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Abstract
Accelerated	 aging	 is	 a	 hallmark	 of	Down	 syndrome	 (DS),	 with	 adults	 experiencing	
early-	onset	Alzheimer's	disease	and	premature	aging	of	 the	 skin,	hair,	 and	 immune	
and	endocrine	 systems.	Accelerated	 epigenetic	 aging	has	been	 found	 in	 the	blood	
and brain tissue of adults with DS but when premature aging in DS begins remains 
unknown. We investigated whether accelerated aging in DS is already detectable in 
blood at birth. We assessed the association between age acceleration and DS using 
five epigenetic clocks in 346 newborns with DS and 567 newborns without DS using 
Illumina	MethylationEPIC	DNA	methylation	array	data.	We	compared	two	epigenetic	
aging	clocks	(DNAmSkinBloodClock	and	pan-	tissue	DNAmAge)	and	three	epigenetic	
gestational	age	clocks	 (Haftorn,	Knight,	and	Bohlin)	between	DS	and	non-	DS	new-
borns using linear regression adjusting for observed age, sex, batch, deconvoluted 
blood cell proportions, and genetic ancestry. Targeted sequencing of GATA1 was per-
formed	in	a	subset	of	184	newborns	with	DS	to	identify	somatic	mutations	associated	
with transient abnormal myelopoiesis. DS was significantly associated with increased 
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1  |  INTRODUC TION

Down	syndrome	 (DS)	 is	 the	most	 common	chromosomal	disorder,	
affecting approximately one in every 700 babies born in the United 
States	 (Mai	et	al.,	2019).	DS	 is	caused	by	constitutional	 trisomy	of	
chromosome	 21	 (T21)	 and	 is	 associated	 with	 an	 array	 of	 pheno-
types, typically including developmental delay and characteristic 
facial dysmorphism, and congenital heart disease in approximately 
50%	of	individuals	(Antonarakis	et	al.,	2020).	In	early	life,	DS	is	also	
associated with defects in neonatal hematopoiesis and dysregula-
tion of the developing immune system, and an increased risk of both 
lymphoid	and	myeloid	malignancies	in	childhood	(Hasle	et	al.,	2000; 
Jardine	et	al.,	2021; Roy et al., 2012;	Verstegen	et	al.,	2020).	In	adults	
with DS, accelerated aging is a hallmark feature that manifests phe-
notypically in the premature aging of the skin, hair, and immune 
and	endocrine	systems,	and	in	early-	onset	Alzheimer's	disease	(AD)	
(Devenny	et	al.,	2005; Zigman, 2013).

Using “epigenetic clocks,” it has previously been demonstrated 
that accelerated epigenetic aging occurs in the blood and brain tis-
sues	 of	 adults	with	DS	 (Horvath	 et	 al.,	2015),	 supporting	 that	 ac-
celerated aging may underlie senescence- associated conditions in 
these tissues among individuals with DS. More recently, accelerated 
epigenetic aging in DS was discovered in fetal retinal cells in a small 
number	of	T21	samples	 (Hoshino	et	al.,	2019),	however,	when	the	
premature aging of blood cells in DS begins has yet to be examined. 
Here, we investigated whether accelerated epigenetic aging in DS is 
already detectable in whole blood samples obtained at birth, using 
two	epigenetic	clocks	(pan	tissue,	and	the	skin	and	blood	clock)	that	
were developed with newborn blood samples in their training sets 
and are applicable to individuals across the lifespan.

2  |  RESULTS

Our analyses included 346 newborns with DS and 567 newborns 
without	DS,	with	available	neonatal	dried	bloodspot	samples	(DBS)	
from California or Washington State newborn screening programs 
(Table 1, see Section 4)	 (Muskens	et	al.,	2021).	Demographic	char-
acteristics were similar between DS and non- DS newborns. Mean 
chronological age from conception at the time of blood sampling 

was	 significantly	 lower	 in	DS	 (269 days)	 than	 in	non-	DS	newborns	
(276 days,	p < 0.0001),	driven	by	the	significantly	 lower	gestational	
age in DS newborns despite a longer average time between delivery 
and	DBS	collection	(Table 1 and Supplemental Dataset).	Newborns	
with	DS	had	 significantly	 lower	birthweight	 (mean	=	 3030 g)	 than	
non-	DS	newborns	(mean	=	3386 g,	p < 0.0001).

Genome-	wide	 DNA	 methylation	 data	 were	 obtained	 from	
DBS-	derived	 DNA	 from	 the	 346	 DS	 and	 567	 non-	DS	 newborns	
using	 Illumina	 Infinium	 MethylationEPIC	 Beadchip	 arrays	 (see	
Section 4).	We	calculated	two	epigenetic	age	clocks,	the	pan-	tissue	
DNA	 methylation	 clock	 (DNAmAge)	 and	 the	 skin	 &	 blood	 clock	
(DNAmSkinBloodClock),	based	on	 the	methods	of	Horvath	 (2013)	
and	 Horvath	 et	 al.	 (2018)	 (see	 Section	4).	 Bivariate	 tests	 demon-
strated	significantly	higher	DNAmSkinBloodClock	(mean	=	−0.16	vs.	
−0.40,	p < 0.0001)	and	DNAmAge	(mean	=	0.28	vs.	0.08,	p < 0.0001)	
in	 DS	 newborns	 than	 in	 newborns	without	 DS	 (Figures 1, S1A,B,	
Supplemental Dataset).	 Visual	 inspection	 of	 copy-	number	 plots	
generated from methylation array probe intensities revealed 6 DS 
newborns with median log2 ratios on chromosome 21 ranging from 
0.08	 to	0.18,	 all	 of	which	were	>2 standard deviations below the 
average median chromosome 21 log2 ratio across all DS newborns 
(Figures 2a and S2).	Given	the	low	resolution	and	relatively	low	ac-
curacy	of	 copy-	number	 variant	 calls	 using	DNA	methylation	 array	
data	(Kilaru	et	al.,	2020),	it	was	not	possible	to	distinguish	between	
mosaic and partial trisomies, thus, we termed these 6 subjects as 
“likely mosaic/partial T21.” Nonparametric bivariate tests showed 
significantly	 higher	 DNAmSkinBloodClock	 in	 the	 6	 likely	 mosaic/
partial	 T21	 newborns	 than	 in	 non-	DS	 newborns	 (median	=	 −0.31	
vs.	−0.40,	p = 0.027; Figure 2b).	DNAmAge	was	similarly	higher	in	
these 6 DS newborns than in non- DS newborns, although the result 
was	not	 statistically	 significant	 (median	= 0.14 vs. 0.05, p =	 0.38;	
Figure S3A).

