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Abstract
Accelerated aging is a hallmark of Down syndrome (DS), with adults experiencing 
early-onset Alzheimer's disease and premature aging of the skin, hair, and immune 
and endocrine systems. Accelerated epigenetic aging has been found in the blood 
and brain tissue of adults with DS but when premature aging in DS begins remains 
unknown. We investigated whether accelerated aging in DS is already detectable in 
blood at birth. We assessed the association between age acceleration and DS using 
five epigenetic clocks in 346 newborns with DS and 567 newborns without DS using 
Illumina MethylationEPIC DNA methylation array data. We compared two epigenetic 
aging clocks (DNAmSkinBloodClock and pan-tissue DNAmAge) and three epigenetic 
gestational age clocks (Haftorn, Knight, and Bohlin) between DS and non-DS new-
borns using linear regression adjusting for observed age, sex, batch, deconvoluted 
blood cell proportions, and genetic ancestry. Targeted sequencing of GATA1 was per-
formed in a subset of 184 newborns with DS to identify somatic mutations associated 
with transient abnormal myelopoiesis. DS was significantly associated with increased 
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1  |  INTRODUC TION

Down syndrome (DS) is the most common chromosomal disorder, 
affecting approximately one in every 700 babies born in the United 
States (Mai et al., 2019). DS is caused by constitutional trisomy of 
chromosome 21 (T21) and is associated with an array of pheno-
types, typically including developmental delay and characteristic 
facial dysmorphism, and congenital heart disease in approximately 
50% of individuals (Antonarakis et al., 2020). In early life, DS is also 
associated with defects in neonatal hematopoiesis and dysregula-
tion of the developing immune system, and an increased risk of both 
lymphoid and myeloid malignancies in childhood (Hasle et al., 2000; 
Jardine et al., 2021; Roy et al., 2012; Verstegen et al., 2020). In adults 
with DS, accelerated aging is a hallmark feature that manifests phe-
notypically in the premature aging of the skin, hair, and immune 
and endocrine systems, and in early-onset Alzheimer's disease (AD) 
(Devenny et al., 2005; Zigman, 2013).

Using “epigenetic clocks,” it has previously been demonstrated 
that accelerated epigenetic aging occurs in the blood and brain tis-
sues of adults with DS (Horvath et al.,  2015), supporting that ac-
celerated aging may underlie senescence-associated conditions in 
these tissues among individuals with DS. More recently, accelerated 
epigenetic aging in DS was discovered in fetal retinal cells in a small 
number of T21 samples (Hoshino et al., 2019), however, when the 
premature aging of blood cells in DS begins has yet to be examined. 
Here, we investigated whether accelerated epigenetic aging in DS is 
already detectable in whole blood samples obtained at birth, using 
two epigenetic clocks (pan tissue, and the skin and blood clock) that 
were developed with newborn blood samples in their training sets 
and are applicable to individuals across the lifespan.

2  |  RESULTS

Our analyses included 346 newborns with DS and 567 newborns 
without DS, with available neonatal dried bloodspot samples (DBS) 
from California or Washington State newborn screening programs 
(Table 1, see Section 4) (Muskens et al., 2021). Demographic char-
acteristics were similar between DS and non-DS newborns. Mean 
chronological age from conception at the time of blood sampling 

was significantly lower in DS (269 days) than in non-DS newborns 
(276 days, p < 0.0001), driven by the significantly lower gestational 
age in DS newborns despite a longer average time between delivery 
and DBS collection (Table 1 and Supplemental Dataset). Newborns 
with DS had significantly lower birthweight (mean =  3030 g) than 
non-DS newborns (mean = 3386 g, p < 0.0001).

Genome-wide DNA methylation data were obtained from 
DBS-derived DNA from the 346 DS and 567 non-DS newborns 
using Illumina Infinium MethylationEPIC Beadchip arrays (see 
Section 4). We calculated two epigenetic age clocks, the pan-tissue 
DNA methylation clock (DNAmAge) and the skin & blood clock 
(DNAmSkinBloodClock), based on the methods of Horvath  (2013) 
and Horvath et al.  (2018) (see Section  4). Bivariate tests demon-
strated significantly higher DNAmSkinBloodClock (mean = −0.16 vs. 
−0.40, p < 0.0001) and DNAmAge (mean = 0.28 vs. 0.08, p < 0.0001) 
in DS newborns than in newborns without DS (Figures  1, S1A,B, 
Supplemental Dataset). Visual inspection of copy-number plots 
generated from methylation array probe intensities revealed 6 DS 
newborns with median log2 ratios on chromosome 21 ranging from 
0.08 to 0.18, all of which were >2 standard deviations below the 
average median chromosome 21 log2 ratio across all DS newborns 
(Figures 2a and S2). Given the low resolution and relatively low ac-
curacy of copy-number variant calls using DNA methylation array 
data (Kilaru et al., 2020), it was not possible to distinguish between 
mosaic and partial trisomies, thus, we termed these 6 subjects as 
“likely mosaic/partial T21.” Nonparametric bivariate tests showed 
significantly higher DNAmSkinBloodClock in the 6 likely mosaic/
partial T21 newborns than in non-DS newborns (median =  −0.31 
vs. −0.40, p = 0.027; Figure 2b). DNAmAge was similarly higher in 
these 6 DS newborns than in non-DS newborns, although the result 
was not statistically significant (median =  0.14 vs. 0.05, p  =  0.38; 
Figure S3A).

