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ABSTRACT
The coronavirus disease-2019 (COVID-19) outbreak has been declared a global pandemic. COVID-
19-associated acute kidney injury (COVID-19 AKI) is related to a high mortality rate and serves as
an independent risk factor for hospital death in patients with COVID-19. Early diagnosis would
allow for earlier intervention and potentially improve patient outcomes. The goal of early identifi-
cation of AKI has been the primary impetus for AKI biomarker research, and several kidney injury
biomarkers have been demonstrated to be beneficial in predicting COVID-19 AKI as well as dis-
ease progression in COVID-19. Furthermore, such data provide valuable insights into the molecu-
lar mechanisms underlying this complex and unique disease and serve as a molecular
phenotyping tool that could be utilized to direct clinical intervention. This review focuses on a
number of kidney injury biomarkers, such as CysC, NAGAL, KIM-1, L-FABP, IL-18, suPAR, and
[TIMP-2] � [IGFBP7], which have been widely studied in common clinical settings, such as sepsis,
cardiac surgery, and contrast-induced AKI. We explore the role of kidney injury biomarkers in
COVID-19 and discuss what remains to be learned.
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Introduction

The coronavirus disease-2019 (COVID-19) outbreak has
been declared a global pandemic, and its clinical mani-
festations range from mild self-limiting respiratory tract
illness to severe acute respiratory distress syndrome
and multiple organ failure [1]. Acute kidney injury (AKI)
is a common complication of COVID-19 that is associ-
ated with higher mortality and morbidity rates [2]. The
incidence rate of AKI in hospitalized patients is over
20%, and the incidence of AKI patients admitted to
intensive care is over 50% [3]. When AKI occurs, dialysis
rates can be as high as 30% and survival may be dra-
matically reduced [4]. Studies have revealed that
COVID-19-associated AKI (COVID-19 AKI) has been
linked to adverse outcomes, such as the development
or worsening of comorbid diseases, increased mortality,
and greater use of health care resources [5,6].
Therefore, early recognition of AKI in COVID-19 is crucial
for reducing morbidity and mortality. However, trad-
itional kidney functional biomarkers, such as creatinine
and urine output, may be easy to misinterpret because
they can be impacted by diet, body muscle mass, and

sex [7]. In recent decades, several kidney injury bio-
markers, including cystatin C (CysC), neutrophil gelati-
nase-associated lipocalin (NGAL), kidney injury
molecule 1 (KIM-1), interleukin-18 (IL-18), liver-type fatty
acid-binding protein (L-FABP), tissue inhibitor of metal-
loproteinase 2 (TlMP-2), and insulin-like growth factor
binding protein 7 (IGFBP7), have been extensively
studied for their value in predicting AKI in various com-
mon clinical settings, such as sepsis, cardiac surgery,
and contrast-induced AKI [8–11]. The role of these kid-
ney injury biomarkers in COVID-19, which is a complex
and unique disease, has been researched [12–14]. This
article first reviewed the literature on kidney injury bio-
markers to summarize the performance of these bio-
markers in the diagnosis or prognostication of AKI in
COVID-19 and discuss what is yet to be learned.

COVID-19-associated AKI

AKI is a prevalent complication in patients with COVID-
19 [15]. The incidence of AKI in hospitalized patients is
over 20%, and the incidence of AKI patients being

CONTACT Zhiyong Peng pengzy5@hotmail.com Department of Critical Care Medicine Zhongnan Hospital of Wuhan University, 169 Donghu Rd,
Wuchang District, Wuhan 430071, Hubei Province, China�These authors contributed equally to this work.
� 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

RENAL FAILURE
2022, VOL. 44, NO. 1, 1280–1288
https://doi.org/10.1080/0886022X.2022.2107544

http://crossmark.crossref.org/dialog/?doi=10.1080/0886022X.2022.2107544&domain=pdf&date_stamp=2022-08-02
http://orcid.org/0000-0002-3873-9607
http://creativecommons.org/licenses/by/4.0/
http://www.tandfonline.com


admitted to intensive care is over 50% [3]. The dialysis
rates may be as high as 30%, and the survival rate may
be dramatically reduced when AKI occurs [4].
Presumably, impaired renal function and a decreased
glomerular filtration rate (GFR) are likely to contribute
to the development of AKI in this context. Patients who
require renal replacement therapy (RRT) have a high
death rate, and even those who survive AKI treated
with RRT present a lack of renal recovery following dis-
charge [16].

