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Abstract

Classic reinforcement learning (RL) theories cannot explain human behavior in the absence

of external reward or when the environment changes. Here, we employ a deep sequential

decision-making paradigm with sparse reward and abrupt environmental changes. To

explain the behavior of human participants in these environments, we show that RL theories

need to include surprise and novelty, each with a distinct role. While novelty drives explora-

tion before the first encounter of a reward, surprise increases the rate of learning of a world-

model as well as of model-free action-values. Even though the world-model is available for

model-based RL, we find that human decisions are dominated by model-free action choices.

The world-model is only marginally used for planning, but it is important to detect surprising

events. Our theory predicts human action choices with high probability and allows us to dis-

sociate surprise, novelty, and reward in EEG signals.

Author summary

Humans like to explore their environment: children play with toys, tourists explore touris-

tic sites, and readers start a new book. Exploration is useful to build knowledge about the

world in the form of a ‘world-model’. However, since the world is complex and changing,

the learned world-model is sometimes wrong: if so, the feeling of surprise arises. Here, we

distinguish surprise from novelty; we show that humans use surprise as a signal to decide

when to adapt their behavior, while they use novelty to decide where and what to explore

—to eventually develop an improved world-model. Intuitively, it seems obvious to use

world-models to plan future actions. However, we show that in a complex and changing

environment where planning needs heavy computations, participants rarely follow an

explicit plan and take their actions mainly by shaping habits. Importantly, we show that

the main role of their world-model is to signal when to be surprised and, hence, when to
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adapt their habits. In summary, our results show how surprise and novelty interact with

human reinforcement learning, contribute to human adaptive and exploratory behavior,

and correlate with EEG signals.

Introduction

Humans seek not only explicit rewards such as money or praise [1–8] but also novelty [9, 10],

an intrinsic reward-like signal which is linked to curiosity [9–15]. In the theory of reinforce-

ment learning, novelty is considered as a drive for exploration [12, 16–18], and novelty-driven

exploratory actions have been interpreted as steps towards building a model of the world

(‘world-model’) which is then used for action planning [19]. A world-model represents

implicit knowledge that links actions to observations, such as ‘if I open the door to my kitchen,

I will see my fridge’.

However, since the world is much more complex than any model of it, there will occasion-

ally be a mismatch between the expectations arising from the model and the actual observa-

tion, e.g., when you return from work and the location of the fridge is suddenly empty because

your room-mate has sent it off for repair. Such mismatches generate the feeling of surprise,

known to manifest in pupil dilation [20] and EEG signals [21–23]. Whereas the reward predic-

tion error (RPE) is a mismatch between the expected reward and the actual reward, surprise is

a mismatch between an expected observation and an actual observation. Behavioral experi-

ments [20, 24–27] and theories [27–30] suggest that surprise helps humans to adapt their

behavior quickly to changes in the environment, potentially by modulating synaptic plasticity

[31–33].

Surprise is fundamentally different from novelty; if you already know that your fridge

would be fetched for repairing, the new arrangement of the kitchen without the fridge is novel

but not surprising. However, although there is some agreement that novelty and surprise are

two separate notions, it has been debated how they can be formally distinguished [34–37],

whether they manifest themselves differently in EEG signals [22, 23, 38, 39], and how they

influence learning and decision-making [9, 10, 12, 12, 14, 15, 20, 24–26, 37, 40, 41].

In this study, we address three questions: First, how do surprise and novelty influence

human reinforcement learning? Second, what is their relative contribution to exploratory and

adaptive behavior? And third, can surprise be distinguished from novelty in human behavioral

choices and event related potentials (ERP) of the electroencephalogram (EEG)? We show, via a

specifically designed deep sequential decision task and a novel hybrid reinforcement learning

model, that we can dissociate contributions of surprise from those of novelty and reward in

human behavior and ERP.

Our key findings can be summarized in three points: (i) We find that novelty-seeking

explains participants’ exploratory behavior better than alternative exploration strategies such

as seeking surprise or uncertainty [42, 43]; (ii) we observe that participants use their world-

model only rarely for action planning and mainly to extract moments of surprise; and impor-

tantly, (iii) we show that surprise calculated by the world-model does not only modulate the

learning of the world-model [24–26, 29] but also the learning of model-free action-values. In

particular, we show that such a modulation is necessary to explain participants’ adaptive

behavior.
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Results

Experimental paradigm and human behavior

In order to distinguish between novelty, surprise, and reward, and to study their effects on

exploratory and adaptive behavior, we designed an environment (cf. [44]) consisting of 10

states with 4 possible actions per state plus one goal state (Fig 1A and 1B). In the human exper-

iments, states were represented as images on a computer screen and actions as four grey disks

below the image. Before the experiment, 12 participants were shown all images of the states

and were informed that their task was to find the shortest path to the goal image. Throughout

the experiment, at each state, participants chose an action (by clicking on one of the grey

disks) which brought them to the next image, where they then chose the next action, and so on

(Fig 1A). Such an episode ended when the goal image was found.

Unknown to the participants, the non-goal states could be classified into the progressing

states (1 to 7 in Fig 1B) and the trap states (8 to 10 in Fig 1B). At each progressing state, one

action (‘good’ action) either brought participants to another progressing state closer to the

Fig 1. Experimental paradigm. A. After image onset, participants had to wait for 700–1700ms (randomly chosen) until four grey disks were presented at the bottom

of the image. After clicking on one disk, a blank screen was presented for another random interval of 700 to 1700ms. The next image appeared afterwards. Different

participants saw different images, but the underlying structure was identical for all participants. The goal image is a ‘thumb-up’ image in this example. The blue lines

indicate the window of EEG analysis. B. Structure of the environment during block 1. There were 10 states with 4 actions each plus a goal state (G). States 1–7 are

progressing states and states 8–10 are trap states. For each progressing state, one action led participants to the next progressing state, two actions led participants to

one of the trap states, and one action made participants stay at the current state. The action which made participants stay at the current state is shown for states 1, 3,

and 7, as an example. For each trap state, three actions led participants to one of the trap states, and one action led participants to state 1. Not all action arrows are

drawn for the trap states to simplify illustration. C. Average number of actions of participants during block 1 (blue) and block 2 (red): The 1st episode of block 2 was

significantly shorter than the 1st episode of block 1 (one-sample t-test, p-value = 0.035). Error bars show the standard error of the mean, and each grey point shows

the data of one participant. D. Environment used in block 2: The images presenting state 3 and state 7 (in red) were swapped. Other transitions remained unchanged.

https://doi.org/10.1371/journal.pcbi.1009070.g001
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goal or led them directly to the goal, two actions (‘bad’ actions) brought them to one of the

trap states, and one action (‘neutral’ action) made them stay at the current state. At each trap

state, three actions brought participants to either the same or another trap state, and one action

brought them to state 1, at the beginning of the path of progressing states. The assignment of

action buttons to specific transitions was random and not the same for different states, e.g., in

state 1, the neutral action is action 2, whereas in state 3, the neutral action is action 3 (Fig 1B).

Note that the underlying structure of the environment, the assignment of images to specific

states, and the assignment of action buttons to specific transitions were unknown to the partic-

ipants. We also did not tell the participants whether or not transitions were deterministic (i.e.,

whether the same action from a certain state always led to the same next state).

The experiment was organized in 10 episodes, i.e., it ended after the 10th time that partici-

pants found the goal state. Unknown to the participants, we divided these 10 episodes into 2

blocks of 5 episodes each; we refer to the first 5 episodes as block 1 and to the second 5 episodes

as block 2. During the 1st episode of block 1, participants took between 34 and 214 actions

(mean 118 and std 54) until they arrived at the goal (Fig 1C). They then continued for another

4 episodes, each time starting in a new initial state. The initial state for each episode was chosen

randomly, but it was kept fixed across participants. After the 1st episode, participants had

learnt to reach the goal in less than 20 steps (episodes 2 to 5 in Fig 1C). After the end of the 5th

episode (the end of block 1), two states (state 3 and 7 in Fig 1D) were swapped, without

announcing it to the participants. Participants continued for another 5 episodes with the novel

layout of the environment (2nd block, Fig 1D).

In the 1st episode of block 1, participants explored the environment to find the goal, but

they received no intermediate reward or other sign of progress while doing this. If participants

followed a purely random exploration (i.e., choosing each action with 1/4 probability), it

would take them on average about 104 actions to find the goal, starting at any non-goal state

(see S4 Text). This high number is an indication of the complexity and depth of our environ-

ment. Our results suggest that participants followed a non-random strategy for finding the

goal (Fig 1C). With increasing experience, the latency of escape from the trap states was

reduced (Fig 2A) and the good actions at progressing states were chosen with higher probabil-

ity (Fig 2B). It is important to note that these improvements were observed in the absence of

any external feedback indicating progress and before the 1st encounter of the goal state. Here,

we ask whether novelty of states played a role in the way participants chose their actions and

searched for the goal.

In the 1st episode of block 2, when states 3 and 7 had been swapped, participants spent a

great amount of time (68 ± 16 actions on average) re-exploring the environment and searching

for the goal state, but they were significantly faster in finding the goal than in the 1st episode of

block 1 (Fig 1C). After the swap, participants continued escaping from the trap states (Fig 2A)

and choosing the good actions at the unchanged progressing states (states 1, 2, and 4 in Fig

2C). Moreover, they rapidly adapted their behavior and found the new good actions at the

swapped states (state 7 in Fig 2C). Our results indicate that participants adapted their behavior

to the new situation while exploiting the knowledge they had acquired before. This observation

suggests that surprise triggered by unexpected transitions helped participants to rapidly adapt

their behavior. Here, we ask how surprise affects participants’ adaptive behavior.

Defining novelty and surprise

In the Oxford English Dictionary [45], novelty is defined as ‘the quality or state of being new,

original, or unusual’. Here, our focus is on the quality of being ‘unusual’, and by saying that a

state is novel, we mean that it has not been encountered often, i.e., it is not ‘usual’ to encounter

PLOS COMPUTATIONAL BIOLOGY Novelty is not surprise
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this state. We, therefore, assume that (i) the novelty of a state s at time t is a decreasing function

of the number CðtÞs of encounters of state s until time t, e.g., a state that has been encountered 5

times is less novel than a state that has been encountered only once. Moreover, we assume that

(ii) a state s that has been encountered for example CðtÞs ¼ 5 times within a total of t = 5 trials is

Fig 2. Behavioral results for episode 1 of blocks 1 and 2. A. Escape from the trap states: Median number of actions of participants between falling into a trap state

and reaching state 2 in episode 1 of block 1 (left) and block 2 (right). Error bars show the 25% and 75% quantiles, and each grey point shows the data of one

participant. The grey dashed lines correspond to the minimum number of actions (2) that are needed to escape the trap states. x-axis shows the number of visits of

the trap states, for example, 10 means the 10th times participants fall from a progressing state into the trap states. Because of between-participant differences, not all

participants visited the trap states for, e.g., 20 times. The size of circles indicates number of participants over which the average is taken. In the 1st episode of block 2

(right), four participants reached the goal state without falling into the trap states; thus, only the data for the other 8 participants is shown. A moving average of

length three was applied to the data. B. Average progress of participants each time visiting states 1, 2, 3, and 4 in episode 1 of block 1. We assign a progress value of 1

to good actions (the ones taking participants closer to the goal), 0.5 to neutral actions (the ones making participants stay where they are), and -0.75 to bad actions

(the ones taking participants to the trap states); with this assignment, average progress vanishes for random exploration. The size of circles shows the number of

participants over which the average is taken, and error bars show the standard error of the mean. A moving average of length three was applied to the data. C.

