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Abstract: Legionella pneumophila (L. pneumophila) is a pathogenic bacterium of increasing concern,
due to its ability to cause a severe pneumonia, Legionnaires’ Disease (LD), and the challenges in
controlling the bacteria within premise plumbing systems. L. pneumophila can thrive within the
biofilm of premise plumbing systems, utilizing protozoan hosts for protection from environmental
stressors and to increase its growth rate, which increases the bacteria’s infectivity to human host
cells. Typical disinfectant techniques have proven to be inadequate in controlling L. pneumophila in
the premise plumbing system, exposing users to LD risks. As the bacteria have limited infectivity to
human macrophages without replicating within a host protozoan cell, the replication within, and
egress from, a protozoan host cell is an integral part of the bacteria’s lifecycle. While there is a great
deal of information regarding how L. pneumophila interacts with protozoa, the ability to use this data
in a model to attempt to predict a concentration of L. pneumophila in a water system is not known. This
systematic review summarizes the information in the literature regarding L. pneumophila’s growth
within and egress from the host cell, summarizes the genes which affect these processes, and calculates
how oxidative stress can downregulate those genes.

Keywords: Legionella pneumophila; protozoan host cell; biofilm; premise plumbing; intracellular
growth; egress

1. Introduction
1.1. Gap in the Literature

Due to the prevalence of L. pneumophila in the water system and the seriousness of
legionellosis, a set of two respiratory diseases: Legionnaire’s Disease (LD) and the less
severe Pontiac Fever, there has been a focus on L. pneumophila in the literature. Review
articles separately discuss health effects, pathology, treatment, transmission, etiology,
epidemiology, and infectivity [1–9]. A review article that combines these knowledge goals
within the context of modeling the lifecycle of L. pneumophila in the water system to forecast
concentration is needed. As environmental stress affects the regulation and processing
of bacterial genes, it is an integral part in modeling the lifecycle of a pathogen. Data and
knowledge pertinent to the impact of environmental stress on a pathogen’s lifecycle must
be reviewed to assess their impact on the postulated model framework and the accuracy of
a predictive model. In this, a convergence of the above-referenced fields must be reviewed
and assessed for use within such a model. A review of this nature does not, to date, exist in
the literature.
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1.2. Need for This Review

This review seeks to summarize the information pertinent to developing a predictive
growth model which incorporates the host–cell interactions of L. pneumophila and how en-
vironmental stressors affect these interactions. The lifecycle of L. pneumophila, as it pertains
to the host cells involves three processes: uptake, growth, and egression. Considering the
complexity of these processes, we have divided this systematic literature review into two
parts, the invasion of the host cell [10], and the growth within and egress from the host cell,
presented here. This paper focuses on the pathways, processes, and data for forecasting
growth and egress of L. pneumophila within and from the host cell. Understanding how
L. pneumophila interacts with host cells in its environment, particularly in biofilms, is vital
in understanding how to treat L. pneumophila in the water system. Thus far, attempts to
eradicate the bacteria from the water system have been made in vain [11,12]. However, un-
derstanding the genetics in which L. pneumophila can utilize host cells in its environment for
protection and increased pathogenesis, and how certain environmental stressors can affect
those genes is vital in understanding how to control L. pneumophila in the water system.

The mechanisms between L. pneumophila’s growth and egress in a protozoa and a
human macrophage are similar, and the genetic knockdowns which prevent the bacteria
from growing or egressing in a protozoan typically prevent growth and egress within a
macrophage as well [13]. Additionally, if L. pneumophila is unable to replicate within and
egress from a host cell in the environment, the bacteria will be less, or even potentially
not at all, infectious to human macrophages [14]. Determining if chlorination or other
environmental stressors of the water treatment process influences or causes, genetic knock-
downs, which will decrease L. pneumophila’s ability to survive and thrive, is a first step in
controlling legionellosis outbreaks. This review summarizes knowledge and data needed
for a clearer picture of how environmental quality can govern growth within and egress
from a host cell. A new means of controlling infectivity may rely on reduced growth or
egress from host cells. These data are a vital initial foray into modeling these processes.
This study provides said data from the literature which can be used in a predictive model.

1.3. General Growth Requirements

L. pneumophila thrives in fresh, warm water environments, with supportive nutrients
and protozoan hosts [15]. Their ideal temperature range is 20–45 ◦C, with the bacteria being
dormant below 20 ◦C and typically unable to survive at temperatures higher than 60 ◦C [16].
Legionella has been shown to survive 70 ◦C treatments for up to 30 min [17]. In premise
plumbing systems, L. pneumophila utilizes the biofilm for protection against disinfectants
and for access to nutrients and host cells, typically amoeba. Biofilms have been shown to
be protective against environmental stressors, such as chlorine, to the bacteria [18,19]. The
organic matter of the biofilm increases chlorine demand, which maximizes on the surface
of the biofilm [20].