Chronological age, calculated from gestational age plus the age 
at blood sampling, was significantly positively correlated with both 
DNAmSkinBloodClock and DNAmAge in DS (r = 0.18 and r = 0.14, re-
spectively) and non-DS (r = 0.17 and r = 0.15) newborns, and with sim-
ilar Spearman correlation coefficients in DS compared with non-DS 
subjects (Figures  3 and S1C–F). Increased DNAmSkinBloodClock 
was strongly correlated with increased DNAmAge in both DS 
(r = 0.62, p < 0.0001) and non-DS newborns (r = 0.46, p < 0.0001) 

DNAmSkinBloodClock (effect estimate = 0.2442, p < 0.0001), with an epigenetic age 
acceleration of 244 days in newborns with DS after adjusting for potential confound-
ing factors (95% confidence interval: 196–292 days). We also found evidence of epi-
genetic age acceleration associated with somatic GATA1 mutations among newborns 
with DS (p = 0.015). DS was not associated with epigenetic gestational age accelera-
tion. We demonstrate that accelerated epigenetic aging in the blood of DS patients 
begins prenatally, with implications for the pathophysiology of immunosenescence 
and other aging-related traits in DS.
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(Figure S4). Given that the DNAmSkinBloodClock had the strongest 
correlations with chronological age, our main results focus on this 
epigenetic clock.

We previously reported significant differences in deconvoluted 
blood cell proportions between DS and non-DS newborns (Muskens 
et al., 2021). Using the same Identifying Optimal Libraries method 

(Gervin et al., 2019; Koestler et al., 2016), we similarly found signifi-
cantly lower proportions of B lymphocytes, CD4+ T lymphocytes, 
granulocytes, and monocytes, and higher proportions of CD8+ 
T lymphocytes, natural killer cells, and nucleated red blood cells 
(nRBCs) in DS newborns than in non-DS newborns in this expanded 
dataset, and in the additional 150 DS and 132 non-DS subjects 

Variables DS (n = 346) Non-DS (n = 567) p value

ALL status (%) <0.001

Control 199 (57.5) 437 (77.1)

Case 147 (42.5) 130 (22.9)

Sex (%) 0.229

Female 158 (45.9) 236 (41.6)

Male 186 (54.1) 331 (58.4)

Missing (%) 2 (0.6)

Ethnicity (%) 0.819

Hispanic 190 (55.6) 321 (56.6)

Other 56 (16.4) 84 (14.8)

White 96 (28.1) 162 (28.6)

Missing (%) 4 (1.2)

Gestational age, days (mean [SD]) 266.98 (17.65) 274.47 (13.93) <0.001

Missing (%) 40 (11.6) 26 (5)

Age at blood collection (mean [SD]) 55.25 (49.74) 32.72 (17.46) <0.001

Missing (%) 31 (9.0)

Chronological age, days (mean 
[SD])

269.22 (17.58) 275.84 (13.80) <0.001

Missing (%) 52 (15.0) 26 (5)

Birthweight, g (mean [SD]) 3029.90 (686.27) 3386.10 (541.77) <0.001

Missing (%) 24 (6.9)

DNAmSkinBloodClock (mean [SD]) −0.16 (0.29) −0.40 (0.07) <0.001

DNAmAge (mean [SD]) 0.28 (0.61) 0.08 (0.17) <0.001

Haftorn clock (mean [SD]) 269.45 (12.18) 278.75 (8.95) <0.001

Knight clock (mean [SD]) 262.50 (14.87) 276.39 (10.91) <0.001

Bohlin clock (mean [SD]) 274.97 (11.44) 276.78 (8.56) 0.007

Excluding chr21 CpGs and IDOL 
CpGs

DNAmSkinBloodClock (mean 
[SD])

−0.34 (0.22) −0.53 (0.06) <0.001

DNAmAge (mean [SD]) 0.38 (0.61) 0.16 (0.18) <0.001

nRBC status (%)

High 60 (17.3) 1 (0.2) <0.001

Not high 286 (82.7) 566 (99.8)

GATA1 mutation (%)

No 154 (83.7)

yes 30 (16.3)

Missing (%) 162 (46.8)

GATA1 mutation VAF (mean [SD]) 0.04 (0.15)

Missing (%) 162 (46.8)

Note: p values for continuous variables were calculated using the Student's t test and for 
categorical variables using the Chi-squared test.