Chronological age, calculated from gestational age plus the age 
at blood sampling, was significantly positively correlated with both 
DNAmSkinBloodClock	and	DNAmAge	in	DS	(r =	0.18	and	r = 0.14, re-
spectively)	and	non-	DS	(r = 0.17 and r =	0.15)	newborns,	and	with	sim-
ilar Spearman correlation coefficients in DS compared with non- DS 
subjects	 (Figures 3 and S1C–	F).	 Increased	 DNAmSkinBloodClock	
was	 strongly	 correlated	 with	 increased	 DNAmAge	 in	 both	 DS	
(r = 0.62, p < 0.0001)	and	non-	DS	newborns	 (r = 0.46, p < 0.0001)	

DNAmSkinBloodClock	(effect	estimate	= 0.2442, p < 0.0001),	with	an	epigenetic	age	
acceleration	of	244 days	in	newborns	with	DS	after	adjusting	for	potential	confound-
ing	factors	(95%	confidence	interval:	196–	292 days).	We	also	found	evidence	of	epi-
genetic age acceleration associated with somatic GATA1 mutations among newborns 
with	DS	(p =	0.015).	DS	was	not	associated	with	epigenetic	gestational	age	accelera-
tion. We demonstrate that accelerated epigenetic aging in the blood of DS patients 
begins prenatally, with implications for the pathophysiology of immunosenescence 
and other aging- related traits in DS.
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(Figure	S4).	Given	that	the	DNAmSkinBloodClock	had	the	strongest	
correlations with chronological age, our main results focus on this 
epigenetic clock.

We previously reported significant differences in deconvoluted 
blood	cell	proportions	between	DS	and	non-	DS	newborns	(Muskens	
et al., 2021).	Using	the	same	Identifying	Optimal	Libraries	method	

(Gervin	et	al.,	2019; Koestler et al., 2016),	we	similarly	found	signifi-
cantly lower proportions of B lymphocytes, CD4+ T lymphocytes, 
granulocytes,	 and	 monocytes,	 and	 higher	 proportions	 of	 CD8+ 
T lymphocytes, natural killer cells, and nucleated red blood cells 
(nRBCs)	in	DS	newborns	than	in	non-	DS	newborns	in	this	expanded	
dataset, and in the additional 150 DS and 132 non- DS subjects 

Variables DS (n = 346) Non- DS (n = 567) p value

ALL	status	(%) <0.001

Control 199	(57.5) 437	(77.1)

Case 147	(42.5) 130	(22.9)

Sex	(%) 0.229

Female 158	(45.9) 236	(41.6)

Male 186	(54.1) 331	(58.4)

Missing	(%) 2	(0.6)

Ethnicity	(%) 0.819

Hispanic 190	(55.6) 321	(56.6)

Other 56	(16.4) 84	(14.8)

White 96	(28.1) 162	(28.6)

Missing	(%) 4	(1.2)

Gestational	age,	days	(mean	[SD]) 266.98	(17.65) 274.47	(13.93) <0.001

Missing	(%) 40	(11.6) 26	(5)

Age	at	blood	collection	(mean	[SD]) 55.25	(49.74) 32.72	(17.46) <0.001

Missing	(%) 31	(9.0)

Chronological	age,	days	(mean	
[SD])

269.22	(17.58) 275.84	(13.80) <0.001

Missing	(%) 52	(15.0) 26	(5)

Birthweight,	g	(mean	[SD]) 3029.90	(686.27) 3386.10	(541.77) <0.001

Missing	(%) 24	(6.9)

DNAmSkinBloodClock	(mean	[SD]) −0.16	(0.29) −0.40	(0.07) <0.001

DNAmAge	(mean	[SD]) 0.28	(0.61) 0.08	(0.17) <0.001

Haftorn	clock	(mean	[SD]) 269.45	(12.18) 278.75	(8.95) <0.001

Knight	clock	(mean	[SD]) 262.50	(14.87) 276.39	(10.91) <0.001

Bohlin	clock	(mean	[SD]) 274.97	(11.44) 276.78	(8.56) 0.007

Excluding chr21 CpGs and IDOL 
CpGs

DNAmSkinBloodClock	(mean	
[SD])

−0.34	(0.22) −0.53	(0.06) <0.001

DNAmAge	(mean	[SD]) 0.38	(0.61) 0.16	(0.18) <0.001

nRBC	status	(%)

High 60	(17.3) 1	(0.2) <0.001

Not high 286	(82.7) 566	(99.8)

GATA1	mutation	(%)

No 154	(83.7)

yes 30	(16.3)

Missing	(%) 162	(46.8)

GATA1	mutation	VAF	(mean	[SD]) 0.04	(0.15)

Missing	(%) 162	(46.8)

Note: p	values	for	continuous	variables	were	calculated	using	the	Student's	t test and for 
categorical variables using the Chi- squared test.