Average progress of participants each time visiting states 1, 2, 7 (swapped with 3), and 4 in episode 1 of block 2. See S1 Fig (A) for the average progress at the

progressing states in the proximity of the goal.

https://doi.org/10.1371/journal.pcbi.1009070.g002
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less novel compared to a state s0 that has been encountered for example Cðt
0Þ

s0 ¼ 5 times within a

total of t0 = 500 trials. Following assumptions (i) and (ii), we define the novelty of a state s as a

decreasing function of the observation frequency

pðtÞN ðsÞ ¼
CðtÞs þ 1

ð
P

s0C
ðtÞ
s0 Þ þ 11

: ð1Þ

pðtÞN ðsÞ has two different interpretations. First, it can be seen as the empirical frequency of

observing state st until time t. In fact, because one of the counters Cs0 increases by one at each

time step, the time can be expressed as t ¼
P

s0C
ðtÞ
s0 . In this interpretation, the numbers 1 in the

numerator and 11 (11 is the total number of states in the environment) in the denominator

correspond to the one encounter of each state before the start of the experiment. In the second

interpretation, pðtÞN ðsÞ can be seen as the probability of observing state s at time t, estimated in a

Bayesian framework and with the assumption of independence between observations (see S1

Text); measures similar to pðtÞN ðsÞ, sometimes called ‘density models’, have been used in

machine learning, for example, to quantify how frequently an image has been observed [17].

In the Bayesian interpretation, the numbers 1 in the numerator and 11 in the denominator

correspond to a uniform prior that makes all states equally likely at time t = 0.

We define the novelty of state s at time t as

NðtÞðsÞ ¼ � log pðtÞN ðsÞ: ð2Þ

Consistent with the literature [35, 46, 47], we chose the logarithm in order to smooth out tem-

poral fluctuations and compress differences in the novelty of frequent versus infrequent states

(Fig 3A). Since our novelty measure depends on the frequencies (relative counts, pðtÞN ðsÞ in Eq

1) rather than the raw counts (CðtÞs ), one may also interpret N(t)(s) as a measure of ‘relative nov-

elty’ or ‘rareness’. See Discussion for the relation of our measure of novelty to other measures.

With our definition of novelty, at the beginning of the 1st episode in block 1, all states have

identical novelty. Since participants often fall into one of the trap states, the novelty of the trap

states decreases rapidly (Fig 3A). Hence, before the end of the 1st episode, the novelty is high-

est for states in the proximity of the goal (Fig 3B). This observation suggests that seeking novel

states will, in our environment, effectively lead a participant closer to the goal, even before the

participant knows where the goal is located, i.e., before encountering the goal for the first time.

We conclude that novelty is potentially an important signal and will exploit this insight further

below.

Surprise is defined in the Oxford English Dictionary [48] as ‘the feeling or emotion excited

by something unexpected’ or ‘the feeling or mental state, akin to astonishment and wonder,

caused by an unexpected occurrence or circumstance’. Whereas novelty is about being

unusual, surprise is about being unexpected. Following this intuition, we define surprise as a

measure expressing how ‘unexpected’ the next image (state st+1) is given the previous state st
and the chosen action at. To quantify expectations, we assume that participants build an inter-

nal model of the environment (‘world-model’), i.e., we hypothesize that participants estimate

the probability p(t)(st+1|st, at) of a transition from a given state st to another state st+1 when per-

forming action at. More precisely, we assume that the world-model counts transitions from

state s to s0 under action a using either a leaky [23, 49, 50] or a surprise-modulated [28, 29, 51]

counting procedure, described by the pseudo-count ~CðtÞs;a!s0 . The conditional probability is then

pðtÞðstþ1jst; atÞ ¼
~CðtÞst ;at!stþ1

þ �

~CðtÞst ;at þ 11�
; ð3Þ
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where � is a parameter corresponding to a prior in the Bayesian framework, 11 is the total

number of states in the environment, and ~CðtÞst ;at ¼
P

s0
~Cst ;at!s0

is the pseudo-count of taking

action at at state st (see Methods and S1 Text). If there is no linear or nonlinear filtering (e.g.,

leaky integration) applied during the counting process, pseudo-counts are equal to real counts.

Higher values of the conditional probability p(t)(st+1|st, at) indicate that a participant expects

to experience the transition from the pair of state and action (st, at) to the next state st+1 with

higher probabilities and, hence perceives this transition as less surprising. Therefore, we con-

sider the surprise of such a transition to be a decreasing function of p(t)(st+1|st, at). More pre-

cisely, we use a recent measure of surprise motivated by a Bayesian framework for learning in

volatile environments, called the ‘Bayes Factor’ surprise [29]. The Bayes Factor surprise of the

transition from state st to state st+1 after taking action at is

Sðtþ1Þ

BF ¼
const:

pðtÞðstþ1jst; atÞ
; ð4Þ

where p(t)(st+1|st, at) is the conditional probability of observing state st+1 at time t + 1 derived

from the present world-model. Our surprise measure is an increasing function of the state pre-

diction error [5] and Shannon surprise [46, 50] (see Methods) and takes high values during the

1st episode of block 2 whenever participants encounter states 3 or 7 or transit from state 3 or 7

to another state (Fig 4A and 4B). See Discussion for the relation of our measure of surprise to

other measures.

The SurNoR algorithm: Distinct contributions of novelty and surprise to

behavior

We hypothesize that participants use novelty to explore the environment and surprise to mod-

ulate the rate of learning. The hypothesis is formalized in the form of the Surprise-Novelty-

Reward (SurNoR) algorithm and tested given the behavioral data of 12 participants.

Novelty in SurNoR plays a role analogous to that of reward. For example, in standard Tem-

poral-Difference (TD) Learning, a reward-based Q-value QR(s, a) is associated with each state-

action pair (s, a) [19]; the Q-value QR(s, a) estimates the mean discounted reward that can be

collected under the current policy when starting from state s and action a, and the reward

Fig 3. Novelty in episode 1 of block 1. A. The number of state visits (left panel) and novelty (right panel) as a function of time for one representative participant: The

number of visits increases rapidly for the trap states and remains 0 for a long time for the states closer to the goal. Novelty of each state is defined as the negative log-

probability of observing that state (see Eqs 1 and 2) and, hence, increases for states which are not observed as time passes. The first time participants encounter state 7

(the state before the goal state) is denoted by t�. B. Average (over participants) novelty (color coded) at t�: Novelty of each state is a decreasing function of its distance

from the goal state.

https://doi.org/10.1371/journal.pcbi.1009070.g003
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prediction error RPE, derived from QR(s, a), serves as a learning signal even for states a few

steps away from the goal [19]. Analogously, in the SurNoR model, novelty is a reward-like sig-

nal with associated novelty-based Q-values QN(s, a) and an associated novelty prediction error

(NPE) derived from QN(s, a). In the SurNoR model, the two sets of Q-values, reward-based

and novelty-based, are used in a hybrid model [5, 6] that flexibly combines model-based with

model-free action selection policies (Fig 4C).

Surprise in SurNoR is derived from a mismatch between observations of the next state and

predictions arising from the world-model embedded in the model-based branch of SurNoR.

To adapt both model-based and model-free policies of the SurNoR algorithm, surprise is used

in two different ways. First, high values of surprise systematically lead to a larger learning rate

for the update of the world-model than smaller ones, consistent with earlier models [27, 29].

Second, going beyond previous models of behavior [20, 24–26, 30], surprise also influences the

learning rate of the model-free reinforcement learning branch.

Fig 4. Surprise as a modulator of the learning rate in episode 1 of block 2. A. Surprise as a function of time since the start of block 2 for one representative

participant: Surprise has very small values most of the time, because the participant has already learned the transitions in the environment during block 1. The

surprising transitions are the ones to the swapped states (blue) and the ones from the swapped states (red). B. Maximal log-surprise values (yellow = large

surprise) during the 1st episode of block 2, averaged over all participants. The swapped states are marked in red and the states before them in blue. One action

from each swapped state is not surprising, i.e., the action leading participants to trap states both before and after the swap. C. Block diagram of the SurNoR

algorithm: Information of state st and reward rt at time t is combined with novelty nt (grey block) and passed on to the world-model (blue block, implementing

the model-based branch of SurNoR) and TD learner (red block, implementing the model-free branch). The surprise value computed by the world-model

modulates the learning rate of both the TD-learner and the world-model. The output of each block is a pair of Q-values, i.e, Q-values for estimated rewardQMF,R

andQMB,R as well as for estimated noveltyQMF,N andQMB,N. The hybrid policy (in purple) combines these values.

https://doi.org/10.1371/journal.pcbi.1009070.g004

PLOS COMPUTATIONAL BIOLOGY Novelty is not surprise

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009070 June 3, 2021 8 / 32

https://doi.org/10.1371/journal.pcbi.1009070.g004
https://doi.org/10.1371/journal.pcbi.1009070


We predict that, if the behavior of participants is well described by the SurNoR algorithm,

they should use an action policy that attracts them to novel states, in particular during the 1st

episode of block 1. If participants do not exploit novelty, standard (potentially hybrid) rein-

forcement learning schemes in combination with one of several alternative exploration strate-

gies (see next section) should be sufficient to explain the behavior. Furthermore, we predict

that, if the behavior of participants is well described by the SurNoR algorithm, then surprising

events during the 1st episode of block 2 should significantly change the behavior of partici-

pants; if participants do not exploit surprise, standard hybrid models combining model-based

and model-free reinforcement learning [5, 6] should be sufficient to describe the behavior.