TA B L E  1 Characteristics of newborn 
study participants stratified by Down 
syndrome status (n = 913)
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that were not analyzed previously (Table  S1). Next, we assessed 
the correlations between blood cell proportions and epigenetic age 
(DNAmSkinBloodClock) in DS and non-DS newborns separately, 
given the differences in blood cell proportions between the two 
groups. Epigenetic age showed a significant negative correlation 
with proportions of B-cells and granulocytes in both DS and non-DS 
newborns, and a significant positive correlation with nRBCs in DS 
newborns but not in non-DS newborns (Figure S5). Given the dif-
ferences in deconvoluted blood cell proportions between DS and 
non-DS newborns and their associations with epigenetic age, we 
include blood cell proportions as covariates in regression models an-
alyzing the association between epigenetic aging and DS.

Linear regression analysis showed that each one-day increase 
in chronological age corresponded to a 0.001 unit increase in 
DNAmSkinBloodClock in non-DS newborns (Figure 3D). Epigenetic 

age of DS newborns appeared to lie above the regression line esti-
mating the association between DNAmSkinBloodClock and chrono-
logical age in non-DS newborns (Figure  3D), indicating that DS 
subjects exhibited accelerated aging effects. Thereby, we calculated 
epigenetic age acceleration (DNAmAA) for each subject as the de-
viation from the expected epigenetic age clock based on its linear 
association with chronological age in non-DS newborns (the dis-
tance from the observed epigenetic age to the blue regression line 
of non-DS newborns in Figure 3D). By definition, the mean epigene-
tic age acceleration in non-DS newborns was zero. Mean DNAmAA 
was 0.2418 in DS newborns, which was significantly higher than 
zero (p < 0.0001; Figure 4). Epigenetic age acceleration derived from 
the pan-tissue DNAmAge clock was also significantly different be-
tween DS and non-DS newborns (p < 0.0001; Figure S1G,H). For the 
6 DS newborns with likely mosaic/partial T21, we found significant 

F I G U R E  1 Epigenetic age in newborns 
with and without Down syndrome. 
The different distributions of the 
DNAmSkinBloodClock epigenetic clock 
in newborns with Down syndrome (DS, 
n = 346) and newborns without DS (non-
DS, n = 567) are shown as a density plot 
(panel a) and a box plot (panel b). p value 
from the Student's t test is shown in panel 
b

F I G U R E  2 Six newborns with likely mosaic/partial trisomy 21 and their epigenetic age compared to newborns with full trisomy 21 and 
newborns without Down syndrome. The different distributions of the median log2 copy ratio on chromosome 21 in DS newborns (n = 346) 
and non-DS newborns (n = 567) are shown as a box plot in panel a. The median log2 ratio on chromosome 21 was calculated across 317 
bins generated by “conumee,” with 20 randomly selected non-DS newborns as the reference. The 6 likely mosaic/partial DS newborns were 
highlighted at a median chromosome 21 log2 ratio >2 standard deviations below the average median chromosome 21 log2 ratio across all DS 
newborns. The different distributions of the DNAmSkinBloodClock epigenetic clock in full T21 DS newborns (n = 340), likely mosaic/partial 
T21 DS newborns (n = 6), and non-DS newborns (n = 567) are shown as a box plot (panel b). The different distributions of the epigenetic 
age acceleration (DNAmAA) derived from DNAmSkinBloodClock in full T21 DS newborns (n = 288), likely mosaic/partial T21 DS newborns 
(n = 6), and non-DS newborns (n = 541) with available birth variable data are shown as a box plot (panel c). The global p values from the 
Kruskal–Wallis test and the Benjamini–Hochberg–adjusted p values from the pairwise comparison tests using the Wilcoxon rank-sum test 
are shown in panels b and c. Dots were overlaid on the box plot to show the individual level data colored by T21 status
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epigenetic age acceleration derived from DNAmSkinBloodClock 
(DNAmAA median = 0.07 vs. −0.01, p = 0.037; Figure 2C) but not 
from the pan-tissue DNAmAge clock (median  =  0.04 vs. −0.02, 
p = 0.50; Figure S3B).

In linear regression models adjusting for sex, chronological age, 
birthweight, batch, the first 9 EPISTRUCTURE principal components 
(PCs), and deconvoluted blood cell-type proportions (see Section 4), 
DS remained significantly associated with epigenetic aging (effect 
estimate = 0.2442, p < 0.0001), with an age acceleration of 244 days 
(Table 2). Here, the age acceleration was the effect estimate divided 
by 0.001, the increase in DNAmSkinBloodClock for every one-day 
increase of chronological age in non-DS newborns (Figure 3D).