TA B L E  1 Characteristics	of	newborn	
study participants stratified by Down 
syndrome	status	(n =	913)
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that	 were	 not	 analyzed	 previously	 (Table	 S1).	 Next,	 we	 assessed	
the correlations between blood cell proportions and epigenetic age 
(DNAmSkinBloodClock)	 in	 DS	 and	 non-	DS	 newborns	 separately,	
given the differences in blood cell proportions between the two 
groups. Epigenetic age showed a significant negative correlation 
with proportions of B- cells and granulocytes in both DS and non- DS 
newborns, and a significant positive correlation with nRBCs in DS 
newborns	but	not	 in	non-	DS	newborns	 (Figure	S5).	Given	 the	dif-
ferences in deconvoluted blood cell proportions between DS and 
non- DS newborns and their associations with epigenetic age, we 
include blood cell proportions as covariates in regression models an-
alyzing	the	association	between	epigenetic	aging	and	DS.

Linear regression analysis showed that each one- day increase 
in chronological age corresponded to a 0.001 unit increase in 
DNAmSkinBloodClock	in	non-	DS	newborns	(Figure 3D).	Epigenetic	

age of DS newborns appeared to lie above the regression line esti-
mating	the	association	between	DNAmSkinBloodClock	and	chrono-
logical	 age	 in	 non-	DS	 newborns	 (Figure 3D),	 indicating	 that	 DS	
subjects exhibited accelerated aging effects. Thereby, we calculated 
epigenetic	age	acceleration	(DNAmAA)	for	each	subject	as	the	de-
viation from the expected epigenetic age clock based on its linear 
association	 with	 chronological	 age	 in	 non-	DS	 newborns	 (the	 dis-
tance from the observed epigenetic age to the blue regression line 
of non- DS newborns in Figure 3D).	By	definition,	the	mean	epigene-
tic	age	acceleration	in	non-	DS	newborns	was	zero.	Mean	DNAmAA	
was	 0.2418	 in	 DS	 newborns,	 which	 was	 significantly	 higher	 than	
zero	(p < 0.0001;	Figure 4).	Epigenetic	age	acceleration	derived	from	
the	pan-	tissue	DNAmAge	clock	was	also	significantly	different	be-
tween	DS	and	non-	DS	newborns	(p < 0.0001;	Figure	S1G,H).	For	the	
6 DS newborns with likely mosaic/partial T21, we found significant 

F I G U R E  1 Epigenetic	age	in	newborns	
with and without Down syndrome. 
The different distributions of the 
DNAmSkinBloodClock	epigenetic	clock	
in	newborns	with	Down	syndrome	(DS,	
n =	346)	and	newborns	without	DS	(non-	
DS, n =	567)	are	shown	as	a	density	plot	
(panel	a)	and	a	box	plot	(panel	b).	p value 
from	the	Student's	t test is shown in panel 
b

F I G U R E  2 Six	newborns	with	likely	mosaic/partial	trisomy	21	and	their	epigenetic	age	compared	to	newborns	with	full	trisomy	21	and	
newborns	without	Down	syndrome.	The	different	distributions	of	the	median	log2	copy	ratio	on	chromosome	21	in	DS	newborns	(n =	346)	
and	non-	DS	newborns	(n =	567)	are	shown	as	a	box	plot	in	panel	a.	The	median	log2	ratio	on	chromosome	21	was	calculated	across	317	
bins generated by “conumee,” with 20 randomly selected non- DS newborns as the reference. The 6 likely mosaic/partial DS newborns were 
highlighted at a median chromosome 21 log2 ratio >2 standard deviations below the average median chromosome 21 log2 ratio across all DS 
newborns.	The	different	distributions	of	the	DNAmSkinBloodClock	epigenetic	clock	in	full	T21	DS	newborns	(n =	340),	likely	mosaic/partial	
T21	DS	newborns	(n =	6),	and	non-	DS	newborns	(n =	567)	are	shown	as	a	box	plot	(panel	b).	The	different	distributions	of	the	epigenetic	
age	acceleration	(DNAmAA)	derived	from	DNAmSkinBloodClock	in	full	T21	DS	newborns	(n =	288),	likely	mosaic/partial	T21	DS	newborns	
(n =	6),	and	non-	DS	newborns	(n =	541)	with	available	birth	variable	data	are	shown	as	a	box	plot	(panel	c).	The	global	p values from the 
Kruskal– Wallis test and the Benjamini– Hochberg– adjusted p values from the pairwise comparison tests using the Wilcoxon rank- sum test 
are shown in panels b and c. Dots were overlaid on the box plot to show the individual level data colored by T21 status
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epigenetic	 age	 acceleration	 derived	 from	 DNAmSkinBloodClock	
(DNAmAA	median	=	0.07	vs.	−0.01,	p = 0.037; Figure 2C)	but	not	
from	 the	 pan-	tissue	 DNAmAge	 clock	 (median	 =	 0.04	 vs.	 −0.02,	
p = 0.50; Figure S3B).

In linear regression models adjusting for sex, chronological age, 
birthweight, batch, the first 9 EPISTRUCTURE principal components 
(PCs),	and	deconvoluted	blood	cell-	type	proportions	(see	Section	4),	
DS	 remained	 significantly	 associated	with	 epigenetic	 aging	 (effect	
estimate = 0.2442, p < 0.0001),	with	an	age	acceleration	of	244 days	
(Table 2).	Here,	the	age	acceleration	was	the	effect	estimate	divided	
by	0.001,	the	increase	in	DNAmSkinBloodClock	for	every	one-	day	
increase	of	chronological	age	in	non-	DS	newborns	(Figure 3D).