Direct viral infection with renal tropism of the virus,
overactivation of the angiotensin II pathway, dysregu-
lated immune responses, and nonspecific factors are
thought to be involved in the pathophysiology of
COVID-19 AKI. Manifested by severe respiratory system
attacks, COVID-19 also targets multiple organs, includ-
ing the kidney [17]. Severe acute respiratory syndrome
coronavirus-2 (SARS-CoV-2) has been identified and iso-
lated from postmortem kidney tissue, and viral RNA
was also detected in the kidney tissue of patients with
AKI [18]. The initial impact might be direct viral infec-
tion with renal tropism of the virus mediated by activat-
ing angiotensin-converting enzyme 2 (ACE2), which
functions as a SARS-CoV-2 receptor [19]. ACE2 acts as
an enzyme within the renin–angiotensin system that
metabolizes angiotensin II by cleaving a terminal pep-
tide to form angiotensin (1–7), which plays a crucial
role in counteracting inflammation, vasoconstriction,
and thrombosis [20,21]. SARS-CoV-2 entry, on the other
hand, drastically downregulates the expression of ACE2,
thereby inhibiting its protective effect, which might
result in subsequent AKI triggering [20,22]. Patients
with COVID-19 were reported to develop immune sys-
tem disturbance, which consists of inefficient viral clear-
ance, enhanced cytokine and chemokine release, and
coagulation and complement cascade activation
[23,24]. Even early cases of COVID-19 exhibited a cyto-
kine storm, with interleukin-6 (IL-6) playing a particu-
larly harmful role [25,26]. IL-6 induces renal endothelial
cells to secrete proinflammatory cytokines and chemo-
kines and promotes kidney vascular permeability and
tubular and endothelial dysfunction [26,27].
Furthermore, activation of the coagulation and comple-
ment cascades may further promote the release of
damage-associated molecular patterns from cells
undergoing necrosis, thereby contributing to endothe-
lial injury in COVID-19 [28–31]. The pathogenesis of
COVID-19-associated AKI also involves factors that are
not specific to the virus but rather aspects of a general
response to critical illness or its treatment, including
organ crosstalk [32–34], hemodynamic instability
[35,36], and drug toxicity [37–39] (Figure 1).

Kidney injury biomarkers

Functional biomarkers

Current diagnostic criteria for AKI are limited by serum
creatinine, which is used to calculate the estimated
GFR. Muscle hypoperfusion may lead to the decreased
production of creatine during infection, which blunts
the increase in serum creatinine concentration and lim-
its the early detection of AKI [40]. The reported inci-
dence rate of AKI in COVID-19 is approximately 10% to
50% [5,41], which may be underestimated due to the
shortage of this traditional kidney functional biomarker.
Alternative markers for glomerular filtration have been
evaluated to overcome the shortcomings of SCr in AKI
settings. CysC has been identified as a potential alterna-
tive functional biomarker for AKI.

Cystatin C

CysC is a 13-kDa endogenous cysteine proteinase
inhibitor that is filtered through the glomerulus and
then almost completely reabsorbed and catabolized in
the proximal tubule [42]. It has been demonstrated to
be superior to creatinine in the early diagnosis of
AKI [42].

