomes of difference species(1). However, the challenge inherent to observing the emergence 

of such a long time-scale process has precluded definitive support for various proposed models. 

The mechanisms underlying the emergence of codon usage bias, including the extent to which 

tRNAs shape genomic evolution have also remained poorly defined. We reasoned that for cancer 

cells, which divide rapidly, acquire mutations more frequently relative to normal cells, and are 

exposed to a variety of selective pressures, the evolution of DNA sequence biases would be 

expedited. This would allow us to detect the emergence of codon-based sequence changes and 

search for potential underlying mechanisms.  

 
Results  
Arginine codons and residues are frequently lost through mutation across human cancers 

In order to determine if specific codons or amino acids are favored in cancer genomes, we 

computationally assessed codon-switching events—defined as the gain or loss of a codon via 

mutation—across all cancers in The Cancer Genome Atlas (TCGA)(2). Although dozens of 

mutational signatures have been shown to be operant with varying weights in different cancers(3), 

we observed that the majority of cancers displayed surprisingly similar patterns of codon gains 

and losses (fig. S1A). Strikingly, when collapsed onto their cognate amino acids, we observed that 

arginine codons were universally depleted across all cancer types (Fig. 1A, fig. S1B). Thus, 

mutagenic events affecting arginine codons are extremely frequent in cancer. 
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Mutational processes have been shown to act more frequently at specific nucleotides based on their 

surrounding contexts(3, 4). It is therefore important to distinguish between observed codon 

changes that simply resulted from sequence-specific mutational biases versus codon-switching 

events that arose from evolutionary selection for or against a given codon. To distinguish between 

these possibilities, we devised a series of computational simulations that utilized cancer-specific 

mutational signatures to model expected codon-switching events (fig. S2). We extracted 

mutational signatures from the non-coding regions of cancer genomes to build an unbiased model, 

reasoning that mutations arising in non-translated regions would be less affected by selective 

pressures, such as tRNA or amino acid availability, which would be unique to protein-coding 

genes. Consistent with this possibility, we observed striking disparities in the frequencies of 

different mutations between coding and noncoding regions of the genome (fig. S3). Modeling 

codon changes using mutational spectra derived from the non-coding genome further highlighted 

arginine codon-switching events as being especially overrepresented in coding genes (Fig. 1B, fig. 

S4). These findings support the possibility that certain codon-switching mutational events in the 

coding genome may confer selective fitness to cells relative to mutations in the noncoding genome. 

At the codon level, the most frequently lost codons across all cancers were arginine codons: CGG, 

CGA, CGC, and AGA, with frequent conversions to CAC (histidine), TGC (cysteine), ATA 

(isoleucine), and CTA (leucine) (fig. S4). Thus, arginine codon-switching events in the coding 

genome are generally overrepresented even when one considers mutational biases. 

 

Next, in order to identify the tumor types and potential stresses associated with arginine codon 

mutational loss, we first compared our computational predictions with biological observations for 
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each tumor type. This revealed that stomach adenocarcinoma (STAD) and colorectal 

adenocarcinoma (COADREAD) tumors were the most enriched in arginine codon-switching 

events and deviated significantly from the simulated background expectation compared to other 

cancer types (Fig. 1C). In contrast, although endometrial carcinomas (UCEC) exhibited the highest 

degree of arginine codon-switching, these events were relatively well-accounted for by sequence-

specific mutational biases. Thus, the extent to which arginine codon-switching mutations occur in 

excess vary based on tumor type and are most over-represented in colorectal and stomach cancers. 

 

Increased arginine codon loss associates with expression of bioenergetic pathways 

Because mutations involving arginine codons are especially over-represented in colorectal and 

gastric cancers, we sought to identify a common pattern between the two. We hypothesized that a 

potential association with arginine codon loss could be extracellular arginine availability, since 

arginine is known to become limiting in tumor microenvironments(5, 6) and the decoding of 

arginine codons require this amino acid. Consistent with this, we observed that arginosuccinate 

synthetase 1 (ASS1), a critical gene that catalyzes the penultimate step of arginine biosynthesis, 

was overexpressed in both colorectal and gastric adenocarcinoma samples that exhibited high 

arginine codon-switching events relative to those exhibiting low arginine codon-switching events 

(Fig. 1D, fig. S5A). Interestingly, ASS1 has been shown to be variably expressed in tumors and 

can be induced when arginine becomes depleted from the tumor microenvironment(7, 8). These 

data suggest that tumors with increased arginine codon-switching events may have experienced 

reduced extracellular arginine bioavailability during their development, which would have 

necessitated the expression of arginine biosynthesis pathway components for survival.  
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We next asked whether tumors that underwent a high frequency of arginine codon-switching 

events share common transcriptional programs beyond arginine metabolism. To answer this, we 

analyzed tumor transcriptomes at a global level using a mutual information-based framework(9). 

We found that in both colorectal and stomach adenocarcinomas, expression levels of genes 

belonging to S-phase of the cell cycle, DNA replication, nucleotide metabolism, mitochondrial 

translation, and energetics (glycolysis, the citric acid cycle and electron transport) pathways were 

significantly correlated with increased arginine codon-switching events (fig. S6). To determine 

which of these pathways and processes are relevant to the in vivo microenvironment, where 

arginine levels can be significantly limiting(6, 10, 11), we conducted a similar analysis on colon 

and gastric adenocarcinoma cells in the cancer cell line encyclopedia (CCLE)(12), where cells 

were cultured in media containing excess arginine (Table S1). Expression of genes belonging to 

nucleotide metabolism and bioenergetic pathways were selectively modulated in in vivo arginine 

codon-switching tumors but not in cancer cells growing in vitro with excess arginine (fig. S6). 

This suggests that provision of arginine to supraphysiologic levels, as is the case for in vitro culture 

of CCLE cells, may reduce cellular dependence on expression of certain bioenergetic 

(mitochondrial translation, citric acid cycle) and nucleotide metabolism pathways relative to the 

in vivo arginine limiting tumor context.  

  

Arginine limitation results in nucleotide pool imbalances 

Our observations collectively support a model whereby a subset of tumors facing arginine 

restriction experience perturbations to energy metabolism and nucleotide synthesis. Perturbed 

nucleotide synthesis can give rise to nucleotide imbalance and in turn increase base 

misincorporation rates, thereby accelerating mutagenesis and potentiating codon-switching events. 
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Indeed, arginine metabolism derangements have been shown to impact nucleotide biosynthesis 

and potentially result in DNA damage(13–15). In order to further define the relationship between 

arginine codon-switching events and arginine and nucleotide metabolism, we collected a panel of 

colorectal cancer cell lines that were either of the high-arginine codon loss type or the low-arginine 

codon loss type based on mutational sequence analysis of the CCLE (Table S2). We observed that 

at low concentrations of arginine, within the range reported for tumor core levels(5), high-arginine 

codon loss cell lines exhibited significantly lower viability than low-arginine codon loss lines (Fig. 

2A). To test whether arginine deprivation results in nucleotide metabolism stress, we performed 

rescue experiments with extracellular nucleotide supplementation. We observed that while 

colorectal cancer cell lines exhibited variably impaired growth at low arginine concentrations, 

there was universal partial rescue of cell viability with nucleotide supplementation (Fig. 2B, fig. 

S5B). Thus, increased arginine-codon switching is associated with heightened dependence on 

arginine availability with viability being partially rescued by provision of exogenous nucleotides. 