A	 subset	 of	 DS	 newborns	 (N =	 60,	 17.3%)	 and	 one	 (0.2%)	
non-	DS	newborn	had	markedly	high	levels	(>25%)	of	deconvoluted	
nRBC proportions, which we recently demonstrated has a signif-
icant	 influence	on	global	patterns	of	DNA	methylation	 (Muskens	
et al., 2021).	Thus,	we	repeated	the	age	acceleration	analysis	ex-
cluding the high nRBC newborns, and DS remained significantly 
associated	 with	 epigenetic	 aging	 (effect	 estimate	 = 0.1322, 
p < 0.0001,	age	acceleration	=	132 days).	We	performed	an	addi-
tional sensitivity analysis to account for the potential confounding 
effect	 of	 transient	 abnormal	myelopoiesis	 (TAM)	 or	 silent	 TAM,	
which occur in up to 30% of newborns with DS and are driven 
by somatic mutations in the GATA1	 gene	 (Roberts	 et	 al.,	2013).	

F I G U R E  3 The	correlations	between	
DNAmSkinBloodClock	and	chronological	
age in newborns with and without Down 
syndrome. The correlations between 
DNAmSkinBloodClock	and	chronological	
age are shown in scatterplots for DS 
and	non-	DS	newborns	combined	(DS	
n = 294, non- DS n =	541,	panel	a),	for	DS	
newborns	only	(n =	294,	panel	b),	and	for	
non-	DS	newborns	only	(n =	541,	panel	c).	
Panel d shows the correlation between 
DNAmSkinBloodClock	and	chronological	
age	in	DS	(red,	n =	294)	and	in	non-	DS	
newborns	(blue,	n =	541).	Spearman	
correlation coefficient R and its p value 
of	each	correlation	were	summarized	
in panels a– d. The linear trend and its 
confidence interval of each correlation 
were	summarized	in	panels	a–	c

F I G U R E  4 Epigenetic	age	acceleration	
in newborns with and without Down 
syndrome. The different distributions 
of	DNAmAA	(age	acceleration	using	
DNAmSkinBloodClock)	in	DS	newborns	
(n =	294)	and	non-	DS	newborns	(n =	541)	
are	shown	as	a	density	plot	(panel	a)	and	
a	box	plot	(panel	b).	p value from the 
Student's	t test is shown in panel b
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Limiting our regression analysis to the 139/164 DS newborns that 
were found to be GATA1	mutation	wildtype	(and	hence	would	not	
have	 TAM/Silent	 TAM)	 by	 targeted	 sequencing	 and	with	 all	 co-
variates	 available	 (Muskens	 et	 al.,	2021)	 compared	with	 non-	DS	
newborns, we found that DS remained associated with epigen-
etic	 aging	 (effect	 estimate	 = 0.1730, p < 0.0001,	 age	 accelera-
tion =	173 days)	(Table 2).

We further attempted to assess the association between DS and 
epigenetic age acceleration directly. We fitted a linear regression 
model	estimating	DNAmAA	as	a	 function	of	DS	status,	sex,	birth-
weight, batch, cell- type proportions, and the first 10 EPISTRUCTURE 
PCs.	DS	was	significantly	associated	with	increased	DNAmAA	(effect	
estimate = 0.2406, p < 0.0001)	(Table 2);	the	associations	remained	
after	excluding	the	high	nRBC	newborns	(effect	estimate	=	0.1282,	
p < 0.0001)	and	when	limited	to	GATA1-	wildtype	DS	newborns	(ef-
fect estimate = 0.1735, p < 0.0001).	An	additional	 sensitivity	anal-
ysis was performed to account for potential confounding of CpGs 
on the trisomic chromosome 21, or those associated with blood 
cell proportions, in calculation of the epigenetic clock. We recal-
culated	DNAmBloodSkinClock	 and	DNAmAA	excluding	CpG	 sites	
on chromosome 21 and CpGs used in the reference set for the cell- 
type deconvolution, and DS remained significantly associated with 
the	epigenetic	clock	(effect	estimate	=	0.1987,	p < 0.0001)	and	with	
DNAmAA	 (effect	 estimate	= 0.1959, p < 0.0001)	 (Table	S2).	 Taken	
together, these data support that accelerated epigenetic aging is al-
ready detectable at birth in the whole blood of individuals with DS.

Children with DS have a markedly high risk of hematological ma-
lignancy	(Hasle	et	al.,	2000).	Our	study	included	a	large	proportion	
of	children	that	went	on	to	develop	ALL	(Table 1),	providing	an	op-
portunity to explore whether epigenetic age acceleration at birth in 
newborns	with	DS	may	be	associated	with	increased	risk	of	ALL	in	
childhood	(DS-	ALL);	however,	we	found	no	significant	difference	in	
epigenetic	age	or	DNAmAA	between	DS-	ALL	subjects	(N =	147)	and	
DS	non-	ALL	subjects	(N =	199)	(Table	S3 and Figure S6).

Myeloid	leukemia	in	DS	(ML-	DS)	cases	were	not	included	in	our	
study, but we were able to investigate whether epigenetic age may 
be associated with somatic GATA1 mutations at birth, which can 
progress	to	ML-	DS	 in	up	to	10%	of	patients	 (Roberts	et	al.,	2013).	
We compared epigenetic age estimates in newborns with DS with 
(n =	30)	and	without	(n =	154)	GATA1 mutations, as assessed by tar-
geted	sequencing	(see	Section	4),	using	both	bivariate	tests	and	lin-
ear	regression	models	adjusting	for	cell-	type	proportions	(Figure	S7 
and Table S4).	 We	 found	 that	 the	 presence	 of	 GATA1 mutations 
at	birth	was	associated	with	 increased	epigenetic	 age	 (effect	esti-
mate = 0.1441, p =	0.015),	with	an	age	acceleration	of	144 days	in	
GATA1	mutation-	positive	newborns	(Table	S4).	Further,	GATA1 mu-
tation	 variant	 allele	 fraction	 (VAF)	 was	 positively	 associated	 with	
epigenetic	 age	 among	 mutation-	positive	 newborns	 (effect	 esti-
mate =	1.7805,	p =	0.004),	with	an	age	acceleration	of	178 days	per	
10% increase in GATA1	mutation	VAF.	GATA1 mutations were also 
significantly	associated	with	 increased	DNAmAA,	both	as	a	binary	
variable	 (effect	estimate	= 0.1447, p =	0.009)	and	with	 increasing	
mutation	VAF	 (effect	estimate	= 1.5390, p =	0.016).	 In	 sensitivity	
analyses, GATA1	mutations	and	mutation	VAF	remained	significantly	
associated	with	the	epigenetic	clock	and	DNAmAA	after	excluding	
CpGs on chromosome 21 or in the blood cell deconvolution refer-
ences	(Table	S5).