A subset of DS newborns (N  =  60, 17.3%) and one (0.2%) 
non-DS newborn had markedly high levels (>25%) of deconvoluted 
nRBC proportions, which we recently demonstrated has a signif-
icant influence on global patterns of DNA methylation (Muskens 
et al., 2021). Thus, we repeated the age acceleration analysis ex-
cluding the high nRBC newborns, and DS remained significantly 
associated with epigenetic aging (effect estimate  =  0.1322, 
p < 0.0001, age acceleration = 132 days). We performed an addi-
tional sensitivity analysis to account for the potential confounding 
effect of transient abnormal myelopoiesis (TAM) or silent TAM, 
which occur in up to 30% of newborns with DS and are driven 
by somatic mutations in the GATA1 gene (Roberts et al.,  2013). 

F I G U R E  3 The correlations between 
DNAmSkinBloodClock and chronological 
age in newborns with and without Down 
syndrome. The correlations between 
DNAmSkinBloodClock and chronological 
age are shown in scatterplots for DS 
and non-DS newborns combined (DS 
n = 294, non-DS n = 541, panel a), for DS 
newborns only (n = 294, panel b), and for 
non-DS newborns only (n = 541, panel c). 
Panel d shows the correlation between 
DNAmSkinBloodClock and chronological 
age in DS (red, n = 294) and in non-DS 
newborns (blue, n = 541). Spearman 
correlation coefficient R and its p value 
of each correlation were summarized 
in panels a–d. The linear trend and its 
confidence interval of each correlation 
were summarized in panels a–c

F I G U R E  4 Epigenetic age acceleration 
in newborns with and without Down 
syndrome. The different distributions 
of DNAmAA (age acceleration using 
DNAmSkinBloodClock) in DS newborns 
(n = 294) and non-DS newborns (n = 541) 
are shown as a density plot (panel a) and 
a box plot (panel b). p value from the 
Student's t test is shown in panel b
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Limiting our regression analysis to the 139/164 DS newborns that 
were found to be GATA1 mutation wildtype (and hence would not 
have TAM/Silent TAM) by targeted sequencing and with all co-
variates available (Muskens et al.,  2021) compared with non-DS 
newborns, we found that DS remained associated with epigen-
etic aging (effect estimate  =  0.1730, p < 0.0001, age accelera-
tion = 173 days) (Table 2).

We further attempted to assess the association between DS and 
epigenetic age acceleration directly. We fitted a linear regression 
model estimating DNAmAA as a function of DS status, sex, birth-
weight, batch, cell-type proportions, and the first 10 EPISTRUCTURE 
PCs. DS was significantly associated with increased DNAmAA (effect 
estimate = 0.2406, p < 0.0001) (Table 2); the associations remained 
after excluding the high nRBC newborns (effect estimate = 0.1282, 
p < 0.0001) and when limited to GATA1-wildtype DS newborns (ef-
fect estimate = 0.1735, p < 0.0001). An additional sensitivity anal-
ysis was performed to account for potential confounding of CpGs 
on the trisomic chromosome 21, or those associated with blood 
cell proportions, in calculation of the epigenetic clock. We recal-
culated DNAmBloodSkinClock and DNAmAA excluding CpG sites 
on chromosome 21 and CpGs used in the reference set for the cell-
type deconvolution, and DS remained significantly associated with 
the epigenetic clock (effect estimate = 0.1987, p < 0.0001) and with 
DNAmAA (effect estimate =  0.1959, p < 0.0001) (Table  S2). Taken 
together, these data support that accelerated epigenetic aging is al-
ready detectable at birth in the whole blood of individuals with DS.

Children with DS have a markedly high risk of hematological ma-
lignancy (Hasle et al., 2000). Our study included a large proportion 
of children that went on to develop ALL (Table 1), providing an op-
portunity to explore whether epigenetic age acceleration at birth in 
newborns with DS may be associated with increased risk of ALL in 
childhood (DS-ALL); however, we found no significant difference in 
epigenetic age or DNAmAA between DS-ALL subjects (N = 147) and 
DS non-ALL subjects (N = 199) (Table S3 and Figure S6).

Myeloid leukemia in DS (ML-DS) cases were not included in our 
study, but we were able to investigate whether epigenetic age may 
be associated with somatic GATA1 mutations at birth, which can 
progress to ML-DS in up to 10% of patients (Roberts et al., 2013). 
We compared epigenetic age estimates in newborns with DS with 
(n = 30) and without (n = 154) GATA1 mutations, as assessed by tar-
geted sequencing (see Section 4), using both bivariate tests and lin-
ear regression models adjusting for cell-type proportions (Figure S7 
and Table  S4). We found that the presence of GATA1 mutations 
at birth was associated with increased epigenetic age (effect esti-
mate = 0.1441, p = 0.015), with an age acceleration of 144 days in 
GATA1 mutation-positive newborns (Table S4). Further, GATA1 mu-
tation variant allele fraction (VAF) was positively associated with 
epigenetic age among mutation-positive newborns (effect esti-
mate = 1.7805, p = 0.004), with an age acceleration of 178 days per 
10% increase in GATA1 mutation VAF. GATA1 mutations were also 
significantly associated with increased DNAmAA, both as a binary 
variable (effect estimate = 0.1447, p = 0.009) and with increasing 
mutation VAF (effect estimate = 1.5390, p = 0.016). In sensitivity 
analyses, GATA1 mutations and mutation VAF remained significantly 
associated with the epigenetic clock and DNAmAA after excluding 
CpGs on chromosome 21 or in the blood cell deconvolution refer-
ences (Table S5).