Because nucleotide supplementation conferred a survival advantage under low arginine 

conditions, we sought to define how arginine metabolism affects intracellular nucleotide 

concentrations. Metabolomic profiling of colorectal cancer cells revealed that arginine deprivation 

caused depletion of both purine and pyrimidine nucleotides with a greater reduction in high 

arginine codon mutated lines relative to low arginine codon mutated lines (Fig. 2C and D, fig. 

S7). It has been suggested that arginine deprivation can impact nucleotide pools through induction 

of the enzyme asparagine synthetase (ASNS), which converts aspartate to asparagine(15). Because 

aspartate is a critical precursor for nucleotide synthesis, its shunting towards asparagine under 

arginine starvation would impair nucleotide synthesis. In support of this, arginine deprivation 
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induced ASNS in CRC cells (fig. S8). These findings reveal that arginine deprivation causes 

nucleotide pool imbalance in CRC cells which contributes to impaired survival.   

 

Arginine limitation causes an acute arginyl tRNA repression response 

Our findings reveal that arginine limitation of CRC cells that are more reliant on extracellular 

arginine alters nucleotide pool balance, which can potentially cause mutations. These findings, 

however, do not explain why arginine codon-switching events are enriched in specific tumors. We 

thus focused on the association between arginine availability and arginine codon-switching events. 

Metabolic perturbations such as oxidative stress and glutamine deprivation were recently shown 

to reduce the levels of specific charged tRNAs—inhibiting translation of downstream genes(16, 

17). Furthermore, complete elimination of arginine from the environment has been shown to 

induce ribosome pausing at arginine codons in bacteria as well as in mammalian cells in vitro – 

repressing global protein synthesis(18, 19). Because arginine codon-switching mutations would 

theoretically lessen the requirement for arginine tRNAs during protein translation, we 

hypothesized that arginine codon switching events may facilitate gene expression under conditions 

where arginine becomes limiting. Indeed, arginine codon-switching mutations tended to occur in 

higher-expressed genes in patient samples, highlighting the possibility that arginine codon-

switching events might have an outsized influence on gene translation (fig. S9). In such tumors, 

switching to non-arginine codons may facilitate gene translation in contexts where environmental 

arginine becomes limiting. We therefore sought to quantify how arginine deprivation affects 

availability of arginine tRNAs. We assessed tRNA levels in colorectal and gastric cancer cells 

following arginine starvation through northern blotting. Remarkably, arginine limitation acutely 

and dramatically depleted arginine tRNA levels (Fig. 3A). We detected a significant reduction in 
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multiple arginine tRNA isodecoders including tRNAArgUCG, tRNAArgUCU, and tRNAArgCCG within 

24 hours of arginine deprivation. Importantly, we did not observe reduced levels of other tRNAs 

such as tRNALeuUAG, tRNATyrGUA, or tRNAHisGTG upon arginine restriction. Thus, extracellular 

arginine restriction causes an acute and substantial reduction of arginine tRNA levels in CRC cells.  

 

We hypothesized that the repression of arginine tRNAs may be caused by reduced tRNA 

aminoacylation in the setting of arginine limitation. Reduced aminoacylation of certain tRNAs has 

been shown to destabilize tRNAs(20). To test this, we inhibited aminoacylation in CRC cells by 

depleting the arginyl-tRNA synthetase RARS and quantified tRNA levels (fig. S10). Indeed, 

suppressing arginine aminoacylation significantly suppressed expression of multiple arginyl 

tRNAs. These findings are consistent with arginine limitation causing reduced arginyl-tRNA 

charging and consequently, degradation or destabilization of arginyl tRNAs.  

 

Arginine restriction causes ribosomal stalling at specific arginine codons 

Significant reductions in arginine tRNA availability would be expected to impair arginine-codon 

dependent translation. To quantify how arginine deprivation-mediated tRNA changes impact gene 

translation, we performed ribosomal profiling (21, 22). As expected, arginine starvation 

significantly increased ribosomal occupancy at arginine codons under starvation conditions (Fig. 

3B). Such increased ribosomal A-site localization over arginine codons upon arginine restriction 

is consistent with increased stalling at arginine codons. As orthogonal approaches for assessing 

ribosomal dynamics, we utilized two additional metrics to quantify ribosome stalling events. We 

first calculated Consistent Excess of Loess Predictions (CELP) coefficients to measure the degree 

of stalling at all codons(23). This analysis further confirmed global and significant increases in 
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stalling at arginine codons upon arginine deprivation (fig. S11A). Second, we calculated the 

frequency of amino acid appearances immediately upstream and downstream of maximal ribosome 

stalling sites during arginine deprivation and observed that arginine codons were significantly 

over-represented near the global stalling maxima of transcripts, on average appearing more than 

twice as often as expected (fig. S11B). In contrast, we found no such evidence of arginine 

enrichment near stalling sites during arginine replete conditions (fig. S11C). These findings reveal 

that arginine deprivation significantly increases ribosome stalling events at arginine codons. 

 

Next, in order to understand how codon-switching events influence ribosome dynamics, we 

compared ribosome localization in specific genes that were heterozygous for single nucleotide 

variants (due to arginine codon-switching at one allele) under arginine-fed and arginine-deplete 

conditions. This experimental model provided us wild-type and mutant arginine codon endogenous 

‘reporters’ for specific genes. Remarkably, variant alleles that underwent codon-switching away 

from arginine codon usage showed less ribosome stalling under arginine limitation at those specific 

codon positions compared to their corresponding wild-type alleles in the same cell (fig. S12A, fig. 

S13). By comparison, codon-switching events that only involved non-arginine codons showed no 

significant differences in ribosome stalling at the wild-type versus variant alleles (fig. S12B). 

Consistent with these observations, genes that harbored arginine codon changes generally showed 

less stalling at multiple arginine codons under arginine starvation conditions (fig. S14A) and 

consequently higher translational efficiency compared to genes that were wildtype with respect to 

arginine codon mutation status (fig. S14B). These results demonstrate that codon-switching 

events—specifically, the loss of rate-limiting codons—can directly influence ribosome 

localization dynamics under amino acid limitation. Therefore, whereas a direct consequence of 
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arginine starvation-mediated tRNA changes is increased ribosome stalling at arginine codons, 

mutations that result in a loss of an arginine codon tend to relieve this translational bottleneck.  

 

Arginine limitation causes a proteomic shift from arginine rich to arginine low proteins 

Significant stalling of arginine translation would be predicted to alter arginine utilization in the 

tumor proteome. We thus performed TMT-based quantitative proteomics under conditions of 

arginine excess versus limitation and found that arginine deprivation resulted in a shift in the tumor 

proteome towards proteins with substantially lower arginine content (Fig. 3C). Moreover, arginine 

usage in highly expressed genes was highly significantly reduced upon arginine restriction (Fig. 

3D). Pathway enrichment analysis of proteomic changes revealed that proteins related to amino 

acid transport and DNA damage-induced senescence were increased, whereas proteins related to 

DNA strand elongation and interferon alpha/beta signaling were reduced upon arginine restriction 

(fig. S15A). Notably, proteins that were upregulated in these pathways upon starvation also tended 

to show reduced arginine codon content (fig. S15B). At the codon level, the three most affected 

codons with respect to under-utilization in proteins were all arginine codons (fig. S16). Thus, 

arginine deprivation promotes induction of multiple gene expression programs that utilize arginine 

less frequently. The significantly decreased need for arginine within multiple gene sets responding 

to arginine limitation, such as amino acid transport and synthesis, suggests that the amino acid 

requirements for expression of these gene sets may have undergone prior selection to allow the 

continued expression of specific stress response programs when arginine is limiting. When coupled 

with the ribosomal profiling data, these findings suggest that during arginine scarcity, when 

arginine tRNAs become limiting, there may be an evolutionary advantage for tumors that have 
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undergone additional codon-switching events from arginine codons to codons for which cognate 

tRNAs remain available for usage in translation.  