Both surprise and novelty are needed to explain behavior

SurNoR has three main components: (i) action selection by hybrid policy, (ii) exploration by

novelty-seeking, and (iii) learning by surprise-modulation. To test our hypothesis, and to test

whether all three components of SurNoR are necessary for explaining behavior or whether a

simpler or an alternative model would have the same explanatory power, we compared Sur-

NoR with 11 alternative algorithms plus a null algorithm based on a random choice (RC) of

actions (Fig 5A). Three out of 11 algorithms use a hybrid policy (+Hyb), five use novelty-seek-

ing (+N), and seven use surprise-modulation (+S).

Alternatives for (i) action selection were pure model-based (MB; 4 out of 11 algorithms)

and pure model-free (MF; 4 out of 11) policies. Note that we allow for the possibility that MF

algorithms are equipped with a world-model for computation of surprise but do not use this

world-model for action-planning. As alternatives for (ii) exploration strategy, we used optimis-

tic initialization (+OI; 3 out of 11) [19] and uncertainty (surprise) seeking [42, 43] (+U; 3 out

of 11); see below for more explanations and S1 Text for details. Finally, as an alternative to sur-

prise modulation, we used constant learning rates for learning the world-model and model-

free Q-values [22, 23, 49, 50] (all algorithms without +S; 4 out of 11). For the details of the

alternative algorithms see S1 Text.

Given the behavioral data of all 12 participants, we estimated the log-evidence of all 13 algo-

rithms, including SurNoR (see Methods). Comparison of the algorithms’ log-evidence (Fig

5A) shows that SurNoR explains human behavior significantly better than its alternatives. In

addition, a Bayesian model selection approach with random effects [52, 53] indicates that the

SurNoR algorithm outperforms the alternatives with a protected exceedance probability of

0.99 (Fig 5B and Methods).

The 1st episode of the 1st block is ideally suited to study how novelty influences behavior

(middle panel in Fig 5A). Our results show that all algorithms with novelty-seeking (+N)

explain the behavior significantly better than models with random exploration strategy (RC)

or optimistic initialization (MB+S+OI, MF+OI, and Hyb+S+OI), i.e., two classic approaches

for exploration [19]. Our results also show that novelty-seeking explains behavior better than

uncertainty-seeking (+U), a state-of-the-art exploration method in reinforcement learning

[42, 43]. The models with uncertainty-seeking (MB+S+U, MF+S+U, and Hyb+S+U) use sur-

prisal (i.e., the logarithm of our surprise measure) as an intrinsic reward as opposed to our

model of novelty-seeking that uses novelty of states as an intrinsic reward.

As an alternative to novelty-seeking, participants might also solve the task simply by detect-

ing and avoiding trap states. If so, the behavior of the participants can be explained if we

replace the continuous novelty signal by a simple intrinsically generated binary signal equiva-

lent to a negative reward. To address this issue, we tested two modified versions of the SurNoR

algorithm (‘Binary Novelty’, see S1 Text). The 1st modification detects those states that have

been encountered more often than some threshold value and assigns a fixed negative reward
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to them. The 2nd modification considers the nmost frequently encountered states as bad states

and, similar to the 1st modification, assigns a fixed negative reward to them—where n is a free

parameter of the algorithm. Note that in both control algorithms, the constant negative

rewards are treated as an intrinsic motivation signal—similar to novelty in SurNoR-algorithm

except that the signal is a binary one. We estimated the log-evidence for both control algo-

rithms. Our results show that SurNoR outperforms the 1st control algorithm by a 244 ± 11 dif-

ference in total log-evidence and by a 235 ± 5 difference in the log-evidence of the 1st episode

of block 1, and outperforms the 2nd control algorithm by a 240 ± 11 difference in total

Fig 5. Model comparison of model-based (MB, blue bars), model-free (MF, red bars), and hybrid algorithms (Hyb and SurNoR, purple bars). Exploratory

behavior is either induced by optimistic initialization (+OI), uncertainty-seeking (+U), unbiased random action choices (RC), or novelty-seeking (+N); e.g., a model-

based algorithm with novelty seeking is denoted as MB+N. SurNoR and the model-free or hybrid algorithms annotated with ‘+S’ use surprise to modulate the learning

rate of the model-free TD learner; SurNoR and all algorithms annotated with ‘+S’ use surprise modulation also during model building (see Methods). A. Difference in

log-evidence (with respect to RC) for the algorithms for all episodes of both blocks (left panel), the 1st episode of block 1 (middle), and the 1st episode of block 2 (right

panel). High values indicate good performance; differences greater than 3 or 10 are considered as significant or strongly significant, respectively (see Methods); a value

of 0 corresponds to random action choices (RC). The random initialization of the parameter optimization procedure introduces a source of noise, and the small error

bars indicate the standard error of the mean over different runs of optimization (Methods, statistical model analysis). B. The expected posterior model probability [52,

53] given the whole dataset (Methods) with random effects assumption on the models. C. Accuracy rate of actions predicted by SurNoR (left scale and purple bars:

mean and the standard error of the mean across participant) and the average uncertainty of SurNoR (right scale and dashed grey curve: mean entropy of action choice

probabilities and the standard error of the mean across participants).

https://doi.org/10.1371/journal.pcbi.1009070.g005
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log-evidence and by a 234 ± 5 difference in the log-evidence of the 1st episode of block 1. This

observation rejects the hypothesis that participants simply identify ‘bad’ states by some binary

signal.

Surprise becomes important in the 1st episode of block 2 (right panel in Fig 5A). Indeed,

the SurNoR model is significantly better than a hybrid model with novelty but without surprise

(Hyb+N); similarly, model-free reinforcement learning with novelty and surprise (MF+S+N)

is significantly better than model-free reinforcement learning with novelty alone (MF+N, right

panel in Fig 5A). Our results show that a constant adaptation rate as implemented in standard

models without surprise is not sufficient to explain the choices of participants in the episode

after the swap. Rather, the rate of learning and forgetting has to be modulated by a measure of

surprise.

Overall, SurNoR is better than all 12 competing algorithms by a large margin, indicating

that a combination of model-based and model-free algorithms explains behavior better than

each algorithm separately, consistent with the notion of parallel, model-based and model-free,

policy networks in the brain [3, 5, 6]. Going beyond these earlier studies, our results with Sur-

NoR indicate that surprise and novelty are both necessary to explain human behavior in our

task. Novelty is necessary to explain behavior during phases of exploration while surprise is

necessary to explain behavior during the rapid re-adaption after a change in the environment.

Individual decisions are dominated by the model-free policy network

We wondered whether the SurNoR model is also able to predict the individual actions of par-

ticipants. Taking the most probable action of the model in a given state as the prediction of a

participant’s next action in that state, SurNoR predicted the correct action in the 1st episode of

block 1 with an accuracy of 51 ± 3% (3-fold cross validated, mean ± standard error of the

mean over 12 participants, see Methods—Fig 5C). Note that this accuracy is achieved in the

absence of any a priori preference of actions at initialization and is significantly higher than

the accuracy rate of the naive random exploration strategy (25%, chance level).

SurNoR’s predictions are also significantly better than the predictions of directed explora-

tion through optimistic initialization (OI) or an uncertainty-seeking policy (U). Models with

OI could at best predict 36 ± 3% of the actions (for MB+S+OI), and the uncertainty-seeking

strategy could at best predict 46 ± 3% (for Hyb+S+U); one-sample t-test p-values for compar-

ing their accuracy rates versus SurNoR’s are 0.01 and 0.0025, respectively. A crucial difference

between OI and novelty-based exploration is that OI prefers those actions that have been less

frequently chosen in the past, while novelty-seeking prefers actions that lead to novel states,

even if these are a few actions ahead and the outcome of the current action is known. Uncer-

tainty-seeking is similar to OI because the uncertain actions are also those that have been less

frequently chosen in the past.

Similarly, in the 1st episode of block 2, after the swap of states 3 and 7, the SurNoR algo-

rithm predicts 56 ± 3% of the actions of the 12 participants (Fig 5C). In the remaining episodes

2–5 of the two blocks, the SurNoR algorithm predicts 89 ± 2% of the action choices (Fig 5C).

Most of these actions move participants closer to the goal. The intrinsic uncertainty of action

choices with the SurNoR model can be estimated from the entropy of the action choice proba-

bilities across the four possible actions (Fig 5C). Uncertainty decreases during the first three

episodes as participants become familiar with the environment, but it jumps back to higher

values after the swap of states at the beginning of block 2.

To see what aspects of behavior the different components (i.e., hybrid policy, surprise, and

novelty) of SurNoR capture, we fitted the parameters of the SurNoR algorithm to the behavior

of the 12 participants (see Methods). Since SurNoR combines in its hybrid action selection
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policy a model-free with a model-based component (Fig 6A2), we first wanted to analyze the

relative importance of each of the two components in explaining the action choices of partici-

pants; see S6 Text for a qualitative comparison of these two components. In order to evaluate

the relative importance of the two components, we normalized the Q-values of both branches

and determined the relative weight of each branch (see Methods) during the 1st episode and

2nd-5th episodes of each block (Fig 6A4). We find that the model-free branch dominates the

actions. Thus the world-model is of secondary importance for action selection and is mainly

used to detect surprising events.

Second, in order to quantify the influence of surprise on learning, we plot the learning rate

(of the model-free Q-values QMF,R and QMF,N) as a function of surprise (Fig 6A1). We find that

non-surprising events lead to a small learning rate of 0.06 whereas highly surprising events

induce a learning rate that is more than 8 times higher (Fig 6A1 and 6A3) indicating that

Fig 6. A. Model-based surprise modulates model-free learning. A1. The learning rate of the model-free branch as a function of the model-based surprise, after

fitting parameters to the behavior of all participants (see Eq 9 in Methods). The model-free learning rate for highly surprising transitions is more than 8 times greater

than the one for expected transitions. A2. Three modules from the block diagram of Fig 4C. There are two types of interactions between the model-based and the

model-free branches of SurNoR: (i) The model-based branch modulates the learning rate of the model-free branch and (ii) the weighted (arrow thickness) outputs of

the model-based and the model-free branches influence action selection (hybrid policy). A3. The histogram of surprise values across all trials of 12 participants. The

distribution is multimodal with high surprise for the unexpected transitions in the 1st episode of block 2, medium surprise for whenever a transition is experienced for

the first time, and low surprise for the expected transitions. A4. The relative importance of model-free (MF) compared to model-based (MB) in the weighting scheme

of the hybrid policy during different episodes. Vertical axis: dominance of model-free (see Methods). Values larger than one (dashed line) indicate that the model-free

branch dominates action selection. Error bars show the standard error of the mean. B. Action choice probability indicates that surprise boosts learning during a

single episode. Action choice probabilities of participants (data, grey) are compared with those of SurNoR and Hyb+N at the fist time visiting state 7 (B1) or state 3

(B2) in episodes 1 (left) and 2 (right) of block 2. B1. In state 7, action 1 is the good action before the swap, and action 4 is the good action after the swap. Error bars

show the standard error of the mean, and the black dashed line corresponds to random choice action probability (0.25). In episode 2, SurNoR assigns a significantly

higher probability to action 4 than to action 1, while according to the Hybrid model without surprise modulation, the action probabilities of action 1 and action 4 are

not significantly different. B2. In state 3, action 4 is the good action before the swap, and action 1 is the good action after the swap. Behavioral data and SurNoR show a

more rapid re-adaptation to the good action than Hyb+N. Note that only 8 (out of the 12) participants encountered state 7 in the first episode of block 2 before

reaching the goal. We therefore limit the data analysis to these 8 participants in B1 but use data of all 12 participants in B2.

https://doi.org/10.1371/journal.pcbi.1009070.g006
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surprise strongly influences the update of model-free Q-values. Moreover, we compared the

action choices of participants with those of SurNoR and the model Hyb+N (i.e., SurNoR with-

out surprise-modulation) at the swapped states in the 1st and 2nd episode of block 2 (Fig 6B).