Finally, we explored whether newborns with DS may also 
demonstrate accelerated epigenetic gestational aging, using three 
gestational	age	clocks	 (Haftorn,	Knight,	and	Bohlin,	see	Section	4)	
previously	 developed	 using	 genome-	wide	 DNA	 methylation	 data	
(Bohlin	et	 al.,	2016; Haftorn et al., 2021; Knight et al., 2016).	The	
three gestational age clocks were significantly positively associ-
ated with each other in DS and non- DS newborns, with correla-
tion	coefficients	 ranging	 from	0.72	to	0.93	 (Figure	S8).	They	were	
also significantly positively associated with the observed gesta-
tional	 age	 in	 both	 DS	 (correlation	 coefficient	 ranges:	 0.46–	0.59)	
and	 non-	DS	 newborns	 (correlation	 coefficient	 ranges:	 0.49–	0.51)	

TA B L E  2 Association	between	Down	syndrome	and	epigenetic	aging	and	epigenetic	age	acceleration,	in	newborn	blood	samples	using	
the	DNAmSkinBloodClock

Model (n subjects)

DNAmSkinBloodClock DNAmAA for DNAmSkinBloodClock

Estimate (95% CI) p value AA for DS (days) Estimate (95% CI) p value AA for DS (days)

Base	model	(834) 0.3477 
(0.3097–	0.3858)

8.03	× 10−61 347.7 0.3497 
(0.3119–	0.3875)

4.51 × 10−62 349.7

Full	model	(834) 0.2442 
(0.1964–	0.2920)

2.54 × 10−22 244.2 0.2406 
(0.1933–	0.2880)

3.91 × 10−22 240.6

Full modela	(783) 0.1322 
(0.0958–	0.1685)

2.35 × 10−12 132.2 0.1282	
(0.0921–	0.1642)

6.99 × 10−12 128.2

Full modelb	(680) 0.1730 
(0.1244–	0.2216)

7.55 × 10−12 173.0 0.1735 
(0.1251–	0.2219)

5.34 × 10−12 173.5

Note:	Base	model	is	linear	regression	for	DNAmSkinBloodClock	or	DNAmAA	(DNAmSkinBloodClock)	as	a	function	of	DS	status,	adjusting	
for	sex,	chronological	age	(chronological	age	was	not	adjusted	for	DNAmAA),	birth	weight,	EPISTRUCTURE	PCs	(9	PCs	in	the	model	for	
DNAmSkinBloodClock	and	10	PCs	in	the	model	for	DNAmAA),	and	batch;	full	model	additionally	adjusted	for	blood	cell	proportions.
Abbreviation:	AA,	age	acceleration.
aFull model in subjects without high nRBC.
bFull model in DS newborns that were found to be GATA1 mutation wildtype and non- DS newborns.



    |  7 of 12XU et al.

(Figure	S9).	Mean	observed	gestational	age	was	significantly	lower	
in	 DS	 (267 days)	 than	 in	 non-	DS	 newborns	 (274 days,	 p < 0.0001)	
(Table 1, Figure S10A,B).	 Bivariate	 tests	 also	 showed	 significantly	
lower gestational age clocks in DS newborns than in newborns with-
out	DS	 (pHaftorn < 0.0001,	pKnight < 0.0001,	pBohlin =	0.012)	 (Table 1, 
Figure S10C– H).	 DS	 remained	 significantly	 associated	 with	 lower	
gestational age clocks in linear regression models adjusting for ob-
served gestational age, sex, batch, birthweight, cell- type propor-
tions,	and	EPISTRUCTURE	PCs	(Table	S6).

To evaluate epigenetic gestational age acceleration, we derived 
DNAmAA	from	each	gestational	age	clock.	For	all	three	clocks,	ges-
tational age acceleration was not significantly different between DS 
and non- DS newborns in bivariate tests or in linear regression mod-
els adjusting for sex, batch, birthweight, cell- type proportions, and 
EPISTRUCTURE	PCs	(Figure	S11, Table S7).	These	results	contrast	
our findings for the epigenetic age clock analyses and suggest that 
there is no significant gestational age acceleration in newborns with 
DS.

3  |  DISCUSSION

In summary, we performed the largest study of epigenetic aging in 
DS to date, and discovered significant accelerated epigenetic aging 
in the whole blood of newborns with DS, supporting that acceler-
ating aging begins early in life in individuals with DS. We found an 
average 244- day acceleration in epigenetic aging among newborns 
with DS after adjusting for potential confounding factors, which 
was	reduced	to	132 days	after	excluding	the	subset	of	(mainly	DS)	
newborns with high nRBC proportions. The causes of premature 
aging in DS remain to be determined but may result from genome- 
wide perturbations in epigenetic regulation and gene expression 
associated	with	 T21	 (Lane	 et	 al.,	2014; Letourneau et al., 2014; 
Muskens et al., 2021)	and	are	potentially	 linked	to	the	upregula-
tion	 of	 inflammatory	 processes	 in	 individuals	 with	 DS	 (Huggard	
et al., 2020; Sullivan et al., 2017),	which	 is	 further	supported	by	
the differences in hematopoiesis revealed by our cell- type decon-
volution analyses. Understanding the mechanisms involved may 
reveal novel therapeutic targets to help ameliorate the progeroid 
features of DS.