 

Our findings thus far reveal that arginine restriction causes an acute response whereby arginyl 

tRNAs become repressed, leading to ribosomal stalling at rate-limiting arginyl codons of highly 

expressed genes. This is associated with a proteomic shift away from arginine-rich proteins 

towards arginine-low proteins, which includes amino acid transporters. Arginine restriction also 

causes nucleotide imbalance, accelerating mutagenesis. We hypothesized that over longer 

timescales, this context selects for cancer cells that have undergone arginine codon mutational 

switching events, which enables translation of proteins that are adaptive for survival. 

 

Arginine restriction is sufficient to cause arginine codon-switching evolution in vitro 

We next sought to determine if arginine restriction is sufficient to causally drive codon-switching 

events away from arginine. To do this, we conducted laboratory evolution experiments by 

culturing colon cancer cells under reduced arginine conditions and assessed genomic codon-

switching events using whole exome sequencing (Fig. 4A). Iterative passaging of multiple 

colorectal cancer cell lines over eight passages (~24 population doublings lasting ~2 – 3 months) 

caused a significant increase in arginine codon-switching events in arginine restricted cells relative 

to control cells that were passaged the same number of times under arginine-rich conditions (Fig. 

4B). Consistent with our prior observations that arginine deprivation results in nucleotide pool 

imbalances, potentially accelerating mutational rate, arginine deprivation was associated with an 

increase in general mutational load (fig. S17). Strikingly, arginine codon mutations were increased 

in genes upregulated during arginine deprivation, as identified from our prior proteomics 
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experiments, compared to genes that were highly expressed during the arginine fed state (Fig. 4C). 

In contrast, the rate of histidine mutational losses between the gene sets were not significantly 

different (Fig. 4D). Thus, arginine deprivation in vitro is sufficient to increase the frequency of 

arginine codon-switching mutational events. 

 

Arginine limitation causes arginine codon-switching evolution in vivo 

We next asked if we could recapitulate arginine codon-switching events in vivo and whether tumor 

propagation in a microenvironment low in arginine could also elicit such codon-switching events. 

We specifically focused on the liver microenvironment due to the liver being the organ in which 

the arginine degrading enzyme, arginase, is most highly expressed(24), and also because the liver 

is a frequent and pathophysiologically relevant site of distant organ metastatic relapse in both 

colorectal and gastric cancers(25, 26). We first analyzed metabolite profiling data of highly liver 

metastatic patient-derived xenograft tumors that had undergone at least 5 rounds of in vivo 

selection for liver colonization(27) and observed that arginine was indeed the lowest abundance 

free amino acid in the highly liver metastatic tumors compared to the parental tumors (fig. S18 A 

and B). We next conducted whole exome sequencing of additional PDX tumors and observed that 

the rate of acquisition of new arginine codon mutations was significantly increased in tumors that 

had undergone serial rounds of in vivo liver colonization selection compared to the rate measured 

in the parental tumors (Fig. 4E). Thus, reduced arginine bioavailability in vivo is associated with 

an increased rate of arginine codon mutations, mirroring our observations in vitro. These findings 

as a whole reveal that limitation of a single amino acid, arginine, results in multiple consequences 

in colorectal cancer cells. First, arginine limitation causes nucleotide pool imbalances and 

increased mutational rate. Concurrently, arginine tRNA levels are reduced, resulting in ribosomal 
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stalling at arginine codons, providing a selective pressure against arginine codon usage and 

providing an evolutionary advantage to cancer cells whose coding genomes require less arginine 

for translation of highly expressed genes required for growth. This context selects for cancer cells 

that have undergone arginine codon mutational switching events in the coding regions of such 

growth promoting genes. Based on the totality of these observations, we propose that limitation of 

an amino acid (arginine) can causally increase the rate of mutations of its cognate codons in the 

cancer genome—facilitating the continued translation of proteins that may be adaptive for 

responding to the specific amino acid restriction and leading to the generation of novel proteins 

with arginine substitutions. 

 
Discussion  
 
The acquisition of somatic mutations contributes to the development of cancers de novo, the 

emergence of treatment resistance, and can predict response to immunotherapy(28–31). 

Understanding the mechanisms that drive new mutations remains an important problem in cancer 

biology and oncology. Environmental contributions to mutational processes have generally been 

thought of as foreign additions to a system: examples include UV radiation, tobacco smoke, or 

aristolochic acid. Our work suggests that environmental deprivation, i.e., absence or restriction, of 

just a single amino acid can drive switching away from specific codons in the human cancer 

genome by simultaneously enhancing mutagenesis and altering specific cognate tRNA 

availability. In yeast, genetic defects in nitrogen metabolism can increase mutational rates in 

strains with heightened mutagenic backgrounds(32). Moreover, genetic defects in the urea cycle, 

a critical downstream pathway in the utilization of intracellular arginine, can result in altered rates 

of pyrimidine synthesis and affect mutational spectra(13, 14). While these studies have focused on 

genetically driven defects in metabolism resulting in mutagenesis, our findings reveal that 
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availability of a specific environmental nutrient, arginine, can filter the mutational landscape of 

cancer cells in a codon-dependent manner and drive them towards acquisition of arginine-codon 

mutations. Others have also shown that for a given tRNA, distinct isodecoders associate with 

proliferation versus differentiation states(33). Our findings of a rapid depletion of arginine tRNAs 

upon arginine limitation as well as the induction of an arginine-low tumor proteome suggest the 

existence of an acute tRNA-mediated stress response to arginine restriction that promotes 

translation of genes with reduced arginine codons. We find that in colon cancer cells, limitation of 

arginine causes an acute translational shift towards an arginine low proteome. Prior work in 

bacteria and in mammalian cells in vitro had shown that complete elimination of arginine from the 

environment can cause ribosome pausing and global translational repression that was proposed to 

be caused by reduced tRNA aminoacylation(18, 19). Our findings across a series of colon cancer 

cell lines reveals that physiological limitation of arginine represses the levels of arginine tRNAs, 

an effect that could also be elicited upon repression of arginyl tRNA aminoacylation. Our findings 

are thus consistent with a combination of arginyl tRNA repression and reduced aminoacylation 

contributing to ribosomal pausing at cognate arginine codons and inducing a proteomic shift in 

response to arginine deprivation in colon cancer cells. 

 

To our knowledge, this is the first demonstration of directed DNA evolution and selection against 

specific codons in response to a specific environmental perturbation. Our observations imply that 

over time, cancer cells growing in an arginine-scarce environment are likely to lose more arginine 

codons and suggest that in vitro systems currently used to study cancer and other diseases, for 

example cells growing in tissue culture, are potentially susceptible to evolving away from arginine 

codons at different rates depending on their level of arginine supplementation, the fidelity of their 
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DNA repair mechanisms, and the robustness of their arginine tRNA pool. Further work is required 

to understand if other nutrient limitations also elicit DNA sequence evolution and to understand 

how other genetic and environmental factors, such as competition with the surrounding 

microbiome or presence of inflammatory states interact with nutritional availability to affect DNA 

sequence evolution. With respect to arginine, it has already been suggested that free arginine is 

especially critical for regulating cancer immunology(34), thus competition for this common 

substrate may influence the evolution of the cancer genome, especially in contexts of tumors with 

high immune infiltration. Inflammatory bowel disease and H. Pylori infections, precursor disease 

states with established epidemiological and pathophysiological links to the development of 

colorectal and gastric cancer, respectively, have both been shown to modulate arginine availability 

in affected tissues(35, 36). In fact, recent work has elegantly demonstrated that amino acid 

limitation can be so significant under inflammatory-signaling that cancer cells utilize alternative 

translational decoding for specific amino acids(37), leading to the production of altered proteins 

and neo-antigens. Our findings reveal that limitation of an amino acid can also elicit protein 

sequence changes and perhaps neo-antigen load via an alternative mechanism—DNA sequence 

codon-switching events. Notably, significant arginine limitation superimposed on a background of 

increased base misincorporation rates, such as in mismatch repair deficiency would increase the 

probability of stochastically acquiring arginine codon mutations which may then confer a survival 

advantage, and may partially contribute to the increased signal in some tumors over others. 