Finally, we explored whether newborns with DS may also 
demonstrate accelerated epigenetic gestational aging, using three 
gestational age clocks (Haftorn, Knight, and Bohlin, see Section 4) 
previously developed using genome-wide DNA methylation data 
(Bohlin et al.,  2016; Haftorn et al.,  2021; Knight et al.,  2016). The 
three gestational age clocks were significantly positively associ-
ated with each other in DS and non-DS newborns, with correla-
tion coefficients ranging from 0.72 to 0.93 (Figure S8). They were 
also significantly positively associated with the observed gesta-
tional age in both DS (correlation coefficient ranges: 0.46–0.59) 
and non-DS newborns (correlation coefficient ranges: 0.49–0.51) 

TA B L E  2 Association between Down syndrome and epigenetic aging and epigenetic age acceleration, in newborn blood samples using 
the DNAmSkinBloodClock

Model (n subjects)

DNAmSkinBloodClock DNAmAA for DNAmSkinBloodClock

Estimate (95% CI) p value AA for DS (days) Estimate (95% CI) p value AA for DS (days)

Base model (834) 0.3477 
(0.3097–0.3858)

8.03 × 10−61 347.7 0.3497 
(0.3119–0.3875)

4.51 × 10−62 349.7

Full model (834) 0.2442 
(0.1964–0.2920)

2.54 × 10−22 244.2 0.2406 
(0.1933–0.2880)

3.91 × 10−22 240.6

Full modela (783) 0.1322 
(0.0958–0.1685)

2.35 × 10−12 132.2 0.1282 
(0.0921–0.1642)

6.99 × 10−12 128.2

Full modelb (680) 0.1730 
(0.1244–0.2216)

7.55 × 10−12 173.0 0.1735 
(0.1251–0.2219)

5.34 × 10−12 173.5

Note: Base model is linear regression for DNAmSkinBloodClock or DNAmAA (DNAmSkinBloodClock) as a function of DS status, adjusting 
for sex, chronological age (chronological age was not adjusted for DNAmAA), birth weight, EPISTRUCTURE PCs (9 PCs in the model for 
DNAmSkinBloodClock and 10 PCs in the model for DNAmAA), and batch; full model additionally adjusted for blood cell proportions.
Abbreviation: AA, age acceleration.
aFull model in subjects without high nRBC.
bFull model in DS newborns that were found to be GATA1 mutation wildtype and non-DS newborns.
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(Figure S9). Mean observed gestational age was significantly lower 
in DS (267 days) than in non-DS newborns (274 days, p < 0.0001) 
(Table  1, Figure  S10A,B). Bivariate tests also showed significantly 
lower gestational age clocks in DS newborns than in newborns with-
out DS (pHaftorn < 0.0001, pKnight < 0.0001, pBohlin = 0.012) (Table 1, 
Figure  S10C–H). DS remained significantly associated with lower 
gestational age clocks in linear regression models adjusting for ob-
served gestational age, sex, batch, birthweight, cell-type propor-
tions, and EPISTRUCTURE PCs (Table S6).

To evaluate epigenetic gestational age acceleration, we derived 
DNAmAA from each gestational age clock. For all three clocks, ges-
tational age acceleration was not significantly different between DS 
and non-DS newborns in bivariate tests or in linear regression mod-
els adjusting for sex, batch, birthweight, cell-type proportions, and 
EPISTRUCTURE PCs (Figure S11, Table S7). These results contrast 
our findings for the epigenetic age clock analyses and suggest that 
there is no significant gestational age acceleration in newborns with 
DS.

3  |  DISCUSSION

In summary, we performed the largest study of epigenetic aging in 
DS to date, and discovered significant accelerated epigenetic aging 
in the whole blood of newborns with DS, supporting that acceler-
ating aging begins early in life in individuals with DS. We found an 
average 244-day acceleration in epigenetic aging among newborns 
with DS after adjusting for potential confounding factors, which 
was reduced to 132 days after excluding the subset of (mainly DS) 
newborns with high nRBC proportions. The causes of premature 
aging in DS remain to be determined but may result from genome-
wide perturbations in epigenetic regulation and gene expression 
associated with T21 (Lane et al.,  2014; Letourneau et al.,  2014; 
Muskens et al., 2021) and are potentially linked to the upregula-
tion of inflammatory processes in individuals with DS (Huggard 
et al., 2020; Sullivan et al., 2017), which is further supported by 
the differences in hematopoiesis revealed by our cell-type decon-
volution analyses. Understanding the mechanisms involved may 
reveal novel therapeutic targets to help ameliorate the progeroid 
features of DS.