Yildirim et al. [43] reported that serum CysC had a
high predictive value (AUC, 0.96, 95% CI: 0.90 to 1.0) for
COVID-19-related AKI. The findings of the meta-analysis
of 13 studies involving 2510 patients with COVID-19
indicated that higher concentrations of serum CysC
were associated with higher COVID-19 severity and
mortality [44]. Chen reported that elevated CysC levels
were moderately predictive of disease severity in 1764
patients with COVID-19 (area under the curve [AUC]:
0.656) [45]. CysC measured at the emergency depart-
ment is a highly accurate predictor of AKI and the need
for RRT [46]. CysC levels have also been independently
related to the risks of critical illness and mortality
among patients with COVID-19 [47,48]. However, the
CysC level could systematically underestimate the inulin
clearance in critically ill patients. The mortality of
patients with COVID-19 is related to the reduced eGFR
measured by SCr rather than the reduced eGFR calcu-
lated by CysC [49], and the divergent results might be
associated with inflammatory conditions and ill-
ness severity.

Damage biomarkers

Kidney damage biomarkers reflect kidney tubule injury,
which is not simply an early stage of loss of kidney
function. Decreasing function and increasing damage
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are not as straightforward as might be assumed [50]. In
most cases of AKI, a distinctive pattern may be
observed in which damage proceeds to a loss of func-
tion, thus allowing for the opportunity to detect
‘subclinical’ AKI before the beginning of the loss of
function. Thus, early predictive kidney damage bio-
markers have great significance for clinical AKI preven-
tion. Over the last decade, considerable progress has
been made in the discovery and advancement of new
kidney damage biomarkers, such as KIM-1, L-FABP, IL-
18, soluble urokinase plasminogen activator receptor
(suPAR), and NGAL.

Kidney injury molecule-1

KIM-1 is a 38.7 kDa transmembrane protein with an
extracellular immunoglobulin-like domain over top a
long mucin-like domain [51]. KIM-1 is a biomarker for

early kidney damage that has been used in a variety of
clinical settings [52]. It is upregulated in the kidney
proximal tubule after a wide variety of injurious influen-
ces, including ischemia, nephrotoxicants, sepsis, and
immune-related injury [53,54]. The renal KIM-1 mRNA
levels in patients with COVID-19 with bacterial sepsis
were increased 24-fold [55]. A study published in pre-
print form identified KIM-1 as a receptor for SARS-CoV-2
both in the lung and kidney epithelia and indicated
that it could be a potential therapeutic target in COVID-
19 [56]. Few clinical studies have investigated the role
of KIM-1 in patients with COVID-19. As reported by
Vogel et al. [12], KIM-1 can recognize AKI at an early
stage and predict a higher risk for clinical deterioration,
as evidenced by ICU admissions among patients with
COVID-19. The latest research showed that the urine
KIM-1/creatinine ratio was associated with COVID-19-
specific death [57]. However, additional research into

Figure 1. Proposed pathophysiology of COVID-19-associated acute kidney injury. (a) SARS-CoV-2 has been shown experimentally
to infect renal tubular cells through angiotensin-converting enzyme 2 (ACE2), which has been proposed to cause direct kidney
injury. (b) Downregulation of angiotensin (1–7) caused by SARS-CoV-2 entry through ACE2 may aggravate acute tubular injury.
(c) Following SARS-CoV-2 infection, immune system develops disturbances, including inefficient viral clearance, the enhanced
release of cytokines and chemokines, activation of the coagulation and complement cascades, which may contribute to AKI. (d)
Endothelial injury caused by angiotensin (1–7) inhibition and immune system disturbance may further aggravate AKI. (e)
Nonspecific factors, including organ crosstalk, hemodynamic instability, and drug toxicity, will also contribute to the development
of AKI.
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the clinical utility of KIM-1 in patients with COVID-19
is needed.