However, our experiments reveal that this process occurs in both mismatch repair proficient and 

mismatch repair deficient tumors and cell lines. Finally, our findings reveal that codon-based 

mutations can potentially identify subsets of cancers that are more sensitive to restrictions of a 

specific amino acid. These findings have implications for dietary amino acid restriction approaches 
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that have been tested in tumor models as well probiotic engineering approaches that can modulate 

tumoral amino acids(38–42). The codon-based genotype-dependent vulnerability described herein 

suggest potential for use of codon-centric mutational spectra as biomarkers for emerging cancer 

metabolism oncologic therapies.  

 
Materials and Methods 
 
Experimental design 

Sample sizes were selected back on knowledge of intra-group variation and expected effect size. 

For in vitro experiments, sample sizes were chosen based on prior knowledge on intra-group 

variation. Data was collected based on pre-determined end-points (in vitro assays) or tumor 

burden exceeding 2000 mm3. Experiments were carried out in replicates as noted in the text and 

figure legends. Samples were allocated randomly if possible. No blinding was performed. 

 

Codon mutation analyses: 

Mutation annotation files (.maf) corresponding to TCGA studies were downloaded from the Broad 

Firehose platform (http://firebrowse.org). When possible, we utilized combined cancer data sets 

(i.e. COADREAD, KIPAN, and GBMLGG). A script was written in Python (V 3.8.5) to manually 

count codons lost and gained across the coding regions of cancer-types and samples. For each 

cancer sample, the count for a codon was subtracted if it was lost through a missense or silent 

mutation and added if it were gained through a silent mutation. An “event” was defined as the gain 

and loss of a pair of codons. We also utilized a similar framework to count the total flux between 

codons or amino acids to determine flux between codons and amino acids. Events were plotted 

using circos plots(43).  
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Derivation of null distributions: We utilized a Monte Carlo approach to derive various null 

distributions of codon and amino acid usage shifts across cancer types and different samples. 

Briefly, our algorithm scatters nucleotide mutations across reference gene sequences downloaded 

from ENSEMBL. Prior to input into the simulation, genes with multiple splice variants were 

filtered against the APPRIS database to include only the highest-ranking principle splice variant 

for simulation(44).   Probabilities of specific nucleotide mutations were weighted based on the 5’ 

and 3’ contexts of each nucleotide(3).  

 

For inputs into the analysis, we first downloaded the mutation calls from ICGC (last accessed 

February 2018) (45) and then cross-referenced the intergenic and intronic mutational calls with the 

reference genome to extract the 5’ and 3’ nucleotide contexts to infer mutational probabilities of 

different nucleotides under different contexts. Each cancer type was assigned its own unique 

mutational matrix. For each tumor sample in the TCGA, we created a corresponding in silico 

sample and constrained potential mutations to the same set of genes that are mutated in each 

specific TCGA sample. For each in silico sample, candidate genes were randomly mutated the 

same number of times as was observed in its matched TCGA sample. These specific constraints 

were placed to prevent the model from deviating due mutations being simulated on lowly mutated 

genes or genes with wildly different codon content compared to the original sample. For each gene, 

nucleotides positions are first hashed by 5’- and 3’- contexts and selected for mutation using a 

vectorized approach to randomly select possibilities along the entire transcript. The effect on the 

gene (codon change and amino acid change) were calculated and utilized for downstream analyses. 

Each sample was simulated a thousand times (n=1000). 
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For statistical inference, we created a “null distribution” mean for different codon/amino acid 

gains/losses by populating the dataset with mean inferences from each individual TCGA sample. 

A log-rank test was then performed to determine the extent to which the observed TCGA dataset 

was different from the simulated dataset. Heatmaps were generated using the Seaborn library in 

Python (seaborn). Chord diagrams were generated using both the observed datasets and simulation 

data using Circos(43).  Qualitative circos plots were generated using scaled values following the 

formula provided by the developer using the following equation: (ek*x/max(x) – 1) / (ek – 1), where k 

is the scaling factor, x is ratio of the observed shift to the simulation mean for the specific shift, 

and max(x) is the maximum test-statistic across the entire simulation. 

 

Gene expression analysis in arginine-codon switching samples 

Tumors from TCGA were assigned as high or low arginine codon switching using the in silico 

model described above and assigned a z-score based on the number of deviations from expectation 

for each sample. The top and bottom 20% of samples were assigned as high-switching and low-

switching respectively. To determine if ASS1 expression is differentially expressed between 

tumors with high or low arginine codon-switching, raw counts from RNA sequencing were 

obtained using the TCGAbiolinks package in R(46–48) and subsequent normalization and 

differential gene expression analysis between high and low arginine codon-switching groups 

performed using DESeq2(49, 50). For graphical purposes, DESEq2 log-normalized counts are 

plotted with the DESeq2 p-value (adjusted for multiple comparisons across all genes) annotated 

for ASS1.  
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In order to contrast gene expression patterns between in vivo and in vitro cancer cells, spearman 

correlation coefficients were calculated between median-of-ratios normalized count data and the 

codon-switching scores assigned from simulation, then ranked based on strength of correlation for 

mutual information analysis with iPAGE(9). For CCLE samples, RNA sequencing count data were 

obtained from the Cancer Dependency Map version (most recently processed with release 21Q4) 

(51, 52) and also normalized with median of ratios using DESeq2. Codon changes in colorectal 

and gastric cancer cell lines were calculated based on corresponding mutational data which were 

obtained from the Cancer Dependency Map. Spearman correlation coefficients between gene 

expression and arginine codon loss were calculated and then input for mutual information analysis 

identical to how the TCGA samples were processed. For the iPAGE program, the independence 

flag was set to zero to allow for calculation of over-representation in the maximum number of 

pathways and the ebins parameter set to four. To graphically depict shared pathways, only genes 

in the top bin (corresponding to the top 25% of correlated genes) with pathway over-representation 

in both COADREAD and STAD datasets were selected for graphing, with pathways collapsed 

onto the most top-level statistically significant pathway in the Reactome hierarchy(53).  

 

 

Analysis of mutational events in TCGA RNAseq data: Raw counts from TCGA were obtained 

using TCGAbiolinks package in R(46–48). Gene size was estimated using the GenomicFeatures 

package in R (54) to calculate gene size from exon length using the GRCh38.105.gene transfer 

format data from ENSEMBL and used the calculate transcripts per million for each gene in each 

sample. Genes were then sorted and ranked within each sample. Mutational events in the top or 

bottom of half of gene expression in each sample were counted by cross-referencing and matching 
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sample barcodes to whole-exome sequencing data collected in the TCGA. High-arginine mutated 

and low-arginine groups were assigned as previously specified.  