It is also important to investigate whether differences in pre-
mature aging may underlie phenotypic variation in individuals with 
DS. We found no association between accelerated epigenetic aging 
at birth and future risk of DS-ALL development. We did, however, 
find that DS newborns harboring somatic GATA1 mutations have 
increased epigenetic aging relative to DS newborns without GATA1 
mutations. Given the pathophysiology of TAM/Silent TAM, it is pos-
sible that epigenetic age acceleration was the consequence of the 
GATA1 mutation phenotype rather than a risk factor, and there may 
have also been residual confounding by the increased nRBC propor-
tions in DS newborns with GATA1 mutations 11. Future studies will 
be required to assess the role of epigenetic aging in the risk of ML-
DS and in adult-onset neurologic traits like DS-AD.

The lack of accelerated epigenetic gestational age in newborns 
with DS suggests that the epigenetic clocks for gestational age 
may be specific to the timing of factors related to gestation, such 
as fetal growth and developmental maturation, rather than general 
processes of aging (Haftorn et al., 2021; Knight et al., 2016). DS is 
associated with fetal growth restriction and an increased frequency 
of small-for-gestational-age births compared with non-DS newborns 
(Muskens et al., 2021; Yao et al., 2020), which may explain the sig-
nificantly lower epigenetic gestational age clocks in DS newborns 
in our study, even after adjusting for observed gestational age. 
Whereas CpGs most informative for fetal developmental profiling 
gave qualitatively different results than the DNAmSkinBloodClock 
and DNAmAge clock, these latter clocks incorporate the CpGs most 
informative for predicting aging across the life course. The substan-
tial aging acceleration observed in DS newborns using these clocks 
likely reflects the fetal programming of longer-term somatic aging, 
which appears to be initiated much earlier in the DS population.

The strengths of our study include the use of DBS samples for 
a large number of newborns with and without DS, the availability 
of both gestational age and age at DBS collection that enabled us 
to calculate chronological age from conception, and the inclusion of 
DS-ALL cases and GATA1 mutation data that allowed us to explore 
the association between epigenetic age and hematological pheno-
types in DS. The exclusive use of newborn DBS, however, limited 
our ability to assess epigenetic aging in DS outside of the neonatal 
period, although previous studies have demonstrated accelerated 
epigenetic aging in older DS individuals (Horvath et al., 2015). The 
usage of archived neonatal dried blood spots might have affected 
the DNA methylation measurements; however, this biospecimen 
type has been shown to provide high-quality DNA for methylation 
arrays (Hollegaard et al., 2013; Walker et al., 2019). Phenotypic in-
formation was also limited for subjects in our study, and it is possible 
that some unmeasured DS-related conditions may have affected our 
results. Understanding the effects of premature aging on common 
DS-related phenotypes will require longitudinal studies with an as-
sessment of epigenetic clocks and other aging-related biomarkers 
in well-phenotyped individuals with and without DS and follow-up 
throughout the life course.

4  |  E XPERIMENTAL PROCEDURES

4.1  |  Study subjects

This study was approved by Institutional Review Boards at the 
California Health and Human Services Agency, University of 
Southern California, University of Berkeley, Yale University, and 
Washington State.

Archived neonatal dried bloodspot (DBS) specimens were ob-
tained from 351 newborns with DS and 574 newborns without DS. 
Of the 351 subjects with DS, DBS for 198 newborns were obtained 
from the California Biobank Program (CBP) as previously described 
(Muskens et al.,  2021). In brief, these 198 DS newborns did not 
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have a leukemia diagnosis by the age of 15 years (DS non-ALL), as 
identified via linkage between the California Department of Public 
Health Genetic Disease Screening Program and the California 
Cancer Registry (Wiemels et al.,  2018). An additional 152 DS 
newborns who later developed ALL (DS-ALL) were included in the 
International Study of Down Syndrome Acute Leukemia (Brown 
et al.,  2019), including 114 identified in the California Cancer 
Records Linkage Project (CCRLP) (Wiemels et al., 2018), 19 in the 
California Childhood Leukemia Study (Metayer et al., 2013), and 
19 identified in the Washington State Childhood Cancer study 
using population-based linked birth-hospital discharge-cancer 
registry records and with DBS obtained from the Washington 
State Department of Health Newborn Screening Program (Mueller 
et al., 2018). One additional DS non-ALL subject was identified in 
the CCRLP.

Of the 574 newborns without DS, these included 133 non-DS 
ALL cases born in California and 441 non-DS and cancer-free control 
children who were matched to cases by year and county of birth (3 
or 4 controls per case), as previously described (Nielsen et al., 2019). 
Cancer diagnosis data were obtained from the California Cancer 
Registry and neonatal DBS from the CBP. Birth-related variables in-
cluding birthweight, gestational age, and age at DBS collection (age 
at blood sampling) were collected for the majority of California-born 
subjects from the CBP (Table 1).