Liver-type fatty acid-binding protein

L-FABP is a 14 kDa protein that belongs to the large
superfamily of lipid-binding proteins that can be local-
ized predominantly in the proximal tubule [58]. L-FABP
has been indicated to be a promising biomarker for a
variety of kidney disorders, and it has also been shown
to attenuate renal injury [59]. The L-FABP concentration
was substantially lower in patients with COVID-19 than
in patients with non-COVID-19 pulmonary diseases [60],
while an increasing level of L-FABP was associated with
adverse clinical outcomes. Tantry et al. [61] pointed out
that L-FABP levels were higher in patients with clinical
events, such as death, pulmonary embolism, stroke and
myocardial disease, and prolonged hospitalization and
mechanical ventilation requirements. Similar findings
have been demonstrated by Katagiri, who claimed that
L-FABP levels tended to be persistently high in severe
cases, thus indicating that high levels of L-FABP were
associated with severe disease in patients with COVID-
19 [62]. The role of L-FABP in the early prediction of AKI
in COVID-19 has yet to be fully studied. Moreover, fur-
ther explorations could also focus on investigating the
molecular mechanism of L-FABP in COVID-19 progres-
sion along with the effects of malabsorption and/or
abnormal lipid metabolism, which may be potential
therapeutic targets of COVID-19.

Interleukin-18

IL-18 is a 22-kDa cytokine that belongs to the IL-1
superfamily, and it is activated by caspase-1 and subse-
quently secreted by renal tubular cells and macro-
phages [63]. In numerous clinical settings, the urinary
level of IL-18 is expected to be an early diagnostic
marker of AKI and provide prognostic information
[64,65]. In response to viral infection, IL-18 is released,
which induces ferritin, thus explaining the frequently
observed hyperferritinemia in viral infections [66], and
stimulates natural killer cell-mediated IFN-c production
for antiviral innate immune responses [67]. The serum
concentrations of IL-18 correlate with other inflamma-
tory markers and are linked to the severity of COVID-19
[68]. It has also been reported that serum IL-18 levels
on admission are higher in patients with COVID-19
requiring mechanical ventilation and in lethal cases
[69]. Schooling et al. [70] reported that IL-18 was
inversely associated with any COVID-19 and very severe
COVID-19. The findings of the present study shed light

on the role of IL-18 in COVID-19 pathogenesis and
might provide evidence for clinical trials on IL-18 antag-
onists for the treatment of severe patients with COVID-
19. To identify the ideal time for pharmacologic IL-18
inhibition, additional studies are required to provide a
deeper understanding of the role of IL-18 in SARS-CoV-
2 infection.

Soluble urokinase plasminogen activator receptor

suPAR was recently found to be a new kidney injury
biomarker. The urokinase receptor system is a key regu-
lator of the intersection among inflammation, immun-
ity, and coagulation [71]. SuPAR is produced when
membrane-bound uPAR is cleaved in response to
inflammatory stimuli [72]. It has been proven to be an
early biomarker in predicting AKI following cardiac sur-
gery and in patients in the ICU [73,74]. SuPAR levels are
dramatically elevated in patients with COVID-19, imply-
ing that it may be a critical mediator of COVID-19 AKI
[75,76]. Azam et al. [77] indicated that suPAR levels are
predictive of in-hospital AKI and the need for dialysis in
patients with COVID-19. It may have a role in defense
mechanisms and fibrinolysis, and low levels in severe
patients may be related to poor prognosis in the early
period [78]. A clinical trial involving 767 participants
was carried out to investigate the role of suPAR in adult
patients with COVID-19 (NCT04590794), and UPAR has
been identified as a predictor of disease progression
biomarkers in COVID-19 [79, 80]. Rovina and colleagues
claimed that suPAR could be an early predictor of
severe respiratory failure in patients with COVID-19 [75].
Moreover, Oulhaj et al. [75] indicated that suPAR has
excellent prognostic utility in predicting severe compli-
cations in hospitalized patients with COVID-19. Future
studies should identify the role of suPAR as a key com-
ponent of the pathophysiology of AKI in COVID-19.