 

Arginine viability studies: Colon cancer cell lines were grown in arginine free media 

(Thermofisher, Cat # A2493901, US Bio Cat# D9803-07B) supplemented with 10% dialyzed FBS 

(ThermoFisher, Cat# 26400044) and with arginine supplementation (Sigma Aldrich Cat #A8094). 

Lysine (Sigma Aldrich Cat #A8094) and bicarbonate were supplemented to DMEM reference 

levels (Supplemental table 1). Cells were plated into 96 well plates (3000 cells per well) and cell 

viability was assessed with a luminescence-based assay (CellTiter Glo, Promega, Cat # G7572) at 

48 hours on a SpectraMax M3 plate reader (Molecular Devices). For nucleotide rescue 

experiments, nucleobases were supplemented at concentrations up to 10x reported physiologic 

concentrations (55) (Sigma Aldrich Cat #A2786, #C3506, #G11950, #T0895).  All cell lines were 

periodically assessed for mycoplasma contamination by PCR for genomic DNA. 

 

Cancer evolution experiments: Cell lines were grown under periods of intermittent arginine 

deprivation (12.5 uM) using arginine-free media (ThermoFisher, Cat # A2493901) supplemented 

with dialyzed FBS and arginine to desired concentrations (Gibco# 26400044). Starvation cycles 

consisted of 4 days starvation followed by rescue with standard DMEM and dialyzed FBS. Cell 

lines were starved for a total of 8 cycles. In parallel, cell lines were maintained under standard 

tissue culture conditions and passaged to control for underlying genetic drift. At the end of the 

starvation cycles, DNA was extracted from both the starved and unstarved cancer cell lines 

(Qiagen DNeasy Blood and Tissue Kit, Cat#69506) with RNAse A treatment (Qiagen Cat# 19101) 

and sent for whole genome sequencing at the New York Genome Center.  
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Arginine deprivation experiments: DMEM media with varying levels of arginine were prepared 

as described above. Cells were plated to approximately 20% confluence in standard DMEM media 

supplemented with 10% v/v fetal bovine serum. At approximately 40% confluence, cells were 

washed three times with equal volume PBS and media was replaced with either control media 

(DMEM with standard amino acid concentrations and 10% v/v dialyzed FBS) or treatment media 

(DMEM with 12.5 uM arginine with 10% v/v dialyzed FBS). Sample collection methods for 

respective experiments, i.e., western blots, northern blots, etc., are described in the respective 

sections. Unless specified otherwise, cell samples were collected at 24 hours after initiating 

starvation for downstream experiments. 

Knockdown experiments:  

 For knockdown of RARS, either SMARTPool (Horizon Discovery cat# L-009820-02) siRNA or 

control non-targeting siRNA (Horizon Discovery cat#D-001810-10) were utilized with 

Lipofectamine RNAiMAX transfection reagent (Invitrogen). Transfections were carried out 20 

nM siRNA following the manufacturer’s instructions. In brief, siRNAs were diluted in Opti-

MEM I (Invitrogen) and mixed with Lipofectamine RNAiMAX for 20 minutes. The mixture was 

subsequently added to adherent cells, rinsed with PBS (Corning), and incubated for 6 hrs before 

changing back to fresh complete media. Transfections were incubated for 4 days before RNA 

and protein collection.   

 

Western blots: Protein lysates were extracted with ice-cold RIPA buffer supplemented with 

protease and phosphatase inhibitors (Roche). Thirty μg of protein lysates were separated using 

SDS–polyacrylamide gel electrophoresis and transferred to a PVDF membrane (Immobilion-P, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 2, 2023. ; https://doi.org/10.1101/2023.01.02.521806doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.02.521806
http://creativecommons.org/licenses/by-nc-nd/4.0/


Millipore, IPVH00010). After blocking the membranes in 5% BSA in TBST (1× TBS (Cell 

Signalling); 0.1% Tween20 (Sigma)), the membranes were incubated overnight at 4 °C with 

primary antibodies either rabbit anti-ASNS antibody (Proteintech, 14681-1-AP) diluted 1:1,000 in 

5% BSA (Sigma), mouse anti-β-Actin antibody (Millipore Sigma A5441) diluted 1:5,000 in 5% 

BSA (Sigma), and rabbit anti-RARS (Proteintech, 27344-1-AP) diluted 1:1,000 in 5% BSA 

(Sigma). 

 

Primary antibodies were incubated in 5% BSA in TBST overnight at 4 °C. After washing the blots 

3 times for 15 min each in TBST, the membranes were incubated with HRP-conjugated goat anti-

rabbit IgG (H+L) or HRP-conjugated goat anti-mouse IgG (H+L) secondary antibody (Invitrogen). 

Finally, the membranes were incubated with ECL western blot substrate (Thermo Scientific) for 1 

min. X-Ray films (Fujifilm) were exposed to the western blot membranes and developed with a 

film processor (SRX-101A, Konica Minolta) and exposure.  

 

RNA isolation and purification: RNA was extracted from cells using TRIzol (Invitrogen) and 

isopropanol precipitation according to manufacturer’s instructions. After precipitation, the RNA 

pellet was washed twice with ice-cold freshly prepared 75% EtOH and then subsequently air-dried 

and resuspended in TE buffer. 

 

Northern blots: Purified RNA was run on 10% TBE-Urea gels at 200V for 1 hour and transferred 

to a Hybond-N+ membrane (GE) at 150A for 1 hour. RNA was crosslinked to the membrane using 

UV radiation at 240 mJ/cm2. Membranes were blocked with Oligo Hybridization Buffer (Ambion) 

for 1 hour at 42 °C. Northern probes were labeled with 32P ATP with T4 PNK (NEB) and purified 
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with a G25 column (GE healthcare). Probes were hybridized in Oligo Hybridization Buffer 

overnight at 42 °C. Membranes were washed with 2X SSC 0.1% SDS buffer and 1X SSC 0.1% 

SDS prior to exposing film. Films were developed with exposure times adjusted based on the probe 

signal strength. Probe sequences were as follows: tRNAArgUCG: 5’-

GCCTTATCCATTAGGCCACGT-3’, tRNAArgUCU: 5’-ATCCATTGCGCCACAGAGCC-3’, 

tRNAArgACG: 5'-CCGTAGTCAGACGCGTTA-3', tRNAArgCCG: 5’-

CCGGAATCAGACGCCTTAT-3', tRNAHisGUG: 5’- AACGCAGAGTACTAACCACTATACG-

3’, tRNATyrGUA: 5’-ACAGTCCTCCGCTCTACCAGCTGA-3’, tRNALeuUAG: 5’- 

CTCCGAAGAGACTGGAGCCTAAA -3’, and U6: 5’-CACGAATTTGCGTGTCATCCTT-3’. 

Multiple probes were tried for tRNAArgCCU, however none yielded any detectable signal despite 

large yields of total RNA and strong signals for the other arginine tRNA. There is currently no 

clearly identified gene for tRNAArgGCG and therefore northern blots were not attempted for this 

tRNA(56, 57). Membranes were stripped by washing with 0.1% SDS in boiling water and allowing 

to cool to room temperature. Subsequent probes were applied starting with re-blocking with Oligo 

Hybridization Buffer and repeating all downstream steps with new freshly-labeled probes. Band 

intensity quantification was perfumed using ImageJ with the signal in each lane being normalized 

to U6. 