It is also important to investigate whether differences in pre-
mature aging may underlie phenotypic variation in individuals with 
DS. We found no association between accelerated epigenetic aging 
at	birth	and	future	risk	of	DS-	ALL	development.	We	did,	however,	
find that DS newborns harboring somatic GATA1 mutations have 
increased epigenetic aging relative to DS newborns without GATA1 
mutations.	Given	the	pathophysiology	of	TAM/Silent	TAM,	it	is	pos-
sible that epigenetic age acceleration was the consequence of the 
GATA1 mutation phenotype rather than a risk factor, and there may 
have also been residual confounding by the increased nRBC propor-
tions in DS newborns with GATA1 mutations 11. Future studies will 
be required to assess the role of epigenetic aging in the risk of ML- 
DS	and	in	adult-	onset	neurologic	traits	like	DS-	AD.

The lack of accelerated epigenetic gestational age in newborns 
with DS suggests that the epigenetic clocks for gestational age 
may be specific to the timing of factors related to gestation, such 
as fetal growth and developmental maturation, rather than general 
processes	of	aging	(Haftorn	et	al.,	2021; Knight et al., 2016).	DS	is	
associated with fetal growth restriction and an increased frequency 
of small- for- gestational- age births compared with non- DS newborns 
(Muskens	et	al.,	2021; Yao et al., 2020),	which	may	explain	the	sig-
nificantly lower epigenetic gestational age clocks in DS newborns 
in our study, even after adjusting for observed gestational age. 
Whereas CpGs most informative for fetal developmental profiling 
gave	qualitatively	different	results	than	the	DNAmSkinBloodClock	
and	DNAmAge	clock,	these	latter	clocks	incorporate	the	CpGs	most	
informative for predicting aging across the life course. The substan-
tial aging acceleration observed in DS newborns using these clocks 
likely reflects the fetal programming of longer- term somatic aging, 
which appears to be initiated much earlier in the DS population.

The strengths of our study include the use of DBS samples for 
a large number of newborns with and without DS, the availability 
of both gestational age and age at DBS collection that enabled us 
to calculate chronological age from conception, and the inclusion of 
DS-	ALL	cases	and	GATA1 mutation data that allowed us to explore 
the association between epigenetic age and hematological pheno-
types in DS. The exclusive use of newborn DBS, however, limited 
our ability to assess epigenetic aging in DS outside of the neonatal 
period, although previous studies have demonstrated accelerated 
epigenetic	aging	in	older	DS	individuals	(Horvath	et	al.,	2015).	The	
usage of archived neonatal dried blood spots might have affected 
the	 DNA	 methylation	 measurements;	 however,	 this	 biospecimen	
type	has	been	shown	to	provide	high-	quality	DNA	for	methylation	
arrays	(Hollegaard	et	al.,	2013; Walker et al., 2019).	Phenotypic	in-
formation was also limited for subjects in our study, and it is possible 
that some unmeasured DS- related conditions may have affected our 
results. Understanding the effects of premature aging on common 
DS- related phenotypes will require longitudinal studies with an as-
sessment of epigenetic clocks and other aging- related biomarkers 
in well- phenotyped individuals with and without DS and follow- up 
throughout the life course.

4  |  E XPERIMENTAL PROCEDURES

4.1  |  Study subjects

This study was approved by Institutional Review Boards at the 
California	 Health	 and	 Human	 Services	 Agency,	 University	 of	
Southern California, University of Berkeley, Yale University, and 
Washington State.

Archived	neonatal	dried	bloodspot	(DBS)	specimens	were	ob-
tained from 351 newborns with DS and 574 newborns without DS. 
Of	the	351	subjects	with	DS,	DBS	for	198	newborns	were	obtained	
from	the	California	Biobank	Program	(CBP)	as	previously	described	
(Muskens	 et	 al.,	2021).	 In	 brief,	 these	198	DS	newborns	 did	 not	
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have	a	leukemia	diagnosis	by	the	age	of	15 years	(DS	non-	ALL),	as	
identified via linkage between the California Department of Public 
Health Genetic Disease Screening Program and the California 
Cancer	 Registry	 (Wiemels	 et	 al.,	 2018).	 An	 additional	 152	 DS	
newborns	who	later	developed	ALL	(DS-	ALL)	were	included	in	the	
International	 Study	 of	 Down	 Syndrome	Acute	 Leukemia	 (Brown	
et al., 2019),	 including	 114	 identified	 in	 the	 California	 Cancer	
Records	Linkage	Project	(CCRLP)	(Wiemels	et	al.,	2018),	19	in	the	
California	Childhood	Leukemia	Study	 (Metayer	et	al.,	2013),	 and	
19 identified in the Washington State Childhood Cancer study 
using population- based linked birth- hospital discharge- cancer 
registry records and with DBS obtained from the Washington 
State	Department	of	Health	Newborn	Screening	Program	(Mueller	
et al., 2018).	One	additional	DS	non-	ALL	subject	was	identified	in	
the CCRLP.

Of the 574 newborns without DS, these included 133 non- DS 
ALL	cases	born	in	California	and	441	non-	DS	and	cancer-	free	control	
children	who	were	matched	to	cases	by	year	and	county	of	birth	(3	
or	4	controls	per	case),	as	previously	described	(Nielsen	et	al.,	2019).	
Cancer diagnosis data were obtained from the California Cancer 
Registry and neonatal DBS from the CBP. Birth- related variables in-
cluding	birthweight,	gestational	age,	and	age	at	DBS	collection	(age	
at	blood	sampling)	were	collected	for	the	majority	of	California-	born	
subjects	from	the	CBP	(Table 1).