Neutrophil gelatinase-associated lipocalin

The most widely investigated kidney damage biomarker
of AKI is NGAL, which is a 25-kDa protein of the lipoca-
lin family [81]. SARS-CoV-2 can infect the renal tubular
epithelium directly, which may enhance the clinical
value of urinary NGAL as an AKI marker among patients
with COVID-19 [82]. In a retrospective study of 17 critic-
ally ill patients with COVID-19, Komaru highlighted that
urinary NGAL levels were elevated in patients who
went on to develop AKI during their ICU stay and that
the maximum urinary NGAL value was correlated with
the length of mechanical ventilation [83]. This raised
the possibility that urinary NGAL could be used as an

RENAL FAILURE 1283



Ta
bl
e
1.

Bi
om

ar
ke
rs

in
CO

VI
D
-1
9-
as
so
ci
at
ed

AK
I.

Bi
om

ar
ke
rs

Pu
bl
ic
at
io
n

D
es
ig
n

Sa
m
pl
e

si
ze

Cl
in
ic
ou

tc
om

e
Sa
m
pl
e

ty
pe

AU
C
95
%
CI

Cu
to
ff

va
lu
e

Se
ns
iti
vi
ty

(%
)
95
%
CI

Sp
ec
ifi
ci
ty

95
%
CI

Re
fe
re
nc
e

Cy
sC

20
21

Si
ng

le
-c
en
te
r,
re
tr
os
pe
ct
iv
e,

ob
se
rv
at
io
na
ls
tu
dy

34
8

AK
I

Se
ru
m

0.
96

(0
.9
0–
1.
0)

1.
00

(m
g/
L)

90
.0

(5
5.
5–
99
.7
5)

88
.5

(8
4.
6–
91
.7
)

[4
3]

20
20

Re
tr
os
pe
ct
iv
e
st
ud

y
10
1

M
or
ta
lit
y

Se
ru
m

0.
75
5

0.
80

(m
g/
L)

56
.2

86
.5

[4
8]

20
22

Si
ng

le
-c
en
te
r,
pr
os
pe
ct
iv
e,

ob
se
rv
at
io
na
ls
tu
dy

52
AK

I
Se
ru
m

0.
87

(0
.7
7–
0.
98
)

1.
27

(m
g/
L)

70
.0

96
.0

[4
6]

N
ee
d
fo
r
RR
T

Se
ru
m

0.
94

(0
.8
8–
1.
00
)

3.
22

(m
g/
L)

10
0.
0

83
.0

KI
M
-1

20
21

Pr
os
pe
ct
iv
e
ob

se
rv
at
io
na
lc
lin
ic
al

tr
ia
l

80
AK

I
U
rin

e
0.
81

15
90

ng
/g

U
Cr

87
.5

65
.0

[1
2]

IC
U

U
rin

e
0.
76

15
90

ng
/g

U
Cr

79
.0

64
.0

Co
m
po

si
te

en
dp

oi
nt

(A
KI
/IC

U
-

ad
m
is
si
on

/d
ea
th
)

U
rin

e
0.
78

15
90

ng
/g

U
Cr

80
.0

66
.0

20
22

2
ce
nt
er
s,
Pr
os
pe
ct
iv
e
co
ho

rt
st
ud

y
15
3

St
ag
e
3
AK

I,
re
qu

ire
m
en
t
fo
r

di
al
ys
is
,a
nd

de
at
h
w
ith

in
60

da
ys

U
rin

e
–

–
–

–
[1
4]

20
22

Pr
os
pe
ct
iv
e
st
ud

y
18
9

D
ea
th

U
rin

e
0.
74
9
(0
.6
16
–0
.8
81
)

1.
81

(n
g/
m
g-
Cr
)

77
.0

70
.0

[8
7]

L-
FA

BP
20
21

O
bs
er
va
tio

na
ls
tu
dy

12
3

Se
ve
rit
y

U
rin

e
–

–
–

–
[6
1]

20
20

Si
ng

le
-c
en
te
r
re
tr
os
pe
ct
iv
e
st
ud

y
58

Se
ve
rit
y

U
rin

e
0.
88
6

9.
0
lg

/g
Cr
e

94
.1

84
.4

[6
2]