 

PDX propagation: Patient derived xenografts were propagated as previously described(27). In 

brief, within 2 hours of surgical resection, CRC tumor tissue that was not needed for diagnosis was 

implanted subcutaneously into NSG mice at the MSKCC Antitumor Assessment Core facility.  
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When the tumor reached the pre-determined end-point of 1,000 mm, the tumor was excised and 

transferred to the Rockefeller University. Xenograft tumor pieces of 20–30 mm3  were re-

implanted. When the subcutaneous tumor reached 1,000 mm3 , the tumor was excised. The rest of 

the tumor was chopped finely with a scalpel and placed in a 50 ml conical tube with a solution of 

Dulbecco’s Modified Eagle Medium (Gibco) supplemented with 10% v/v fetal bovine serum 

(Corning), L-glutamine (2 mM; Gibco), penicillin-streptomycin (100 U/ml; Gibco), Amphotericin 

(1 μg/ml; Lonza), sodium pyruvate (1 mM; Gibco) and Collagenase, Type IV (200 U/ml; 

Worthington) and placed in a 37°C shaker at 220 rpm for 30 min. After centrifugation and removal 

of supernatant, the sample was subjected to ACK lysis buffer (Lonza) for 3 min at room 

temperature to remove red blood cells. After centrifugation and removal of ACK lysis buffer, the 

sample was subjected to a density gradient with Optiprep (1114542, Axis-Shield) to remove dead 

cells. The sample was washed in media and subjected to a 100-μm cell strainer and followed by a 

70-μm cell strainer. Mouse cells were removed from the single-cell suspension via magnetic-

associated cell sorting using the Mouse Cell Depletion Kit ((130-104-694, Miltenyi), resulting in 

a single-cell suspension of predominantly CRC cells of human origin. 

 

PDX metabolite profiling analysis 

Metabolite profiling results from PDX samples were acquired from previously published data from 

our group(27) and processed identically to the publication.  

 

Metabolite extraction and profiling 

Metabolite extraction and subsequent Liquid-Chromatography coupled to High-Resolution Mass 

Spectrometry (LC-HRMS) for polar metabolites of cells was carried out using a Q Exactive Plus 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 2, 2023. ; https://doi.org/10.1101/2023.01.02.521806doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.02.521806
http://creativecommons.org/licenses/by-nc-nd/4.0/


and in collaboration with the Proteomics Resource Center at Rockefeller University. For all 

metabolite profiling, cells were washed with ice cold 0.9% NaCl and harvested in ice cold 80:20 

LC-MS methanol:water (v/v). Samples were vortexed vigorously and centrifuged at 20,000 g at 

maximum speed at 4°C for 10 min. Supernatant was transferred to new tubes. Samples were then 

dried to completion using a nitrogen dryer. 

 

Dried polar samples were resuspended in 60µL pre-chilled 50%(v/v) acetonitrile/water 

resuspension solvent, vortexed for 10 seconds, centrifuged for 10 minutes at 4°C and 13,200 

resolution per minute, then 14µL from each sample was transferred to create a pooled sample. This 

pooled sample was further diluted with 1:3 and 1:10 dilution factors and employed as biological 

quality control. Samples were analyzed in randomized order and at 5µL injection volume via LC-

MS system. 

 

Polar metabolites were separated on a SeQuant® ZIC®-pHILIC 5µm polymer (150 mm × 2.1 mm) 

column (EMD Millipore) connected to a Thermo Vanquish ultrahigh-pressure liquid 

chromatography coupled to a Q Exactive Plus Hybrid Quadrupole-Orbitrap mass spectrometer 

(Thermo Fisher Scientific) with a heated electrospray ionization source. Chromatographic 

separation was achieved by mixing mobile phase A consisted of 20mM ammonium carbonate with 

0.1%(v/v) ammonium hydroxide (adjusted to pH 9.3 with formic acid) and mobile phase B of 

acetonitrile in the following gradients: 90% - 40% B (0-22 min), held at 40% B (22-24 min), 40% 

- 90% B (24-24.1 min), and reequilibrated at 90% B (24.1-30 min) at a flow rate of 0.15mL/min. 

Mass spectrometric data were acquired in polarity switching mode for both MS1 (full MS) and 

MS2 (data-dependent acquisition) with the following parameters: spray voltage, 3.0kV; capillary 
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temperature, 275°C; source temperature, 250°C; sheath gas flow, 40 a.u.; auxiliary gas flow, 15 

a.u. The full MS scans were acquired with 70,000 resolution, 1×106 ACG target, 80ms max 

injection time and a scan range of 55-825 m/z. The data-dependent MS/MS scans were acquired 

at a resolution of 17,500, 1×105 ACG target, 50ms max injection time, 1.6Da isolation width, 

stepwise normalized collision energy of 20, 30, and 40 units, with 8s dynamic exclusion and a loop 

count of 2. 

 

Relative quantification of polar metabolites and its isotopologue was performed in Skyline Daily 

(v.21.2.1.403)(58) with the maximum mass error and retention time tolerance set to 2ppm and 12s 

respectively, referencing in-house retention time for polar metabolite standards. Correction to 

heavy isotopes were done using theoretical abundance obtained with enviPat R package (59). The 

isotopologue probabilities were defined and pruned to their absolute abundance. The peak table 

generated from manual peak picking from Skyline platform were cleaned up to report only 

prevalent polarity for each metabolite. 

 

Ribosome profiling 

Cell lysis, ribosome footprint purification, and downstream library construction were performed 

according to previously published protocols 24 hours after starvation(22) with minor 

modifications. Namely, for harvesting the cells, the dishes were flash frozen on liquid nitrogen 

after washing them with prechilled 1x PBS, and subsequently the frozen cells were scraped off in 

cold lysis buffer on ice. Additionally, due to the phasing out of the legacy Ribo-Zero Gold rRNA 

Removal Kit from Illumina, we used the RiboCop rRNA Depletion Kit for Human/Mouse/Rat 

(HMR) V2 (Legoxen, cat. # 144.24) to deplete ribosomal RNA, following the manufacturer's 
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instructions to retrieve small RNAs after the rRNA depletion using alcohol precipitation instead 

of the kit purification steps.  In parallel, whole RNA were also isolated for downstream RNA 

sequencing and normalization for translational efficiency analysis using the TruSeq RNA Library 

Prep Kit v2 (Illumina).  

 

Bioinformatics processing of ribosomal profiling experiments 

For bioinformatics processing, cutadapt was used to remove the linker sequence 

AGATCGGAAGAGCAC(60) and the FastX-Toolkit (RRID: SCR_005534) used to split reads by 

their barcodes(61). Prior to further downstream analysis, reads aligning to ribosomal RNA 

sequences were discarded using STAR(62) and remaining reads were aligned to the transcriptome 

(GRCh38.p13). UMI-tools was used to extract unique molecular identifiers introduced during the 

sequencing steps and deduplicate the reads(63).  The riboWaltz library was utilized to quantify 

ribosome A-site localization(64). Ribosomal protected footprint (RPF) counts were normalized 

using median of ratios normalization prior to calculating differences in A-site codon abundances 

in each group.  

 

For loess regression and quantification of stalling bias, the Ribolog package was used to quantify 

stalling coefficients under fed and starvation conditions separately using the default spanning 

parameter (23). In this framework, local regression is utilized to smooth out peaks introduced by 

stalling events and measure the degree to which ribosomal stalling occurs at any given position 

along a transcript. Larger coefficients correspond to more stalling, with values centered around 1. 