Our results show that the modulation of the learning rate by surprise in SurNoR is necessary

to explain the rapid adaptation of participants after the switch of states.

Finally, to see if the SurNoR model captures, in addition to other aspects, also the explor-

atory behavior of participants (Figs 1C and 2), we computed posterior predictive checks [54,

55]. To do so, we simulated SurNoR with its parameters fitted to behavior and generated data

for 12 simulated participants; see Fig 7 for one set of 12 simulated participants and S2 and S3

Figs for two other sets with different random seeds. Our results show that several important

features of the behavior of participants are observed also in the behavior of the simulated par-

ticipants: (i) They are faster in finding the goal in the first episode of block 2 than in the first

Fig 7. Posterior predictive checks. A. Average number of actions of all 12 simulated participants for each episode (c.f. Fig 1C). B. Median number of actions of

simulated participants to escape the trap states at each of their visits in episode 1 of block 1 (left) and block 2 (right) (c.f. Fig 2A) C. Average progress of participants

each time visiting states 1, 2, 3, and 4 in episode 1 of block 1. (c.f. Fig 2B). D. Average progress of simulated participants each time visiting states 1, 2, 7 (swapped with

3), and 4 in episode 1 of block 2. (c.f. Fig 2C). See S2 and S3 Figs for two other sets of 12 simulated participants with different random seeds. See S1 Fig (B) for the

average progress at the progressing states in the proximity of the goal.

https://doi.org/10.1371/journal.pcbi.1009070.g007

PLOS COMPUTATIONAL BIOLOGY Novelty is not surprise

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009070 June 3, 2021 13 / 32

https://doi.org/10.1371/journal.pcbi.1009070.g007
https://doi.org/10.1371/journal.pcbi.1009070


episode of block 1 (Fig 7A), (ii) they learn to escape the trap states and to choose the good

action at progressing states in the 1st episode of block 1 (Fig 7B and 7C), and (iii) after the

swap, they continue choosing the same actions at unchanged states but rapidly unlearn previ-

ously learned actions at the swapped states (Fig 7B and 7D). Moreover, our model-selection

approach can successfully recover the true model (SurNoR) given the data of 12 simulated par-

ticipants (Fig 8). This observation shows that our experimental paradigm is capable of differ-

entiating between SurNoR and its alternatives, and as few as 12 participants are sufficient for

drawing conclusions based on our model-selection results [55] (Fig 5); see S3 Text and S4 and

S5 Figs for parameter recovery analysis.

In conclusion, the SurNoR algorithm is able to capture different aspects of participants’

behavior and to predict individual actions with a high accuracy: it predicts 63 ± 2% of all

actions and 74 ± 3% of the actions after the first time finding the goal. Our results suggests that

participants (i) rely on propagation of novelty information via NPE in the first episode, (ii)

base their decisions mainly on the model-free learner, and (iii) use surprise to modulate the

learning rate.

Fig 8. When data is generated by SurNoR, the true model can be recovered. We applied our model-selection method to the data of three sets of 12 simulated

participants. The left column corresponds to the data shown in Fig 7, and the middle and the right columns correspond to the data shown in S2 and S3 Figs,

respectively. We compared the SurNoR model with the strongest competitors of SurNoR: MF+S+N, Hyb+S+U, and Hyb+N (c.f. Fig 5). A. Difference in log-evidence

with respect to random choice (RC) and B. the expected posterior model probability [52, 53] for the algorithms for all episodes of both blocks given the data of each of

the three sets (different columns) of 12 simulated participants (c.f. Fig 5A and 5B).

https://doi.org/10.1371/journal.pcbi.1009070.g008
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EEG correlates with novelty and surprise

Since surprise and novelty turned out to be important and independent components of Sur-

NoR in explaining the participants’ behavior, we wondered whether they are both reflected in

the ERP. We first performed a grand correlation analysis in which we pooled the more than

2500 trials of 10 participants together after normalizing their ERPs to unit energy (see Meth-

ods; two participants were excluded because of noise artifacts in the recordings). We then

computed the correlations of the ERP amplitudes, for each time point after the trial onset, with

the model variables ‘Surprise’, ‘Novelty’, ‘Reward, ‘NPE’, or ‘RPE’ (capital initial letters indicate

the 5 model variables). Note that by ‘Reward’ variable we mean the goal-state indicator, i.e., it

is equal to one when a participant visits the goal state and zero otherwise; importantly, it

should not be confused with MB or MF reward values.

We find that Surprise, Reward, and RPE show significant positive correlations with the

ERP amplitudes at around 300ms after stimulus onset (Fig 9), in agreement with the well

known correlation of the P300 amplitude with Surprise [23, 50, 56] and the well known corre-

lation of the Feedback-Related Negativity (FRN) component with RPE [57, 58]. Moreover

Novelty and NPE have, compared to Surprise, a broader positive correlation window with the

ERP starting at around 200ms and ending at around 320ms after stimulus onset, and a second

window with significant negative correlations from around 450ms to 550ms. Thus, Novelty

and NPE have an ERP signature that is distinct from that of Surprise, Reward, or RPE (Fig 9).

Second, we wondered how much of the variations in the ERP amplitudes could be

explained by a linear combination of our five model variables, i.e., Suprise, Novelty, NPE, RPE,

and Reward. We performed a trial-by-trial multivariate linear regression (MLR), separately for

each participant. To be able to more precisely identify the separate contributions of each

model variable to the regression, we needed to decorrelate them from each other. As expected

Fig 9. Grand correlation analysis of normalized ERPs over all 2524 trials of 10 participant. The dashed lines show confidence intervals. Shaded areas indicate

intervals of significant correlations (FDR controlled by 0.1, one-sample t-test). Correlations of ERP with A. Surprise, B. Novelty, C. NPE, D. RPE (computed after

excluding the trials from the 1st episode of the 1st block during which RPE is equal to 0) and E. Reward.

https://doi.org/10.1371/journal.pcbi.1009070.g009
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from the design of the experiment, the cross-correlations between the normalized (zero mean

and unit variance) sequences of Surprise, Novelty, and NPE are negligible (see S6 Fig); how-

ever, the sequences of Reward and RPE are highly correlated with each other, mainly because

Reward and RPE are both high at the goal state. Using principal components analysis over

Reward and RPE, we find R+ (the sum of RPE and Reward) and R− (their difference) as their

decorrelated combinations (see Methods and S2 Text). We then extracted the components of

Surprise, Novelty, and NPE orthogonal to R+ and R− (see Methods and S2 Text). The resulting

variables, denoted by an index?, are each orthogonal to R+ and R−, while staying very similar

to the original signals, e.g., Surprise? is highly correlated with Surprise, and NPE? is highly

correlated with NPE; see S2 Text and S6 and S7 Figs for more details.

For each participant, we considered the normalized Surprise?, Novelty?, NPE?, R+, and R−
as explanatory variables in order to predict the ERP amplitude at a given time point. We found

4 time intervals with an encoding power (adjusted R-squared, see Methods) significantly

greater than zero (one-sample t-test, FDR controlled by 0.1, Fig 10A and 10B; note that the

Fig 10. ERP variations explained by trial-by-trial and participant-by-participant multivariate linear regression analysis. Surprise? (magenta), Novelty? (dark

blue), NEP? (light blue), R+ (brown) and R− (red) were used as explanatory variables, and the ERP amplitude at each time point was considered as the response

variable. A. Encoding power (adjusted R-squared values) averaged over 10 participants (dashed lines show the standard error of the mean) at each time point. Shaded

areas and horizontal lines indicate four time intervals (W1, . . ., W4) of significant encoding power (FDR controlled by 0.1, one-sample t-test, only for the time-points

after the baseline). The 3rd time interval has been split into two time windows of equal length for the analysis in C. B. Values of the regression coefficients (averaged

over participants) for Surprise?, Novelty?, NEP?, R+, and R− as a function of time. Errors are not shown to simplify the illustration. C. In each of the 5 time windows,

the regression coefficients plotted in B have been averaged over time. Error bars show the standard error of the mean (across participants). Asterisks show significantly

non-zero values (FDR controlled by 0.1 for each time window, one-sample t-test). The Novelty? coefficients in the 1st and the last time windows (dot) have p-values of

0.03 and 0.04, respectively, which are not significant after FDR correction. In the second time window, Surprise?, Novelty?, NEP?, and R+ have significantly positive

coefficients.

https://doi.org/10.1371/journal.pcbi.1009070.g010

PLOS COMPUTATIONAL BIOLOGY Novelty is not surprise

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009070 June 3, 2021 16 / 32

https://doi.org/10.1371/journal.pcbi.1009070.g010
https://doi.org/10.1371/journal.pcbi.1009070


adjusted R-squared can take negative values, e.g., see baseline in Fig 10A). The 1st time win-

dow is around 193 ± 5ms; the P300 component can be linked to the 2nd time window which

spans from 286 to 321 ± 5ms; since the 3rd time interval is long (from 392 to 487 ± 5ms), we

split it into two time windows of equal size (W3a and W3b in Fig 10B); and the last window

extends from 532 to 574 ± 5ms.

To study the contribution of surprise and novelty to encoding power, we focused on these

time windows and tested the average regression coefficients of all explanatory variables in each

time window in a second level analysis (Fig 10C). Our results show that in the the second time

window (286 to 321 ± 5ms), Surprise?, Novelty?, NPE?, and R+ all have a significant positive

regression coefficient in MLR (Fig 10C, 2nd panel, FDR controlled by 0.1). While the coeffi-

cients for Surprise?, NPE?, and R+ sharply peak at around 300ms, the coefficient for Novelty?

has a broader peak starting at around 200ms (Fig 10B) with a close to significant positive value

during the 1st time window (Fig 10C). This observation suggests that positive correlations of

novelty with the ERP potentially extend from the 1st time window to the 2nd one, in agree-

ment with our grand correlation analysis.