IL
-1
8

20
21

O
bs
er
va
tio

na
ls
tu
dy

58
Se
ve
rit
y

Se
ru
m

0.
90

(0
.8
1-
0.
98
)

57
6
pg

/m
L

78
.0

77
.0

[6
8]

su
PA

R
20
21

Pr
os
pe
ct
iv
e
st
ud

y
40
3

Se
ve
rit
y
an
d
Co

m
pl
ic
at
io
ns

Pl
as
m
a

–
–

–
–

[8
0]

20
21

Pr
os
pe
ct
iv
e
co
ho

rt
st
ud

y
18
7

Se
ve
rit
y
an
d
m
or
ta
lit
y

Bl
oo
d

0.
81

(0
.7
2-
0.
88
)

–
82
.0

65
.0

[7
9]

20
20

M
ul
tin

at
io
na
lo

bs
er
va
tio

na
ls
tu
dy

35
2

AK
Ia

nd
th
e
ne
ed

fo
r
di
al
ys
is

Pl
as
m
a

0.
74
1
(0
.6
84
-0
.7
98
)

–
–

–
[7
7]

20
21

O
bs
er
va
tio

na
ls
tu
dy

12
0

Se
ve
rit
y

Se
ru
m

–
–

–
–

[7
8]

N
G
AL

20
21

Si
ng

le
-c
en
te
r
co
ho

rt
st
ud

y
17
4

AK
Ia

nd
m
or
ta
lit
y

U
rin

e
–

–
–

–
[8
5]

20
22

Si
ng

le
-c
en
te
r,
pr
os
pe
ct
iv
e,

ob
se
rv
at
io
na
ls
tu
dy

52
AK

I
Se
ru
m

0.
81

(0
.6
8-
0.
95
)

12
0(
ng

/L
)

64
.0

93
.0

[4
6]

N
ee
d
fo
r
RR
T

Se
ru
m

0.
87

(0
.7
5-
1.
00
)

19
0(
ng

/L
)

75
.0

93
.0

20
22

Si
ng

le
-c
en
te
r,
pr
os
pe
ct
iv
e,
lo
ng

itu
di
na
l

co
ho

rt
st
ud

y
51

AK
I

U
rin

e
0.
70
6
(0
.5
59
-0
.8
54
)

45
(n
g/
m
L)

54
.5

76
.9

[8
6]

20
22

2
ce
nt
er
s,
Pr
os
pe
ct
iv
e
co
ho

rt
st
ud

y
15
3

St
ag
e
3
AK

I,
re
qu

ire
m
en
t
fo
r

di
al
ys
is
,a
nd

de
at
h
w
ith

in
60

da
ys

U
rin

e
–

–
–

–
[1
4]

20
22

Pr
os
pe
ct
iv
e
st
ud

y
18
9

D
ea
th

U
rin

e
0.
75
0
(0
.6
16
–0
.8
83
)

11
8
(n
g/
m
g-
Cr
)

76
.0

71
.0

[8
7]

[T
IM
P-
2]

�
[IG

FB
P7
]

20
20

Si
ng

le
-c
en
te
r,
re
tr
os
pe
ct
iv
e,

ob
se
rv
at
io
na
ls
tu
dy

23
AK

I
U
rin

e
–

–
–

–
[9
2]

20
22

Si
ng

le
-c
en
te
r,
pr
os
pe
ct
iv
e,
lo
ng

itu
di
na
l

co
ho

rt
st
ud

y
51

AK
I

U
rin

e
0.
68
2
(0
.5
35
-0
.8
29
)

0.
2
(n
g/
m
L)
2 /
10
00

40
.0

88
.4

[8
6]

1284 L. SU ET AL.



AKI biomarker in patients with COVID-19. Xu et al. [84]
emphasized that urinary NGAL was strongly linked to
AKI diagnosis and predicted the duration of AKI and
outcomes, such as death, dialysis, shock, and longer
hospital stay. He et al. [85] demonstrated that the NGAL
level was an independent predictor in predicting AKI.
Recently, a series of studies have shown that NGAL dis-
played acceptable performance for predicting AKI, the
need for RRT, and death [14,46,86,87]. In addition, one
clinical trial was established to study the role of NGAL
and CysC in the prediction of AKI in COVID-19 infection
(NCT04603664). However, additional clinical studies
should be performed in the future to determine the
effect of NGAL in predicting AKI and clinical outcomes
and its use in phenotyping clinical AKI in patients with
COVID-19.