All transcripts with less than three aligned RPFs were removed prior to downstream analysis. To 

compare amino acid or codon-specific stalling coefficients, each gene was assigned its maximum 
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stalling coefficient for each amino acid or codon to estimate the greatest degree of stalling at a 

specific codon or amino acid-type for each gene. Bias coefficient ratios were calculated by taking 

the ratio between coefficients in starvation and fed conditions. In order to calculate amino acid 

identities in close proximity to maximal sites of stalling, for each gene positions were ranked by 

CELP bias coefficient to identify regions where maximal stalling was predicted to occur and then 

amino acid frequencies within the first three codons upstream and downstream of the maximum 

stalled site were counted. In order to restrict observations to the open reading frame, only positions 

that were at least ten codons downstream of the start codon and five codons upstream of the stop 

codon were considered for analysis. Observations were normalized for gene-specific codon 

content and scaled to window width to account for codon composition of each individual gene. 

Translational efficiency analysis was performed using CELP-corrected RPF counts.  

 

For allele-specific ribosome profiling, mutations from whole exome sequencing were used to 

identify genes with heterozygous single nucleotide variants (SNV). Corresponding variant 

sequences were created from the wild type sequence using a custom Python transcript and 

subsequently added to the original reference transcriptome fasta file. Alignment, ribosome A-site 

localization, and quantification of stalling coefficients were performed following the same 

procedure as above. Comparison of ribosome stalling around single nucleotide variants were then 

calculated by comparing stalling coefficients upstream and downstream of the SNV and statistical 

analysis performed only on genes containing that were heterozygous for a SNV. 

  

Proteomics 
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The RKO cell line was selected for proteomics experiments due to its high frequency of arginine-

codon switching mutations. At 24 hours after starvation at 12.5 uM arginine, cells were washed 

with PBS and treated with 0.25% trypsin to detach cells from the plate. Suspensions were 

immediately placed on ice with full media and centrifuged at 4°C, then resuspended in PBS twice 

to wash out media and FBS components. Following washing steps, cell pellets were resuspended 

in lysis buffer consisting of 0.02 M Tris-HCl (pH 7.4), 0.1 M KCl, 0.001 M EDTA (pH 8), and 

0.5 M NP-40. One tablet of 1x cOmplete protease inhibitor (Roche) was added to 10 mL of fresh 

lysis buffer. Samples were incubated on ice and vortexed every five seconds for a total of 15 

minutes, then sonicated on ice with a 4x five-second pulse at 40% amplitude with a 30 second 

break between samples. Following sonication, samples were transferred to clean tubes and spun 

down again at max speed at 4°C for 10 minutes. The resulting supernatant was transferred to an 

additional set of clean tubes for further proteomics analysis. Prior to any downstream processing, 

protein was quantified using the Pierce BCA Protein Assay Kit (cat# 23225). Twenty-five 

micrograms of protein from each sample was run at 200 V for 50 minutes in a 4-12% Bis-Tris gel 

with MOPS buffer. The gel was stained and visualized with SimplyBlue Safestain (Thermofisher 

cat# LC6060) following manufacturer’s instructions to ensure distinct protein bands and rule out 

obvious residual contamination from trace bovine serum albumin before proceeding to 

downstream quantification. 

 

Further sample processing was then performed in collaboration with the Proteomics Resource 

Center at Rockefeller University: 50 µg of protein from each sample was reduced and alkylated 

using dithiothreitol and iodoacetamide. Proteins were precipitated using 

chloroform/water/methanol extraction and pellets were digested with Endopeptidase LysC (Wako 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 2, 2023. ; https://doi.org/10.1101/2023.01.02.521806doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.02.521806
http://creativecommons.org/licenses/by-nc-nd/4.0/


Chemicals) and sequencing grade modified trypsin (Promega). Peptides were labeled with 

TMTpro isobaric tags (Thermo Scientific), pooled, purified using an Oasis HLB cartridge 

(Waters), and fractionated using a high-pH fractionation spin column kit (Pierce). Fractionated 

peptides were separated across a 2.5-hour linear gradient on a 250mm*75µm Easyspray column 

using a Dionex 3000 HPLC system operating at 300nL/min and analyzed by a Q-Exactive HF 

mass spectrometer (Thermo Scientific) operating in positive data-dependent acquisition 

mode. Raw data was queried against the human proteome (downloaded from uniprot.org on 

2/12/2019) at 1% FDR using MaxQuant v. 1.6.1.0. Data was searched using standard settings. 

Further statistical analysis was performed within the Perseus framework using version 1.6.5.0. 

Protein-group intensities were log2-transformed and normalized by subtraction of the median. 

Statistical significance was tested for using FDR-corrected (permutation-based with 250 

randomizations) t-test (q=0.05). 

 

Pathway enrichment for proteomics changes was performed with iPAGE(9). For downstream 

quantification of mutational events in the proteome, proteins that were significantly increased or 

decreased in either fed or starvation conditions were selected with FDR < 0.05. Mutational status 

in each gene set was then cross-referenced to previously collected whole exome sequencing data 

to determine mutational status of differentially abundant proteins. Mutational changes were 

normalized to total number of new mutations per cell relative to the unselected cell lines. 

 

Whole exome sequencing and analysis 

DNA was extracted using the DNeasy Blood and Tissue Kit (QIAGEN) following manufacturer’s 

instructions. Prior to sequencing, DNA was subjected to quality control with Picogreen and 
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Fragment Analyzer to determine DNA integrity. Cancer samples were then sent for sequencing at 

the New York Genome Center. Whole exome sequencing (WES) libraries were prepared using the 

Agilent SureSelect XT library preparation kit in accordance with the manufacturer’s instructions.  

Briefly, DNA was sheared using a Covaris LE220. DNA fragments were end-repaired, adenylated, 

ligated to SureSelect oligo adapters, and amplified by PCR.  Exome capture was performed using 

the Agilent SureSelect XT Human All Exome v6 (60Mb) capture probe set and captured exome 

libraries were ligated to Agilent Sequencing adapters during target selection and enriched by PCR.  

Final libraries were quantified using the Qubit Fluorometer (Life Technologies) or Spectromax 

M2 (Molecular Devices) and Fragment Analyzer (Advanced Analytical) or Agilent 2100 

BioAnalyzer, and were sequenced on an Illumina NovaSeq 6000 sequencer run across two lanes 

of an S4-300 cycle flow cell. 

 

For cancer cell lines, base calling and filtering were performed using current Illumina software; 

sequences were aligned to NCBI genome build 37 using Burrows-Wheeler Aligner (65). Picard 

was used to mark duplicate reads (Picard v1.83; http://picard.sourceforge.net); local realignment 

around insertions and deletions and base quality scores were recalibrated using GATK (Genome 

Analysis Toolkit v3.5, PMID: 21478889). Variants were called using GATK HaplotypeCaller, 

which generates a single-sample GVCF. To improve variant call accuracy, multiple single-sample 

GVCF files were jointly genotyped using GATK GenotypeGVCFs, which generates a multi-

sample VCF.  Variant Quality Score Recalibration (VQSR) was performed on the multi-sample 

VCF, which adds quality metrics to each variant that can be used in downstream variant filtering.   
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For mouse PDX exome sequencing, base calling and filtering were performed using current 

Illumina software.  Mouse reads were then detected and removed from the FASTQ files by aligning 

the data to a combined reference of mouse (GRCm38) and human (NCBI genome build 37). All 

read pairs with both reads mapping to mouse or one read mapping to mouse and the other 

unmapped were excluded from subsequent processing and analyses steps. The samples were then 

processed through NYGC’s somatic pre-processing and variant calling pipelines. The samples 

were aligned to build 37 using Burrows-Wheeler Aligner (BWA-MEM v0.7.15) (65); NYGC’s 

ShortAlignmentMarking (v2.1) is used to mark short reads as unaligned 

(https://github.com/nygenome/nygc-short-alignment-marking). GATK (v4.1.0) 

FixMateInformation is run to verify and fix mate-pair information, followed by Novosort 

(v1.03.01) markDuplicates to merge individual lane BAM files into a single BAM file per sample.  