4.2  |  DNA methylation arrays

DNA	was	 isolated	 from	one-	third	portions	of	 each	DBS	using	 the	
Qiagen	DNA	 Investigator	blood	card	protocol.	DNA	samples	were	
bisulfite-	converted	using	Zymo	EZ	DNA	Methylation	kits,	with	total	
DNA	inputs	ranging	from	115	to	451 ng	as	measured	by	PicoGreen.	
Bisulfite-	converted	 DNA	 was	 then	 assayed	 on	 Illumina	 Infinium	
MethylationEPIC	Beadchip	genome-	wide	DNA	methylation	arrays.	
DS	and	non-	DS	samples	were	block-	randomized	to	ensure	equiva-
lent	distributions	of	sex,	self-	reported	race/ethnicity,	and	ALL	case–	
control status, on all plates.

4.3  |  DNA methylation array data processing

Initial	quality	control	 (QC)	of	MethylationEPIC	array	data	was	per-
formed	 using	 Illumina	 GenomeStudio	 Software	 and	 BeadArray	
Controls Reporter Software, including evaluation of control probes 
for bisulfite treatment conversion efficiency, dye specificity, hy-
bridization,	 and	 staining,	 and	 control	 probes	 performed	 robustly	
for all samples supporting the generation of high- quality data. Ten 
intra-	plate	 duplicates,	 with	 median	 DNA	 inputs	 of	 201 ng	 (range:	
115	 to	 451 ng),	 showed	 a	 strong	 correlation	 of	 methylation	 beta	
values with R2 ≥ 0.995.	 One	 DS	 sample	 was	 excluded	 based	 on	
a mismatch between reported sex and methylation gender con-
trols	 data.	 Additional	 QC	 assessment	 and	 normalization	 of	 DNA	
methylation array data were performed using the “minfi” package 

(Aryee	et	 al.,	2014)	 through	 the	Bioconductor	project	 (Gentleman	
et al., 2004; Huber et al., 2015).	Functional	normalization	(Funnorm)	
was	 performed	 using	 the	 “preprocessFunnorm”	 function	 (Fortin	
et al., 2014)	 to	 remove	 technical	 variability	 and	 batch	 effects.	 By	
default, the “preprocessFunnorm” function applies the noob within- 
array	 normalization	 as	 the	 first	 step	 to	 correct	 for	 background	
fluorescence and dye bias. Funnorm, together with noob, has been 
found	 to	 outperform	 the	 individual	 normalization	 methods	 and	
other	batch	removal	tools	(Fortin	et	al.,	2014).	Liu	et	al.	reported	that	
Funnorm/noob	 plus	 beta-	mixture	 quantile	 normalization	 (BMIQ)	
improved	 signal	 sensitivity	 and	 reduced	 technical	 variance	 (Liu	 &	
Siegmund, 2016).	 Therefore,	 the	BMIQ	method	was	 subsequently	
applied	 (Teschendorff	et	al.,	2013).	Mean	detection	p values were 
calculated	by	using	 the	 “detectionP”	 function	 (Aryee	et	 al.,	2014).	
CpGs with mean detection p value >0.01 were considered poor 
quality and were removed from the analysis. CpG sites and samples 
that had missingness >15% were removed. Four DS and 7 non- DS 
subjects were excluded after QC. To confirm constitutive T21 status, 
we generated copy- number variation plots using the R package “co-
numee”	(Mah	et	al.,	2018)	for	all	subjects,	with	20	randomly	selected	
non- DS newborns as the reference. Median log2 copy- number ra-
tios on chromosome 21 were calculated across 317 bins for all the 
newborns	with	and	without	DS,	with	values	≥0.2	 in	DS	newborns	
indicating full T21 status. Samples with a median chromosome 21 
log2 copy ratio that was >2 standard deviations below the average 
median chromosome 21 log2 copy ratio across all DS newborns, but 
above the maximum median chromosome 21 log2 copy ratio of non-
 DS newborns, were designated as likely mosaic/partial T21.

4.4  |  Epigenetic age clock calculations

DNA	methylation-	based	estimators	of	age	were	calculated	accord-
ing	to	the	methods	from	Horvath	(2013)	and	Horvath	et	al.	(2018).	
We	 computed	 two	 epigenetic	 age	 clocks:	 the	 pan-	tissue	 DNA	
methylation	 clock	 (DNAmAge)	 and	 the	 skin	 &	 blood	 clock	
(DNAmSkinBloodClock).	Briefly,	a	calibrated	version	of	DNAmAge	
was	calculated	from	a	weighted	combination	of	the	DNA	methyla-
tion levels of 353 CpGs and was subsequently converted back to 
DNAmAge;	DNAmSkinBloodClock	was	 calculated	 in	 a	 similar	way	
from	391	CpGs.	Of	the	353	clock	CpGs	comprising	DNAmAge,	19	
were missing from the EPIC array because they were only present 
on	the	Illumina	Infinium	450 K	and	27 K	arrays	used	by	the	original	
training set. The missing values were replaced with the average beta 
values	of	the	available	clock	CpGs	(n =	334)	per	sample	using	the	“im-
pute.knn”	function	from	the	“impute”	package	(Hastie	et	al.,	2020).	
The two epigenetic age clocks share 60 CpGs. Two age- independent 
measures	 of	 epigenetic	 age	 acceleration	 (DNAmAA)	were	 derived	
from	DNAmAge	and	DNAmSkinBloodClock	based	on	the	methods	
from	Horvath	et	al.	(2015)	DNAmAA	was	calculated	as	the	deviation	
from the expected epigenetic age clock based on its linear associa-
tion	with	chronological	age	(gestational	age	plus	age	at	blood	sam-
pling)	in	non-	DS	newborns.



    |  9 of 12XU et al.