4.2  |  DNA methylation arrays

DNA was isolated from one-third portions of each DBS using the 
Qiagen DNA Investigator blood card protocol. DNA samples were 
bisulfite-converted using Zymo EZ DNA Methylation kits, with total 
DNA inputs ranging from 115 to 451 ng as measured by PicoGreen. 
Bisulfite-converted DNA was then assayed on Illumina Infinium 
MethylationEPIC Beadchip genome-wide DNA methylation arrays. 
DS and non-DS samples were block-randomized to ensure equiva-
lent distributions of sex, self-reported race/ethnicity, and ALL case–
control status, on all plates.

4.3  |  DNA methylation array data processing

Initial quality control (QC) of MethylationEPIC array data was per-
formed using Illumina GenomeStudio Software and BeadArray 
Controls Reporter Software, including evaluation of control probes 
for bisulfite treatment conversion efficiency, dye specificity, hy-
bridization, and staining, and control probes performed robustly 
for all samples supporting the generation of high-quality data. Ten 
intra-plate duplicates, with median DNA inputs of 201 ng (range: 
115 to 451 ng), showed a strong correlation of methylation beta 
values with R2 ≥ 0.995. One DS sample was excluded based on 
a mismatch between reported sex and methylation gender con-
trols data. Additional QC assessment and normalization of DNA 
methylation array data were performed using the “minfi” package 

(Aryee et al.,  2014) through the Bioconductor project (Gentleman 
et al., 2004; Huber et al., 2015). Functional normalization (Funnorm) 
was performed using the “preprocessFunnorm” function (Fortin 
et al.,  2014) to remove technical variability and batch effects. By 
default, the “preprocessFunnorm” function applies the noob within-
array normalization as the first step to correct for background 
fluorescence and dye bias. Funnorm, together with noob, has been 
found to outperform the individual normalization methods and 
other batch removal tools (Fortin et al., 2014). Liu et al. reported that 
Funnorm/noob plus beta-mixture quantile normalization (BMIQ) 
improved signal sensitivity and reduced technical variance (Liu & 
Siegmund,  2016). Therefore, the BMIQ method was subsequently 
applied (Teschendorff et al., 2013). Mean detection p values were 
calculated by using the “detectionP” function (Aryee et al.,  2014). 
CpGs with mean detection p value >0.01 were considered poor 
quality and were removed from the analysis. CpG sites and samples 
that had missingness >15% were removed. Four DS and 7 non-DS 
subjects were excluded after QC. To confirm constitutive T21 status, 
we generated copy-number variation plots using the R package “co-
numee” (Mah et al., 2018) for all subjects, with 20 randomly selected 
non-DS newborns as the reference. Median log2 copy-number ra-
tios on chromosome 21 were calculated across 317 bins for all the 
newborns with and without DS, with values ≥0.2 in DS newborns 
indicating full T21 status. Samples with a median chromosome 21 
log2 copy ratio that was >2 standard deviations below the average 
median chromosome 21 log2 copy ratio across all DS newborns, but 
above the maximum median chromosome 21 log2 copy ratio of non-
DS newborns, were designated as likely mosaic/partial T21.

4.4  |  Epigenetic age clock calculations

DNA methylation-based estimators of age were calculated accord-
ing to the methods from Horvath (2013) and Horvath et al. (2018). 
We computed two epigenetic age clocks: the pan-tissue DNA 
methylation clock (DNAmAge) and the skin & blood clock 
(DNAmSkinBloodClock). Briefly, a calibrated version of DNAmAge 
was calculated from a weighted combination of the DNA methyla-
tion levels of 353 CpGs and was subsequently converted back to 
DNAmAge; DNAmSkinBloodClock was calculated in a similar way 
from 391 CpGs. Of the 353 clock CpGs comprising DNAmAge, 19 
were missing from the EPIC array because they were only present 
on the Illumina Infinium 450 K and 27 K arrays used by the original 
training set. The missing values were replaced with the average beta 
values of the available clock CpGs (n = 334) per sample using the “im-
pute.knn” function from the “impute” package (Hastie et al., 2020). 
The two epigenetic age clocks share 60 CpGs. Two age-independent 
measures of epigenetic age acceleration (DNAmAA) were derived 
from DNAmAge and DNAmSkinBloodClock based on the methods 
from Horvath et al. (2015) DNAmAA was calculated as the deviation 
from the expected epigenetic age clock based on its linear associa-
tion with chronological age (gestational age plus age at blood sam-
pling) in non-DS newborns.
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4.5  |  Gestational age clock calculations

We calculated three epigenetic gestational age clocks using the 
approaches as previously described (Bohlin et al.,  2016; Haftorn 
et al.,  2021; Knight et al.,  2016). The Haftorn clock (Haftorn 
et al., 2021) comprises 176 CpGs on the EPIC array. The Knight clock 
(Knight et al., 2016) and the Bohlin clock (Bohlin et al., 2016) are com-
posed of 148 CpGs and 96 CpGs from the 450K array, respectively. 
Six CpGs in the Knight clock and 8 CpGs in the Bohlin clock were 
absent from the EPIC array and were thus replaced with the average 
beta values of the 142 and 88 available clock CpGs, respectively, 
using the “impute.knn” function. The number of the CpGs overlap-
ping each pair of the epigenetic clocks is summarized in Figure S12. 
DNAmAA for each epigenetic gestational age clock was calculated 
as the residuals from the linear association of each gestational age 
clock with the observed gestational age in newborns adjusted for 
DS status.