While consistent with previous studies of surprise in the ERP [22, 23, 50, 56], our results

indicate that Surprise? and Novelty? contribute each separately to the ERP components at

around 300ms. Furthermore, we find that NPE? is yet another independent contributor to

these components. As expected from previous studies [57, 58], R+ also shows a positive correla-

tion with the ERP amplitude at around 300ms. While the multivariate analysis based on the 5

explanatory variables shows significance in the later time windows (Fig 10A), individual con-

tributions of Surprise? or Novelty? or NPE? alone remain below significance level even

though Novelty? has a close to significant negative coefficient in the last window (Fig 10C).

To summarize, the grand correlation analysis yields time windows of significance for Nov-

elty and NPE that start 50 to 100ms before those of Surprise or Reward, indicating distinct con-

tributions. Moreover, Novelty? and NPE? explain a significant fraction of the variations of the

ERP at around 300ms that is not explained by Surprise? and R+ alone. Importantly, NPE has

significant correlations both in the grand correlation analysis and in the regression analysis,

consistent with our earlier finding that NPE is important to explain behavior.

Discussion

Combining a deep sequential decision-making task with the SurNoR model, an augmented

reinforcement learning algorithm, we were able to extract the distinct contributions of sur-

prise, novelty, and reward to human behavior. We found that the human brain (i) uses surprise

to adapt their behavior to changing environments by modulating the learning rate and (ii)

uses novelty as an intrinsic motivational drive to explore the world. Moreover, the model vari-

ables Suprise, Novelty, NPE, Reward, and RPE could well explain variations of the EEG ampli-

tudes on a trial-by-trial basis.

Novelty is not surprise

In the SurNoR model, surprise measures how unexpected the next state is according to an

acquired world-model conditioned on the current state and the chosen action; in contrast, nov-

elty measures how infrequent the next state has been, independent of our expectations derived

from a world-model. More precisely, in our formulation (Eqs 2 and 4), surprise and novelty

have two essential differences: The first difference is that while surprise is assigned to transi-

tions, novelty is assigned to states. If this was the only difference between novelty and surprise,

one could argue that surprise and novelty are essentially the same, while one measures the

infrequency of transitions and the other the infrequency of states. However, the second and
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more important difference is that novelty uses the exact number of encounters of each state

(Eq 1) to measure how infrequent that state has been, while surprise uses the surprise-modu-

lated pseudo-counts (Eq 3) computed by the world-model to measure how unexpected a tran-

sition is. As a consequence, if there is a sudden change in the environment, then an expected

transition can rapidly become surprising, but a long time is needed for a state that has been

encountered frequently to become novel again. This is consistent with ideas that novelty is

more related to memory-recall and surprise is more related to predictions [35]. Moreover,

these ideas are also supported by recent findings showing that the brain estimates the fre-

quency of stimuli over a much longer time-scale than the transition probabilities [22].

Measures of surprise in neuroscience have been divided into two subgroups [28, 34, 39]:

‘puzzlement’ and ‘enlightenment’ surprise. The conceptual definition of surprise we gave

above is known as puzzlement surprise. In addition to the Bayes factor surprise [29] that we

used here (Eq 4), other examples of puzzlement surprise are Shannon surprise [46], minimized

free energy [59, 60], state prediction error [5], and the confidence corrected surprise [28].

Orthogonal to these measures, enlightenment surprise measures how much an event changes

our model of the world and, as a consequence, our expectations; well-known examples are

Bayesian surprise [12, 61–64] and compression surprise [12, 63]. We would like to emphasize

here that even a measure like Bayesian surprise [12, 61, 62, 64] has the aforementioned differ-

ences with our definition of novelty.

Measures of novelty can also be divided into two subgroups [35]: the ones that are ‘mem-

ory-based’ and the ones that represent ‘statistical outliers’. Memory-based novelty measures

focus on whether an event already exists in the memory or not [65, 66]. Our measure of nov-

elty (Eq 2) belongs to the 2nd group that considers an event as novel if it has ‘a low estimated

probability of occurrence’ [35]. Many measures of novelty that belong to this group simply

consider novelty to be a decreasing function of the number of occurrences [9, 15, 17]; in con-

trast, our measure of novelty is a decreasing function of the frequency of occurrence (Eq 1),

and because of this reason one may refer to it as ‘relative novelty’ or a measure of ‘rareness’.

Surprise modulates learning

As expected from previous theoretical [28–31, 33, 67] and experimental work [20, 24–26], our

results suggest that the human brain uses surprise to modulate the learning of its world-model.

Rather unexpectedly, however, our results indicate that humans hardly use this world-model

to plan behavior; instead they mainly rely on model-free TD learning with eligibility traces to

choose their next actions. Importantly, although the surprise signal is triggered by a mismatch

between an observation and the predictions of the world-model, the modulatory effect of sur-

prise is not limited to readjusting the world-model but also used to modulate the learning rate

of model-free TD-learning. Following the common interpretations of model-based reinforce-

ment learning algorithms as descriptions of human planning behavior and model-free rein-

forcement learning algorithms as descriptions of human habitual behavior [3, 5, 6, 68], our

results suggest that (i) in the absence of surprise, humans prefer habitual behavior (potentially

to reduce computational costs of decision-making [69, 70]) and (ii) errors in their world-

model make them reconsider their habitual behavior.

Our results extend findings that humans use hybrid policies in two-stage decision tasks [5,

6] to the case of deep sequential decision tasks in the presence of abrupt changes. In general,

the balance between model-free and model-based behaviors depends on multiple aspects and

features of the task that humans are dealing with [3, 5, 70, 71]. For example, we observe that

the model-based branch becomes more important when participants explore the environment

to find the goal state, although the participants’ behavior in our environment is always
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dominated by model-free action choices (Fig 6A4). Moreover, the dominance of model-free

behavior in such deep tasks does not exclude that humans used model-based planning in shal-

low tasks that are easily comprehensible thanks to a spatial arrangement of states or explicit

instructions [72].

An interesting direction for future studies is to combine surprise modulation with more

abstract model building algorithms, e.g., for learning the structure of neighborhood relations

of an environment in the form of a graph [73, 74]. Such algorithms may explain the slight dif-

ference between the participants’ adaptive behavior and SurNoR’s predictions (Fig 6B).

Novelty drives exploration

Our results show that exploration based on novelty-seeking can explain human behavior in

our sequential decision-making task better than its alternatives: random exploration [75], opti-

mistic initialization [19], and uncertainty or surprise-seeking [42, 43]. In contrast to many

exploration strategies that give preference to those actions for which the outcome is most

uncertain, i.e., those that have been tried least [42, 43, 75–77], exploration based on novelty-

seeking gives preference to actions that ultimately lead a participant to previously unvisited or

less visited states, even if the participant is perfectly sure about the transition to the next state.

In general, it has been shown that exploration in humans can have more than one drive

[77] and that participants’ desire for seeking novel events depends on their goal, inductive

biases, and assumptions about their environment [9, 15, 37]. In situations like our experimen-

tal paradigm where participants are sure that there exists a rewarding state but do not know

how to reach it, seeking novelty and exploring the parts of the environment that have been less

visited are natural ways to search for the rewarding state; however, if, for example, participants

were asked to find the most accurate map of the environment, then uncertainty-seeking might

be a more reasonable way to solve the task. In addition, the presence of trap states in our envi-

ronment makes novelty an internally rewarding signal that helps participants to avoid ‘traps’.

We do not claim that novelty is always the only drive of exploration; rather, we believe that our

results show that for a class of tasks similar to ours where the goal is to search for a rewarding

state and novelty is a relevant signal, humans use a novelty-seeking strategy for exploration.

Following the idea of information search in active sampling [78, 79], we speculate that whether

novelty is an informative cue (e.g., about the location of the goal) or not must be itself inferred

by participants through the exploration procedure. From a different but similar perspective,

we speculate that it is possible to take a normative approach and, by defining a function of

curiosity [15, 37], show that novelty-seeking is the optimal or a close to optimal way to search

for reward in a class of environments. Formulating and testing such hypotheses is an interest-

ing direction for future studies.

The SurNoR algorithm suggests that participants treat novelty and reward as separately esti-

mated values—as opposed to adding them into a single value estimator [10, 17, 18]. This sepa-

ration enables participants to rapidly switch from exploration to exploitation, once they have

found the goal. Based on this insight, we make the following prediction: if participants find a

goal state but expect a second more rewarding goal state, they will continue to explore and

potentially spend a large amount of time in a novelty-rich segment of an extended version of

the environment of Fig 1 (see S5 Text).

Neural signatures of surprise and novelty

Our EEG analysis shows that variables of the SurNoR model can significantly explain the varia-

tions of ERP amplitudes in several time-windows: Surprise, Novelty, NPE, and Reward/RPE

all significantly contribute to the encoding power in the time-window around 300ms. The
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positive contributions of Novelty, Surprise, and Reward/RPE in this time-window are consis-

tent with previous studies of the P300 and the FRN component [22, 23, 38, 50, 56–58].

Whereas in earlier studies contributions of Novelty, Surprise, and Reward were often mixed

together [22, 23, 38, 50, 56–58], we have shown here separate, additive contributions of these

three variables as well as a further contribution of NPE. The effect of Novelty appears in ERPs

earlier (at around 200ms) than the correlations with the other variables; moreover, contribu-

tions of Novelty are distinct from those of Surprise in the time window after 400ms.

Since, in the SurNoR model, Novelty is treated analogously to an external Reward, TD-

learning based on NPE along with eligibility traces rapidly diffuses information about novel

states to far-away non-novel states just as TD-learning based on RPE along with eligibility

traces rapidly diffuses information about rewarding states to far-away non-rewarding states.

Several studies have shown that the reward-driven activity of dopaminergic neurons encodes

RPE and not reward values [1, 80, 81]. Therefore, the manifestation of a separate NPE signal in

neural activities may open a new door for further developments of theories and experiments

on novelty-driven activity of dopaminergic neurons and other neuromodulators [82–85].

Conclusions

In conclusion, surprise and novelty are conceptually distinct concepts that also give rise to dif-

ferent temporal components in the ERP. Our results suggest that humans use novelty-seeking

for efficient exploration and surprise for a rapid update of both their internal world-model

and their model-free habitual responses.

Methods

Ethics statement

The data were collected under CE 164/2014, and the protocol was approved by the Commis-

sion cantonale d’éthique de la recherche sur l’être humain. All participants were informed that

they could quit the experiment at any time, and they all signed a written informed consent. All

procedures complied with the Declaration of Helsinki (except for pre-registration).