4.5  |  Gestational age clock calculations

We calculated three epigenetic gestational age clocks using the 
approaches	 as	 previously	 described	 (Bohlin	 et	 al.,	 2016; Haftorn 
et al., 2021; Knight et al., 2016).	 The	 Haftorn	 clock	 (Haftorn	
et al., 2021)	comprises	176	CpGs	on	the	EPIC	array.	The	Knight	clock	
(Knight	et	al.,	2016)	and	the	Bohlin	clock	(Bohlin	et	al.,	2016)	are	com-
posed	of	148	CpGs	and	96	CpGs	from	the	450K	array,	respectively.	
Six	CpGs	 in	the	Knight	clock	and	8	CpGs	 in	the	Bohlin	clock	were	
absent from the EPIC array and were thus replaced with the average 
beta	 values	 of	 the	 142	 and	88	 available	 clock	CpGs,	 respectively,	
using the “impute.knn” function. The number of the CpGs overlap-
ping	each	pair	of	the	epigenetic	clocks	is	summarized	in	Figure	S12. 
DNAmAA	for	each	epigenetic	gestational	age	clock	was	calculated	
as the residuals from the linear association of each gestational age 
clock with the observed gestational age in newborns adjusted for 
DS status.

4.6  |  Assessment of cell- type heterogeneity

We performed reference- based deconvolution of blood cell propor-
tions in all subjects using the Identifying Optimal Libraries algorithm 
(Gervin	et	al.,	2019; Koestler et al., 2016).	Proportions	of	monocytes,	
granulocytes, natural killer cells, B lymphocytes, T lymphocytes 
(both	CD4+	and	CD8+),	and	nucleated	red	blood	cell	(nRBC)/eryth-
roblasts were estimated by using the “estimateCellCounts2” function 
in	the	R	package	“FlowSorted.Blood.EPIC”	(Salas	&	Koestler,	2021)	
coupled	with	DNA	methylation	data	from	cord	blood	cell	reference	
samples in the R package “FlowSorted.CordBloodCombined.450k” 
(Bakulski	et	al.,	2016).

4.7  |  GATA1 sequencing

Targeted sequencing of GATA1 exons 2 and 3 was performed in a 
subset	 of	 184	 newborns	 with	 DS	 who	 did	 not	 develop	 leukemia,	
as	previously	described	(Labuhn	et	al.,	2019; Muskens et al., 2021; 
Roberts et al., 2013),	to	identify	DS	newborns	with	preleukemia	as-
sociated	with	transient	abnormal	myelopoiesis	(TAM)	or	silent	TAM.

4.8  |  Statistical analysis

All	 statistical	 analyses	 were	 performed	 in	 R	 v	 4.0.2	 (R	 Core	
Team, 2020)	with	significance	tests	using	2-	sided	p = 0.05. Means 
and	 standard	 deviations	 were	 summarized	 for	 continuous	 vari-
ables, including birthweight, gestational age, age at blood sampling, 
chronological	age	from	conception	(gestational	age	plus	age	at	blood	
sampling),	 and	epigenetic	 estimators	of	 age.	Frequencies	 and	pro-
portions	were	computed	for	categorical	variables	(sex,	self-	reported	
race/ethnicity,	and	ALL	case/control	status).	We	compared	continu-
ous variables and categorical variables between DS newborns and 

non-	DS	newborns	using	the	Student's	t test and χ2, respectively. We 
also tested for the differences in epigenetic age and epigenetic age 
acceleration between DS newborns with full T21, with likely mosaic/
partial T21 and non- DS newborns using the nonparametric Kruskal– 
Wallis test. The Benjamini– Hochberg adjusted p values were subse-
quently obtained from the Wilcoxon rank- sum pairwise comparison 
tests.

We computed Spearman correlation coefficients for 
DNAmSkinBloodClock,	 DNAmAge,	 and	 chronological	 age	 from	
conception, and for the three gestational age clocks with the ob-
served gestational age, in DS and non- DS newborns. We also tested 
the association of cell- type proportions with epigenetic estimators 
using the Spearman correlation test. In addition, we fit separate lin-
ear regression models with each blood cell- type proportion as the 
dependent variable and DS status as the independent variable, ad-
justing for sex, gestational age, age at DBS collection, birthweight, 
batch, and genetic ancestry using the first 10 PCs derived from 
EPISTRUCTURE	(Rahmani	et	al.,	2017).

We further compared the epigenetic clocks between DS and 
non- DS newborns using linear regression adjusting for chronological 
age from conception, sex, birthweight, batch, cell- type proportions, 
and genetic ancestry using PCs derived from EPISTRUCTURE. The 
linear regression models for the gestational age clocks were ad-
justed for gestational age instead of chronological age. In addition, 
we compared age- independent measures of epigenetic age accel-
eration between DS and non- DS newborns using linear regression 
models adjusting for the same covariates described above, excluding 
chronological age or gestational age. We adjusted for the covariates 
that had p values <0.2 from the univariable linear regression analyses 
for epigenetic estimators in non- DS newborns. Likelihood ratio tests 
and	Akaike's	Information	Criteria	were	used	to	determine	how	many	
EPISTRUCTURE PCs should be included in the regression models. 
Six out of 7 blood cell proportions were adjusted in the linear regres-
sion models; the cell proportion of granulocytes was excluded from 
the	 models	 to	 avoid	 multicollinearity.	 DNAmSkinBloodClock	 and	
DNAmAA	were	additionally	compared	between	DS	newborns	who	
later	developed	ALL	and	DS	newborns	without	ALL	using	bivariate	
tests and linear regression models.

We	repeated	analyses	excluding	61	newborns	(60	DS)	with	nRBC	
proportions exceeding 25% or limiting to DS newborns that were 
found to be GATA1 mutation wildtype. In addition, among DS new-
borns with available GATA1 sequencing, we tested for associations 
of GATA1	mutation	status	and	VAF	with	epigenetic	age	estimators,	
using linear regression adjusting for the same covariates described 
above.

Finally,	 we	 recalculated	 DNAmSkinBloodClock	 excluding	 CpG	
sites on chromosome 21 or CpGs used in the reference set for the 
deconvolution	of	 blood	 cell	 proportions	 (10/391)	 and	 repeated	 all	
linear regression analyses to address potential confounding.
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