4.6  |  Assessment of cell-type heterogeneity

We performed reference-based deconvolution of blood cell propor-
tions in all subjects using the Identifying Optimal Libraries algorithm 
(Gervin et al., 2019; Koestler et al., 2016). Proportions of monocytes, 
granulocytes, natural killer cells, B lymphocytes, T lymphocytes 
(both CD4+ and CD8+), and nucleated red blood cell (nRBC)/eryth-
roblasts were estimated by using the “estimateCellCounts2” function 
in the R package “FlowSorted.Blood.EPIC” (Salas & Koestler, 2021) 
coupled with DNA methylation data from cord blood cell reference 
samples in the R package “FlowSorted.CordBloodCombined.450k” 
(Bakulski et al., 2016).

4.7  |  GATA1 sequencing

Targeted sequencing of GATA1 exons 2 and 3 was performed in a 
subset of 184 newborns with DS who did not develop leukemia, 
as previously described (Labuhn et al., 2019; Muskens et al., 2021; 
Roberts et al., 2013), to identify DS newborns with preleukemia as-
sociated with transient abnormal myelopoiesis (TAM) or silent TAM.

4.8  |  Statistical analysis

All statistical analyses were performed in R v 4.0.2 (R Core 
Team, 2020) with significance tests using 2-sided p = 0.05. Means 
and standard deviations were summarized for continuous vari-
ables, including birthweight, gestational age, age at blood sampling, 
chronological age from conception (gestational age plus age at blood 
sampling), and epigenetic estimators of age. Frequencies and pro-
portions were computed for categorical variables (sex, self-reported 
race/ethnicity, and ALL case/control status). We compared continu-
ous variables and categorical variables between DS newborns and 

non-DS newborns using the Student's t test and χ2, respectively. We 
also tested for the differences in epigenetic age and epigenetic age 
acceleration between DS newborns with full T21, with likely mosaic/
partial T21 and non-DS newborns using the nonparametric Kruskal–
Wallis test. The Benjamini–Hochberg adjusted p values were subse-
quently obtained from the Wilcoxon rank-sum pairwise comparison 
tests.

We computed Spearman correlation coefficients for 
DNAmSkinBloodClock, DNAmAge, and chronological age from 
conception, and for the three gestational age clocks with the ob-
served gestational age, in DS and non-DS newborns. We also tested 
the association of cell-type proportions with epigenetic estimators 
using the Spearman correlation test. In addition, we fit separate lin-
ear regression models with each blood cell-type proportion as the 
dependent variable and DS status as the independent variable, ad-
justing for sex, gestational age, age at DBS collection, birthweight, 
batch, and genetic ancestry using the first 10 PCs derived from 
EPISTRUCTURE (Rahmani et al., 2017).

We further compared the epigenetic clocks between DS and 
non-DS newborns using linear regression adjusting for chronological 
age from conception, sex, birthweight, batch, cell-type proportions, 
and genetic ancestry using PCs derived from EPISTRUCTURE. The 
linear regression models for the gestational age clocks were ad-
justed for gestational age instead of chronological age. In addition, 
we compared age-independent measures of epigenetic age accel-
eration between DS and non-DS newborns using linear regression 
models adjusting for the same covariates described above, excluding 
chronological age or gestational age. We adjusted for the covariates 
that had p values <0.2 from the univariable linear regression analyses 
for epigenetic estimators in non-DS newborns. Likelihood ratio tests 
and Akaike's Information Criteria were used to determine how many 
EPISTRUCTURE PCs should be included in the regression models. 
Six out of 7 blood cell proportions were adjusted in the linear regres-
sion models; the cell proportion of granulocytes was excluded from 
the models to avoid multicollinearity. DNAmSkinBloodClock and 
DNAmAA were additionally compared between DS newborns who 
later developed ALL and DS newborns without ALL using bivariate 
tests and linear regression models.

We repeated analyses excluding 61 newborns (60 DS) with nRBC 
proportions exceeding 25% or limiting to DS newborns that were 
found to be GATA1 mutation wildtype. In addition, among DS new-
borns with available GATA1 sequencing, we tested for associations 
of GATA1 mutation status and VAF with epigenetic age estimators, 
using linear regression adjusting for the same covariates described 
above.

Finally, we recalculated DNAmSkinBloodClock excluding CpG 
sites on chromosome 21 or CpGs used in the reference set for the 
deconvolution of blood cell proportions (10/391) and repeated all 
linear regression analyses to address potential confounding.
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