Experimental setup

Stimuli were presented on an LCD screen that was controlled by a Windows 7 PC. Experi-

ments were scripted in MATLAB using the Psychophysics Toolbox [86].

Participants

14 paid participants joined the experiment. Two participants quit the experiment (14 ± 10% of

all participants), hence, we analysed data for 12 participants (5 females, aged 20–26 years,

mean = 22.8, std = 1.7). All participants were right-handed and naive to the purpose of the

experiment. All participants had normal or corrected-to-normal visual acuity.

Stimuli and general procedure

Before starting the experiment, we showed the participants the goal image that they were

required to find on a computer screen. Next, participants were presented, in random order, all

the other images that they might encounter during the experiment. Thereafter, participants

clicked the ‘start’ button to start the experiment. At each trial, participants were presented an

image (state) and four grey disks below the image. Clicking on one of the disks (action) led

participants to a subsequent image; for details of timing see Fig 1A. Participants clicked

through the environment until they found the goal state which finished the episode. An
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episode n started at a random state i(n) which was the same for all participants; in our experi-

ment we used i(1) = 6, i(2) = 9, i(3) = 4, i(4) = 5, and i(5) = 8.

EEG recording and processing

EEG signals were recorded using an ActiveTwo Mk2 system (BioSemi B.V., The Netherlands)

with 128 electrodes at a 2048Hz sampling rate. Two participants were excluded from EEG

analysis because of their noisy and low quality signals caused by substantial movements during

the experiment. Data were band pass filtered from 0.1Hz to 40Hz and down sampled to

256Hz. EEG data were recorded with a Common Mode Sensor (CMS) and re-referenced using

the common average referencing method. We used EEGLAB [87] toolbox in MATLAB to per-

form the EEG preprocessing. We extracted EEG trials from 200ms before to 700ms after the

state onset. Trials in which the change in voltage at any channel exceeded 35 μV per sampling

point were discarded. Eye movements and electromyography (EMG) artefacts were removed

by using independent component analysis (ICA). The baseline activity was removed by sub-

tracting the mean calculated over the interval from 200ms to 0ms before the state onset. EEG

data of selected prefrontal electrodes (Fz, F1, F2, AFz, FCz) were averaged for ERP analysis.

We further smoothed (moving averaging with the window of length 50ms) and downsampled

(to the sampling rate of 1 sample per 11.7ms) ERPs. Data were analyzed during the time win-

dow from 0 to 650ms after state onset (blue interval in Fig 1A). For multivariate regression

analysis, a 100ms-baseline was also included for sanity check. As a result, each trial (from

100ms before to 650ms after the onset of the state) consisted of 65 time points.

SurNoR algorithm

We present a more detailed formulation and the psudocode of the SurNoR algorithm in S1

Text. Here we outline the algorithm in brief.

We formally define the Novelty of a state s at time t as NðtÞðsÞ ¼ � log pðtÞN ðsÞ, where pðtÞN is

defined in Eq 1; see S1 Text for further discussion. When observing the image corresponding

to state st+1 at time t + 1, after taking action at, the novelty nt+1 = N(t)(st+1) is treated as an inter-

nal novelty-reward, completely analogous to the treatment of external rewards in reinforce-

ment learning. This analogy between external reward and novelty is inspired by earlier

experimental studies [82, 83, 88]. As a result, at time t + 1, agents receive three signals: the next

state st+1, the external reward rt+1 (i.e., the indicator of whether st+1 is the goal state or not),

and the novelty nt+1 (indicated as the output of the grey block in Fig 4C).

The SurNoR algorithm has two branches, i.e., a model-based and a model-free one, which

interact with each other (Fig 4C, blue and red blocks). The model-based branch computes the

Bayes Factor Surprise [29]

Sðtþ1Þ

BF ¼
presetðstþ1jst; atÞ
pðtÞðstþ1jst; atÞ

ð5Þ

where p(t)(st+1|st, at) is the probability of observing st+1 by taking action at in state st as esti-

mated from the current world-model (cf., Eq 3), and preset(st+1|st, at) is the probability of

observing st+1 by taking action at in state st with the assumption that the environment has

experienced an abrupt change between time t and t + 1, so that the world-model should be

reset to its prior estimate. In this work, we assume that the prior estimate preset(st+1|st, at) = 1/

11 is a uniform distribution over states and hence constant as stated in Eq 4; see S1 Text and

[29] for further discussion. Note that in Figs 4A, 4B and 6 we suppressed the factor 1/11 and

directly plotted 1/p(t)(st+1|st, at) as the surprise value. As an aside we note that since the state

prediction error [5] is defined as SPEt+1 = 1 − p(t)(st+1|st, at), the Bayes Factor Surprise can be
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written as Sðtþ1Þ

BF / 1=ð1 � SPEtþ1Þ. The definition of the Bayes Factor Surprise is valid for arbi-

trary volatile environments [29]. However, since in our experimental setting preset(st+1|st, at) is

assumed to be uniform, the Bayes Factor Surprise SBF is a monotone function of Shannon Sur-

prise and hence comparable to previous studies [23, 46, 50].

The value Sðtþ1Þ

BF is used in the model-based branch to update the world-model using the

Variational SMiLe algorithm [29], an approximate Bayesian learning rule with surprise-modu-

lated learning rate designed for volatile environments with abrupt changes. Updating the

world-model is equivalent to updating the pseudo-counts ~CðtÞs;a!s0 , introduced in Eq 3, for all

possible s, a, and s0. The Variational SMiLe algorithm [29] yields the updates

~Cðtþ1Þ

s;a!s0 ¼

ð1 � gtþ1Þ
~CðtÞs;a!s0 þ dðs0; stþ1Þ if s ¼ st; a ¼ at

~CðtÞs;a!s0 otherwise;

8
><

>:
ð6Þ

where δ is the Kronecker delta function, and γt+1 is the surprise modulated adaptation factor

[29]

gtþ1 ¼
mSðtþ1Þ

BF

1þmSðtþ1Þ

BF

2 ½0; 1�; ð7Þ

with m� 0 a free parameter related to the volatility of the environment [29]. Note that if the

transition from s to s0 caused by action a is unsurprising, then the pseudo-count of that transi-

tion is increased by one (because γ = 0 for SBF = 0). However, if this transition has a high sur-

prise, the earlier pseudo-count is reset to zero (because γ! 1 for SBF!1) and the observed

transition is counted as the first one. The updated world-model is then used to update a pair of

Q-values, i.e., Qðtþ1Þ

MB;R for Reward and Qðtþ1Þ

MB;N for Novelty, by solving the corresponding Bellman

equations with a variant of prioritized sweeping [19, 89, 90]; see S1 Text for details.

The model-free branch computes Reward and Novelty prediction errors, RPEt+1 and

NPEt+1. As usual, RPE is defined as RPEt+1 = rt+1 + λR VMF,R(st+1) − QMF,R(st, at), where λR is

the discount factor for reward, and VMF,R(st+1) = maxa QMF,R(st+1, at) is the value of the state

st+1. Analogously, NPE is defined as NPEt+1 = nt+1 + λN VMF,N(st+1) − QMF,N(st, at), where λN is

the discount factor for novelty, and QMF,R by QMF,N is the novelty value of the state st+1.

A Surprise-modulated TD-learner with eligibility traces is used for updating the two sepa-

rate sets of Q-values. To have the most general setting, two separate eligibility traces are used

for the update of Q-values, one for reward eðtÞR and one for novelty eðtÞN . The eligibility traces are

initialized at zero at the beginning of each episode. The update rules for the eligibility traces

after taking action at at state st is

eðtþ1Þ

R ðs; aÞ ¼
1 if s ¼ st; a ¼ at

lRmRe
ðtÞ
R ðs; aÞ otherwise

8
<

:

eðtþ1Þ

N ðs; aÞ ¼
1 if s ¼ st; a ¼ at

lNmNe
ðtÞ
N ðs; aÞ otherwise ;

8
<

:

ð8Þ

where λR and λN are the discount factors defined above, and μN 2 [0, 1] and μR 2 [0, 1] are the

decay factors of the eligibility traces for novelty and reward, respectively. The update rule is

then DQðtþ1Þ

MF ðs; aÞ ¼ rtþ1eðtþ1Þðs; aÞPEtþ1, where e(t+1) is the eligibility trace (i.e., either eðtþ1Þ

R or
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eðtþ1Þ

N ), PEt+1 is the prediction error (i.e., either RPEt+1 or NPEt+1) and

rtþ1 ¼ rb þ gtþ1dr ð9Þ

is the surprise-modulated learning rate with parameters ρb for the baseline learning rate and

δρ for the effect of Surprise.

Finally, actions are chosen by a hybrid policy (S1 Text) using a softmax function of a linear

combination of the values Qðtþ1Þ

MF;R , Qðtþ1Þ

MF;N, Qðtþ1Þ

MB;R, and Qðtþ1Þ

MB;N (the purple block in Fig 4A), similar,

but not identical to [5, 6]. The weight of Qðtþ1Þ

MF;N and Qðtþ1Þ

MB;N is non-zero only in the 1st episodes

of blocks 1 and 2 to reduce number of parameters and make the model simpler. We tested the

version with an additional free parameter for the weights of Qðtþ1Þ

MF;N and Qðtþ1Þ

MB;N in episodes 2–5 of

blocks 1 and 2, but we did not find any significant improvement in the fit (difference in log-

evidence = 15 ± 13).

Overall, the SurNoR algorithm has 18 free parameters.

Statistical model analysis and fit to behavior

In addition to SurNoR, we considered 12 alternative algorithms with 0 to 18 free parameters

and two control algorithms for SurNoR with Binary Novelty with 19 free parameters (S1 Text).

For each algorithm, we used 3-fold cross-validation and computed its maximum log-likeli-

hood for each participant, similar to existing methods [8]: (i) we divided participants into 3

folds each consisting of four participants; (ii) for participant i, we estimated the parameters of

the algorithm by maximizing the likelihood function of the folds which did not include partici-

pant i; and (iii) we computed the log-likelihood for participant i using the estimated parame-

ters. The maximization procedure was done by coordinate ascent (using grid search for each

coordinate); we repeated the procedure until convergence starting from 25 different random

initial points. We further repeated the whole process 4 times to have an estimation of the vari-

ability resulting from random initialization of the optimization procedure. The error bars in

Fig 5A are calculated using these 4 samples.