Duplicates are then sorted and marked, and GATK’s base quality score recalibration (BQSR) is 

performed. The final result of the pre-processing pipeline is a coordinate sorted BAM file for each 

sample. Variants were called using GATK HaplotypeCaller, which generates a single-sample 

GVCF. To improve variant call accuracy, the GVCF files were genotyped using GATK 

GenotypeGVCFs, and Variant Quality Score Recalibration (VQSR) was performed which adds 

quality metrics to each variant that was used in downstream variant filtering. 

 

Variants were annotated using ANNOVAR(66).  Any mutation appearing in the majority (at least 

2 out of 3) control cell lines were considered parental mutations. Variant calls that did not fall into 

the former category were used for further analysis. In situations where mutational events were 

predicted to affect multiple transcripts and result in more than one possible amino acid/codon 

switching event, all mutational events were first counted and then normalized to the total number 
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of transcripts affected from the single mutation. For cell line analyses, mutational counts were 

averaged across triplicates in each cell line and amino acid / codon switching events normalized 

to the total number of new single nucleotide variations in each specific sample. For PDX 

experiments, we made the following adjustment: since the parental tumors were generally not 

propagated across multiple mice in contrast to the highly-liver metastatic derivative, unique 

mutations were filtered out using the matched tumors as a reference. We then calculated the rate 

of events in shared mutations and compared this to the frequency in the mutations unique to only 

liver-metastatic tumors. 

 

Software libraries used: 

Experiment and model schematics were created with BioRender.com Specialized software 

libraries used for gene expression, ribosome profiling, and WES analyses are cited in their 

respective methods sections. For statistical analysis and plotting not specifically referenced, we 

used the following Python libraries: NumPy (1.19.2), pandas (1.13), SciPy (1.5.2), bioinfokit 

(2.0.3) and Seaborn(0.11.0) as well as the following R libraries: corrplot (0.92). Graphpad Prism 

(9.1.2) was also used to assist with statistical analysis and figure creation. 

 

Statistical analysis 

Statistical analyses (t-tests, Mann-Whitney tests) were carried out using Prism 9 or SciPy (67) 

and were two-tailed tests unless otherwise specified in the text. Bioinformatics analyses for gene 

expression and ribosome profiling were carried out using specialized software packages as 

described under their corresponding sections. Throughout all figures, *p < 0.05, **p < 0.01, and 

***p < 0.001, ****p < 0.0001. Significance was concluded at p < 0.05. 
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Figures and Tables 

 

Fig. 1. Arginine codons and residues are frequently lost and are associated with an increase in 

ASS1 expression. (A) Heatmap depicting codons gained (red) and lost (blue) across the TCGA. Gains 

and losses are normalized to the total number of missense and silent mutation events for each cancer type 

(B) Qualitative chord diagram showing amino acid switching events in cancer after adjustment from 

simulations. Ribbons which directly touch a column segment indicate loss of that specific amino acid 

codon during a mutational event and gain of the corresponding amino acid codon in which the ribbon 

terminates. Ribbons that begin and end at the same amino acid represent synonymous mutations (C) 

Arginine codon switching events observed versus predicted. Clusters were assigned with Affinity 
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Figure 1 | Arginine codons and residues are frequently lost and are associatedwith an increase inASS1expression. a,Heatmap depicting codons gained (red) and lost (blue) across the TCGA.Gains
and losses are normalized to the total number of missense and silent mutation events for each cancer type. b,Qualitative chord diagram showing amino acid switching events in cancer after adjustment from
simulations. Ribbons which directly touch a column segment indicate loss of that specific amino acid codon during a mutational event and gain of the corresponding amino acid codon in which the ribbon
terminates.Ribbons thatbeginandendat thesameaminoacid representsynonymousmutations.c.,Argininecodonswitchingeventsobservedversuspredicted.ClusterswereassignedwithAffinityPropogation.
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Propagation (D) ASS1 expression in colorectal cancer samples with either a high-degree or low-degree 

of arginine codon switching events  (n=96 per group) (DESeq2 ****Padjusted < 0.0001). 

 

 

Fig. 2. Arginine codon losses are associated with increased dependence on extracellular arginine 

and nucleotide pool instability during starvation. (A) Cell line viability under low arginine (12.5 uM) 

conditions. (n = 3 per group) (B) Effect of nucleotide supplementation on colon cancer cell viability with 

arginine deprivation (n = 6 per group, two-tailed t-test) (C) Metabolite profiling differences after 

exposure to low arginine concentrations for 24 hours. Each point represents a purine/pyrimidine pathway 

metabolite and is the average log2FC difference between high arginine codon-mutated lines and low-

codon mutated lines (one-sample t-test with μ0 = 0). (D) Volcano plot of metabolite changes following 
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Figure 2 | Arginine codon losses are associated with increased dependence on extracellular arginine and nucleotide pool instability during starvation. a., Cell line viability under low arginine (12.5
uM) conditions. b,Effect of nucleotide supplementation on colon cancer cell viability with arginine deprivation (two-tailed t-test). c.,Metabolite profiling differences after exposure to low arginine concentrations or
24 hours. Each point represents a purine/pyrimidine pathwaymetabolite and is the average log2FCdifference betweenhigh arginine codon-mutated lines and low-codonmutated lines (one-sample t-test with μ0
= 0).d.,Volcano plot ofmetabolite changes following arginine deprivation. Only detected citric acid cycle, urea cycle, amino acids, and nucleotide intermediates are labeled. (*P < 0.05, **P < 0.01, ***P<0.001)
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arginine deprivation. Only detected citric acid cycle, urea cycle, amino acids, and nucleotide 

intermediates are labeled.  (*P < 0.05, **P < 0.01, ***P<0.001) 

 

 

Fig. 3. Arginine deprivation reduces arginine tRNA availability, increases arginine ribosome 

localization, and reduces arginine usage in the tumor proteome. (A) tRNA quantification as assessed 

via northern blot. Each dot represents the average abundance in an independent colon cancer or gastric 

cancer cell line (n = 7 per group, one-sample t-test with μ0 = 0) (B) Ribosome A-site localization counts 

from ribosomal profiling experiments under starved or fed conditions. Circle size is scaled to counts (C) 

Amino acid usage in genes that are highly expressed under fed or starved states (D) Arginine codon 
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abundance in genes expressed in fed or starved states (n > 450 per group, two-tailed Mann-Whitney test). 

Proteins are stratified based on the top 10% most changed in either fed or starved states. (*P<0.05, 

**P<0.01, ***P<0.001, ****P<0.0001) 

 

 

 

 

Fig. 4. Arginine deprivation promotes arginine-losing mutations. (A) Schematic of arginine 

deprivation experiments. (B) Arginine codon changes in cells serially passaged in either full media or 

low arginine media (n=3 per group, two-tailed paired t-test). (C) Arginine codon changes in proteins that 
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are increased during the fed or arginine-starved states (n = 3 per group, two-tailed t-test). (D) Histidine 

codon changes in proteins that are increased during the fed or arginine-starved states (n = 3 per group, 

two-tailed t-test) (E) Arginine codon changes in PDX tumors that underwent multiple rounds of in vivo 

liver metastatic selection (n = 3 per group, one-tailed paired t-test). (*P<0.05, **P<0.01) 
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