Stress biomarkers

Theoretically, early stages of ‘transient AKI’ may show
signs of functional decline even prior to damage. Other
patterns occur as well, such as functional decline, which
may start to occur alongside damage [50]. This makes
damage markers difficult to employ to forecast AKI.
TIMP-2 and IGFBP7 are the most extensively studied
stress biomarkers.

TIMP-2 and IGFBP7

Cell cycle arrest in the G1 phase could be a cellular
mechanism to escape potential DNA damage [88].
Renal epithelial cells have been found to undergo G1
cell cycle arrest during ischemic or septic kidney injury
[89]. TIMP-2 and IGFBP7 act as ‘stress biomarkers’ of
two G1 cell cycle arrest urinary biomarkers, and they
have been extensively validated as early kidney injury
biomarkers [90,91]. Stress may occur at the cellular level
prior to damage or loss of function and thus may serve
as a tool for providing us with an opportunity to detect
‘subclinical’ AKI before the function starts to decline
[50]. Although it may serve as an early indicator of
acute kidney stress, few studies have investigated the
value and clinical application of [TIMP-2] � [IGFBP7] in
COVID-19. In a prospective and observational study,
Husain-Syed reported that [TIMP-2] � [IGFBP7] had no
effect on predicting AKI in patients with COVID-19, but
higher [TIMP-2] � [IGFBP7] levels were associated with
adverse clinical outcomes, including the severity of AKI,
requirement of RRT, and death [92]. Gustavo et al. [86]
demonstrated that elevated values of urinary [TIMP-2] �
[IGFBP7] were risk factors for AKI. A clinical trial has
been established to study whether TIMP-2 and IGFBP7

could identify patients with COVID-19 at risk of devel-
oping AKI early (NCT04393428), and the findings of this
investigation will be made public in the future.
Importantly, unlike many biomarkers, nonrenal organ
failure did not result in increased [TIMP-2] � [IGFBP7]
[93]. More studies should be carried out to investigate
the effect of [TIMP-2] � [IGFBP7] in predicting AKI and
the progress of the disease and determine its clinical
usage in the phenotyping of clinical AKI in patients
with COVID-19 (Table 1).

Conclusion

AKI caused by COVID-19 is more prevalent than initially
thought and associated with morbidity and mortality.
The detection of AKI with current criteria associated
with the rise in serum creatinine or decrease in urine
output has some limitations. Kidney injury biomarkers,
such as functional biomarkers (CysC), damage bio-
markers (KIM-1, L-FABP, IL-18, suPAR, and NGAL), and
stress biomarkers (TIMP-2 and IGFBP7), appear to be
efficient in detecting AKI as well as disease progression
in patients with COVID-19. However, the majority of
previous studies were single-center retrospective stud-
ies with a small number of subjects. Future well-con-
trolled prospective studies monitoring multiple
biomarkers simultaneously as well as the combination
of kidney injury and damage biomarkers for the predic-
tion of COVID-19-associated AKI should be explored.
Differences in the findings for reported biomarkers in
AKI with COVID-19 from other settings of clinical AKI
may need to be better clarified in the future. The role
of kidney injury biomarkers in the phenotyping of clin-
ical AKI along with the potential therapeutic targets in
patients with COVID-19 should also be thoroughly
studied. In addition, the impact of these kidney injury
biomarkers on COVID-19 variants should also be
explored. Following extensive research, the field of
nephrology will likely develop a deeper understanding
of kidney injury biomarkers, which will aid in the clinical
practice for patients with COVID-19.
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