Similar to studies in economics and statistics [91, 92], we considered, for each participant

and each algorithm, the cross-validated maximum log-likelihood (averaged over the 4 repeti-

tions) as the log-evidence [93]. Similarly, the log-evidence could also be approximated by

other measures like AIC or BIC [94], but cross-validation has been shown to have a more

robust behavior [95]. The sum (over participants) of the log-evidences for each algorithm is

shown in Fig 5A—see [94] for a tutorial on the topic. As a convention, differences greater than

3 or 10 are considered as significant or strongly significant, respectively [93, 94]. The model

posterior and protected exceedance probabilities in Fig 5B are computed by using the partici-

pant-wise log-evidences (averaged over the 4 repetitions) and following the Bayesian model

selection method of [52, 53] (available in SPM12 toolbox for MATLAB). We used a Dirichlet

distribution with parameters equal to 1 over the number of models (1/13) as the prior distribu-

tion. This choice of prior is equivalent to stating that the prior information is worth as much as

the observation coming from a single participant [93].

The accuracy rate and the uncertainty in Fig 5C are computed by the same cross-validation

procedure. We define accuracy as the ratio of the number of trials with correctly predicted

actions to the total number of trials; for a given trial, whenever the action taken by the partici-

pant had the maximum probability under the policy but shared with other n − 1 (e.g., 2)

actions, we counted that trial as 1/n (e.g., 0.333) correctly predicted. With this procedure, the

accuracy rate of the random choice algorithm is 25%. We define the uncertainty of one

PLOS COMPUTATIONAL BIOLOGY Novelty is not surprise

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009070 June 3, 2021 23 / 32

https://doi.org/10.1371/journal.pcbi.1009070


participant in an episode as the average of the entropy of his or her policy over all trials of that

episode. Both the accuracy rate and the uncertainty were computed for each participant sepa-

rately, but only the mean and the standard error across participants are reported in Fig 5C.

For EEG analysis, we only considered the SurNoR algorithm (i.e., the winner of statistical

model selection). To have the same set of parameters for all participants, we fitted our model

to the whole behavioral data set (overall 3047 actions) by maximizing total log-likelihood—

similar to [6]. For each of 500 random initialization points, maximization was implemented as

coordinate ascent until convergence (using grid search for each coordinate). Amongst the 5

local maxima with high but not significantly (< 3) different log-evidence, we kept the model

which had the greatest encoding power in multivariate regression analysis of EEG. The fitted

parameters are reported in S3 Text and S1 Table.

The plots in Fig 6 corresponds to this set of parameters. Since the softmax operator of the

hybrid policy has a free scale parameter, the effective weight of each branch of the hybrid pol-

icy in Fig 6A4 (i.e., model-free and model-based) is computed as the fitted weight of each com-

ponent times its average difference in Q-values. For example, oeff
MF is equal to ωMF × hΔQMFi,

where ωMF is the weight of model-free Q-values in the hybrid policy and hΔQMFi is the average

(over trials) of the difference between QMF of the best and the worst actions. The weight oeff
MB

for the model-based branch is defined analogously. The dominance of the model-free branch

is defined as oeff
MF=o

eff
MB.

We used the same set of parameters to generate synthetic data for Fig 7. We simulated 200

agents with different random seeds. We considered the 62 agents (31 ± 3% of all agents) who

took more than 500 actions in any of the 10 episodes to be similar to the participants who quit

the experiments (14 ± 10% of all participants—not significantly different from 31 ± 3%; p-

value for two-sample t-test = 0.12). Based on this criterion, we discarded 62 agents. From the

remaining 138 agents, we randomly chose three subsets of 12 agents (called simulated partici-

pants in the Results section) and repeated all our behavioral analyses for the synthetic data.

The results for one subset of agents is shown in Fig 7 and for two other subsets in S2 and S3

Figs. Given the three sets of 12 simulated agents, the results for model recovery is shown in Fig

8, and the results for parameter recovery are reported in S3 Text and S4 and S5 Figs.

EEG analysis

Participant-based regression analysis. Given N trials (across all episodes of both blocks)

of a given participant, the matrix Xraw for this participant is an N by 5 matrix whose rows cor-

respond to trials and whose columns correspond to normalized model variables (i.e., Surprise,

Novelty, NPE, RPE, and Reward). For example, if the sequence of reward prediction error val-

ues for this participant is z1:N, then one column of the matrix Xraw is equal to (z1:N − μz)/σz
where μz is the mean and σz is the standard deviation of z1:N, and one row of the matrix Xraw is

equal to the normalized values of Surprise, Novelty, NPE, RPE, and Reward for one trial. We

constructed the feature matrix X from Xraw by applying the following steps: (i) we put 2 col-

umns of X to be equal to normalized Reward plus RPE and Reward minus RPE, calling them

R+ and R−, respectively; since Reward and RPE were normalized, their sum and difference cor-

respond to their principal components (S2 Text); (ii) we orthogonalized each of the other vari-

ables to R+ and R−. For example, NPE? is NPE minus its projection on R+ and R−, followed by

a renormalization step (see S2 Text and S6 Fig).

For each trial, time of the ERP is measured with respect to the image onset. For a given time

point, we defined the target vector y as an N dimensional vector whose elements are equal to

the normalized (zero mean, unit variance) amplitude of ERPs at that particular time point in

different trials. Since we have 65 time points, the response matrix Y is a N by 65 matrix. We
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then performed multivariate linear regression (MLR) by considering ŷ ¼ Xb as an estimation

of y and found β by ordinary least squared error minimization. The encoding power for a sin-

gle time point and for the given participant was calculated as adjusted R-squared [97]. Note

that adjusted R-squared can in principle be negative—which is the case for our regression anal-

ysis over baseline in Fig 10A.

Fig 10A shows the mean and the standard error of the mean of the encoding power over

participants and for each time-point. The threshold for rejecting the null hypothesis is com-

puted using the Benjamini and Hochberg algorithm [93] for controlling false discovery rate

(FDR) by 0.1. Fig 10B shows the average (over participants) of β values as a function of time.

For Fig 10C, we first average the β values over time within each time window, and then evalu-

ate their mean and their standard error of the mean (over participant). The FDR correction

was done separately for each time window.

Grand correlation analysis. Similar to the approach of [98], we pooled all trials of all par-

ticipants together, i.e., we concatenated Xraws and Ys for different participants. However,

before concatenation, to remove the difference in the between-participant variations of ERPs

energy (i.e., 2nd moment), we divided ERPs of each participant by the overall squared-energy

of that participant’s ERPs, i.e., we replaced Y by Y=
ffiffiffiffiffiffiffiffiffiffiffi
E½Y2�

p
. The correlations in Fig 9 are com-

puted between columns of concatenated Xraws and concatenated Ys. For RPE, we removed the

trials corresponding to 1st episodes of the 1st blocks because RPEs are equal to zero.

Supporting information

S1 Text. SurNoR and alternative algorithms.

(PDF)

S2 Text. EEG preprocessing and control analyses.

(PDF)

S3 Text. Fitted parameters and parameter-recovery.

(PDF)

S4 Text. The analysis of random exploration.

(PDF)

S5 Text. Precise statement of the prediction in ‘Discussion’.

(PDF)

S6 Text. Qualitative differences between model-based (MB) and model-free (MF) branches

of SurNoR.

(PDF)

S1 Fig. Average progress at states in proximity of the goal (complement to Figs 2 and 7 of

the main text). Average progress of participants (A) and simulated participants (B-D) each

time visiting states 5, 6, and 7 in episode 1 of block 1 (blue) or states 5, 6, and 3 in episode 1 of

block 2 (red). Panel A corresponds to the experimental data shown in Fig 2, panel B to the sim-

ulated data shown in Fig 7, panel C to the simulated data shown in S2 Fig, and panel D to the

simulated data shown in S3 Fig. While states 1 and 2 are visited by most participants at least 15

times (c.f. Fig 2, main text; size of circles indicates number of participants), only very few par-

ticipants visit the states close to the goal more than 5 times, and as a result, total learning prog-

ress between the start and the end of the episode is smaller and data is noisy. Similar

observations can be made for the simulated participants (cf. Fig 7, main text; size of circles

indicates number of simulated participants). Since the number of visits of states close to the
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goal is small, the noise-induced differences between different simulations runs are large (com-

pare the runs in B, C, and D). In particular, at the state before the goal state (state 7 in block 1

and state 3 in block 2), the first time that (simulated) participants choose the good action, they

reach the goal state and finish the episode. Therefore, the average progress for the state before

the goal is always calculated across those (simulated) participants who did not choose the good

action when they visited that state previously.

(EPS)

S2 Fig. Posterior predictive checks; the structure of figure is the same as Fig 7 and their

only difference is in the random seed used for generating data. A. Average number of

actions of 12 simulated participants at each episode (c.f. Fig 1C). B. Median number of actions

of simulated participants to escape the trap states at each of their visits in episode 1 of block 1

(left) and block 2 (right) (c.f. Fig 2A) C. Average progress of participants each time visiting

states 1, 2, 3, and 4 in episode 1 of block 1. (c.f. Fig 2B). D. Average progress of simulated par-

ticipants each time visiting states 1, 2, 7 (swapped with 3), and 4 in episode 1 of block 2. (c.f.

Fig 2C). See S1C Fig for the average progress at the progressing states in the proximity of the

goal.

(EPS)

S3 Fig. Posterior predictive checks; the structure of figure is the same as Fig 7, and their

only difference is in the random seed used for generating data. A. Average number of actions

of 12 simulated participants at each episode (c.f. Fig 1C). B. Median number of actions of simu-

lated participants to escape the trap states at each of their visits in episode 1 of block 1 (left) and

block 2 (right) (c.f. Fig 2A) C. Average progress of participants each time visiting states 1, 2, 3,

and 4 in episode 1 of block 1. (c.f. Fig 2B). D. Average progress of simulated participants each

time visiting states 1, 2, 7 (swapped with 3), and 4 in episode 1 of block 2. (c.f. Fig 2C). See S1D

Fig for the average progress at the progressing states in the proximity of the goal.

(EPS)

S4 Fig. Parameter recovery results and log-likelihood landscape. The solid black curve in

each panel shows the log-likelihood of the behavioral data of 12 participants as a function of

one of the free parameters of SurNoR, while the other parameters are fixed at their fitted values

(S1 Table). The fitted value for each parameter corresponds to the peak of the log-likelihood

function and is specified by the light green lines. The recovered parameters for 3 different sets

of 12 simulated participants (corresponding to the data shown in Fig 7 in the main text and S2

and S3 Figs) are shown by the light red lines. Note that the procedure of fitting parameters to

the generated data were exactly the same as the procedure of fitting parameters to the real data,

i.e., we searched in the 18-dimensional space of parameters. The 1st column corresponds to

parameters mainly related to model-building and model-based planning (�,m, and TPS); the

2nd column corresponds to the softmax policy temperatures and the parameters controlling

the exploration and exploitation trade-off (β1, β2, βN1, and βN2); the 3rd column corresponds

to the discount factors and the decay rates of eligibility traces (λR, λN, μR, and μN); the 4th col-

umn corresponds to parameters mainly related to model-free learning (ρb, δρ, and QN0); and

the last column corresponds to the parameters controlling the trade-off between model-based

and model-free policies (ω0, ω11, ω12, and ωscale). See S3 Text for details.

(EPS)

S5 Fig. Robustness of model-variables. Average correlation between the model-variables

extracted given the fitted parameters (the ones used for EEG analyses) and model-variables

extracted given the recovered parameters corresponding to A. Fig 7 in the main text, B. S2 Fig,

and C. S3 Fig. Error bars show the standard error of the mean, and each grey point shows data
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of one participant. See S3 Text for details.

(EPS)

S6 Fig. Correlations (averaged over participants) between relevant variables. A. The cross-

correlations between Surprise, Novelty, NPE, RPE, and Reward during the behavioral task. B.

Novelty? is the projection of Novelty onto the subspace orthogonal to the plane spanned by

Reward and RPE. The variables R+ and R− are the (normalized) sum and difference of RPE

and Reward, respectively. An analogous orthogonalization is applied to Surprise and NPE. C.

The cross-correlation matrix of the orthogonalized variables and the original ones. Surprise?,

Novelty?, and NPE? are highly correlated with their raw values but have zero correlation with

reward and RPE. See S2 Text for details.

(EPS)

S7 Fig. ERP variations explained by trial-by-trial and participant-by-participant multivari-

ate linear regression analysis. S7 Fig uses a simplified preprocessing pipeline without orthog-

onalization but is otherwise analogous to Fig 10 in the main text. Surprise (magenta), Novelty

(dark blue), NEP (light blue), Reward (brown) and RPE (red) were used as explanatory vari-

ables, and the ERP amplitude at each time point was considered as the response variable. A.

Encoding power (adjusted R-squared values) averaged over 10 participants (dashed lines show

the standard error of the mean) at each time point. Shaded areas and horizontal lines indicate

four time intervals (W1, . . ., W4) of significant encoding power (FDR controlled by 0.1, one-

sample t-test, only for the time-points after the baseline). The 3rd time interval has been split

into two time windows of equal length for the analysis in C. B. Values of the regression coeffi-

cients (averaged over participants) for Surprise, Novelty, NEP, Reward, and RPE as a function

of time. Errors are not shown to simplify the illustration. C. In each of the 5 time windows, the

regression coefficients plotted in B have been averaged over time. Error bars show the standard

error of the mean (across participants). Asterisks show significantly non-zero values (FDR

controlled by 0.1 for each time window, one-sample t-test). The Novelty coefficients in the 1st

and the last time windows (dot) have p-values of 0.03 and 0.04, respectively, which are not sig-

nificant after FDR correction. In the second time window, Surprise, Novelty, and NEP have

significantly positive coefficients. See S2 Text for details.

(EPS)

S1 Table. SurNoR parameters fitted to the behavioral data of all participants. This set of

parameters was used for EEG analysis and illustrations in Fig 6 in the main text. The values

correspond to the light green lines in S4 Fig. See S3 Text for details.

(XLSX)
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41. Moens V, Zénon A. Learning and forgetting using reinforced Bayesian change detection. PLoS compu-

tational biology. 2019; 15(4):e1006713. https://doi.org/10.1371/journal.pcbi.1006713 PMID: 30995214

42. Achiam J, Sastry S. Surprise-based intrinsic motivation for deep reinforcement learning. arXiv preprint

arXiv:170301732. 2017.

43. Burda Y, Edwards H, Pathak D, Storkey A, Darrell T, Efros AA. Large-Scale Study of Curiosity-Driven

Learning. In: International Conference on Learning Representations; 2018.

44. Tartaglia EM, Clarke AM, Herzog MH. What to choose next? a paradigm for testing human sequential

decision making. Frontiers in psychology. 2017; 8:312. https://doi.org/10.3389/fpsyg.2017.00312

PMID: 28326050

45. Oxford English Dictionary. “novelty, n. and adj.”.;. Available from: https://www.oed.com/view/Entry/

128781.

46. Shannon C. A mathematical theory of communication. Bell System Technical Journal 27: 379-423 and

623–656. 1948; 20.

47. Tribus M. Thermostatics and thermodynamics: an introduction to energy, information and states of mat-

ter, with engineering applications. van Nostrand; 1961.

48. Oxford English Dictionary. “surprise, n.”.;. Available from: https://www.oed.com/view/Entry/194999.

49. Yu AJ, Cohen JD. Sequential effects: superstition or rational behavior? In: Advances in neural informa-

tion processing systems; 2009. p. 1873–1880.

50. Meyniel F, Maheu M, Dehaene S. Human inferences about sequences: A minimal transition probability

model. PLoS computational biology. 2016; 12(12):e1005260. https://doi.org/10.1371/journal.pcbi.

1005260 PMID: 28030543

51. Markovic D, Stojic H, Schwoebel S, Kiebel SJ. An empirical evaluation of active inference in multi-

armed bandits. arXiv preprint arXiv:210108699. 2021.

52. Stephan KE, Penny WD, Daunizeau J, Moran RJ, Friston KJ. Bayesian model selection for group stud-

ies. Neuroimage. 2009; 46(4):1004–1017. https://doi.org/10.1016/j.neuroimage.2009.03.025 PMID:

19306932

53. Rigoux L, Stephan KE, Friston KJ, Daunizeau J. Bayesian model selection for group studies—revisited.

Neuroimage. 2014; 84:971–985. https://doi.org/10.1016/j.neuroimage.2013.08.065 PMID: 24018303

54. Nassar MR, Frank MJ. Taming the beast: extracting generalizable knowledge from computational mod-

els of cognition. Current opinion in behavioral sciences. 2016; 11:49–54. https://doi.org/10.1016/j.

cobeha.2016.04.003 PMID: 27574699

55. Wilson RC, Collins AG. Ten simple rules for the computational modeling of behavioral data. Elife. 2019;

8:e49547. https://doi.org/10.7554/eLife.49547 PMID: 31769410

56. Kolossa A, Kopp B, Fingscheidt T. A computational analysis of the neural bases of Bayesian inference.

Neuroimage. 2015; 106:222–237. https://doi.org/10.1016/j.neuroimage.2014.11.007 PMID: 25462794

57. Walsh MM, Anderson JR. Learning from experience: event-related potential correlates of reward pro-

cessing, neural adaptation, and behavioral choice. Neuroscience & Biobehavioral Reviews. 2012; 36

(8):1870–1884. https://doi.org/10.1016/j.neubiorev.2012.05.008 PMID: 22683741

58. Holroyd CB, Coles MG. The neural basis of human error processing: reinforcement learning, dopamine,

and the error-related negativity. Psychological review. 2002; 109(4):679. PMID: 12374324

59. Friston K. The free-energy principle: a unified brain theory? Nature reviews neuroscience. 2010; 11

(2):127. https://doi.org/10.1038/nrn2787 PMID: 20068583

60. Friston K, FitzGerald T, Rigoli F, Schwartenbeck P, Pezzulo G. Active inference: a process theory. Neu-

ral computation. 2017; 29(1):1–49. https://doi.org/10.1162/NECO_a_00912 PMID: 27870614

61. Storck J, Hochreiter S, Schmidhuber J. Reinforcement driven information acquisition in non-determin-

istic environments. In: Proceedings of the international conference on artificial neural networks, Paris.

vol. 2. Citeseer; 1995. p. 159–164.

62. Itti L, Baldi PF. Bayesian surprise attracts human attention. In: Advances in neural information process-

ing systems; 2006. p. 547–554.

63. Schmidhuber J. Driven by compression progress: A simple principle explains essential aspects of sub-

jective beauty, novelty, surprise, interestingness, attention, curiosity, creativity, art, science, music,

jokes. In: Workshop on anticipatory behavior in adaptive learning systems. Springer; 2008. p. 48–76.

64. Baldi P. A computational theory of surprise. In: Information, Coding and Mathematics. Springer; 2002.

p. 1–25.

PLOS COMPUTATIONAL BIOLOGY Novelty is not surprise

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009070 June 3, 2021 30 / 32

https://doi.org/10.1016/j.tics.2019.07.012
http://www.ncbi.nlm.nih.gov/pubmed/31494042
https://doi.org/10.1371/journal.pcbi.1006713
http://www.ncbi.nlm.nih.gov/pubmed/30995214
https://doi.org/10.3389/fpsyg.2017.00312
http://www.ncbi.nlm.nih.gov/pubmed/28326050
https://www.oed.com/view/Entry/128781
https://www.oed.com/view/Entry/128781
https://www.oed.com/view/Entry/194999
https://doi.org/10.1371/journal.pcbi.1005260
https://doi.org/10.1371/journal.pcbi.1005260
http://www.ncbi.nlm.nih.gov/pubmed/28030543
https://doi.org/10.1016/j.neuroimage.2009.03.025
http://www.ncbi.nlm.nih.gov/pubmed/19306932
https://doi.org/10.1016/j.neuroimage.2013.08.065
http://www.ncbi.nlm.nih.gov/pubmed/24018303
https://doi.org/10.1016/j.cobeha.2016.04.003
https://doi.org/10.1016/j.cobeha.2016.04.003
http://www.ncbi.nlm.nih.gov/pubmed/27574699
https://doi.org/10.7554/eLife.49547
http://www.ncbi.nlm.nih.gov/pubmed/31769410
https://doi.org/10.1016/j.neuroimage.2014.11.007
http://www.ncbi.nlm.nih.gov/pubmed/25462794
https://doi.org/10.1016/j.neubiorev.2012.05.008
http://www.ncbi.nlm.nih.gov/pubmed/22683741
http://www.ncbi.nlm.nih.gov/pubmed/12374324
https://doi.org/10.1038/nrn2787
http://www.ncbi.nlm.nih.gov/pubmed/20068583
https://doi.org/10.1162/NECO_a_00912
http://www.ncbi.nlm.nih.gov/pubmed/27870614
https://doi.org/10.1371/journal.pcbi.1009070


65. Gershman SJ, Radulescu A, Norman KA, Niv Y. Statistical computations underlying the dynamics of

memory updating. PLoS computational biology. 2014; 10(11):e1003939. https://doi.org/10.1371/

journal.pcbi.1003939 PMID: 25375816

66. Gershman SJ, Monfils MH, Norman KA, Niv Y. The computational nature of memory modification. Elife.

2017; 6:e23763. https://doi.org/10.7554/eLife.23763 PMID: 28294944
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