The rate in which chlorine penetrates the biofilm is dependent on the density of the
biofilm, with older, more established biofilms being denser and therefore more resistant
to chlorine [21]. In dense biofilms, as little as 10% of the bulk chlorine will penetrate the
biofilm [21]. Growth of L. pneumophila in the biofilm is supported by high nutrient levels
of iron, organic carbon, nitrogen, and phosphorous [22]. L. pneumophila has multiple iron
acquisition pathways and is unable to grow in the absence of iron [23,24]. The bacteria
produce siderophores to aid in iron acquisition in low iron environments, but are more
robust in the high iron environment typical of a biofilm [25,26].

1.4. Antibiotic Resistance in L. pneumophila

Antibiotic resistance is of concern for any pathogen, particularly those associated
with hospital acquired infections (HAIs). As such, the susceptibility of L. pneumophila
to antibiotics has been studied since shortly after the discovery of the pathogen [27,28].
While there has been an increase in antibiotic resistance of L. pneumophila in environmental
samples and patient cultures, there has yet to be a challenge in treating LD infections [29,30].
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Research indicates that some antibiotic resistance may be due to environmental conditions
and the relationship of the pathogen with host cells [31,32]. There is always the concern that
antibiotic strains of L. pneumophila will become more virulent and more common place, as
seen in the methicillin-resistant Staphylococcus aureus (MRSA) [33]. For that reason, it may
be prudent to test for antibiotic resistance of L. pneumophila in premise plumbing samples,
particularly in high risk buildings, such as hospitals [34].

1.5. Relationship with Host Cells

L. pneumophila is a facultative intracellular bacterium which can utilize host cells,
such as amoeba, within the biofilm for further protection and to serve essentially as a
unicellular incubator [35]. L. pneumophila grown intracellularly are smaller, more highly
mobile, and have increased levels of microbial resistance when compared to bacterial
progeny not grown in a host cell [31]. Acanthamoeba polyphaga (A. polyphaga) cysts are
protective to L. pneumophila with chlorine concentrations as high as 50 mg/L, whereas
free-living L. pneumophila is susceptible to chlorine concentrations as low as 2 mg/L [36,37].

1.6. Implications of This Study

The bacteria can replicate freely within in the host cell and can do so in multiple
vacuoles and in counts typically over two dozen bacterium per vacuole [38]. Vacuoles can
be expelled from the host cell prior to cell death [39]. The bacteria have been shown to
be more infective to mammalian macrophages after having replicated within an amoeba
host [35]. It is even theorized that the bacteria will not cause disease in humans unless it has
replicated within a protozoan host first [40,41]. Therefore, bacteria growing and egressing
from a host cell is a crucial part of L. pneumophila’s lifecycle in concern to human infectivity.
However, current growth models for L. pneumophila in premise plumbing system do not
incorporate the interactions with the host cell and the effects of disinfectants on the genes
that dictate those interactions. This review is pertinent in summarizing the information
needed to build said models.

2. Materials and Methods
2.1. Search Strategy

To determine the mechanisms, proteins, and genes involved in the growth of Legionella
within and egress from a host cell, an exhaustive literature review was conducted from
inception to January 2019. Google Scholar, PubMed, Scopus, Web of Science, Bioline In-
ternational, and PLOS ONE were searched using the terms: “((Legionella) OR (Legionella
pneumophila) OR (L. pneumophila) OR (Legionella longbeachae) OR (L. longbeachae) OR (Le-
gionella bozemanii) OR (L. bozemanii)) AND ((Growth) OR (Intracellular Growth) OR (Repli-
cation) OR (Reproduction) OR (dot/icm) OR (Genetic Knockout) OR (Genetic Knockdown)
OR (Genes for growth) OR (Host interaction) OR (Disinfection) OR (Acanthamoeba) OR
(Acanthamoeba polyphaga) OR (Acanthamoeba castellanii) or (A. polyphaga) OR (A. castellanii)
OR (Premise Plumbing) OR (Biofilms) OR (Egress) OR (Exit) OR (Mediated death) OR
(Mediated exit) OR (Apoptosis)”. Relevant citations were forward and reverse searched,
and imported into a Zotero library.

2.2. Eligibility Criteria

The inclusion criteria were Legionella studies which looked at the bacteria’s behavior,
protein function, genetic function, genetic expression, or genetic change while growing
within or egressing from a host cell. Studies had to be peer-reviewed and written in English.

Studies were excluded if they were performed in mice, focused on lifecycle stages
outside of growth or egress, focused on free Legionella or cells outside of a host cell, were
abstracts from conference proceedings, were letters to the editor, or were not refereed.
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2.3. Study Selection

Over 2000 papers were imported to a Zotero library to review for relevance. Zotero’s
automation was used to remove duplicate items. Titles and abstracts were reviewed for
relevance by two reviewers working independently, then sorted by lifecycle stages, protein,
or gene function. Studies were then determined to be eligible for modeling purposes if they
were (1) performed in triplicate (2) utilized microbial techniques which only accounted
for growth of bacteria within, or undergoing egress from, the host cell, while excluding
additional bacterial uptake in the host cell (3) accounted for time and (4) able to be combined
with similar data from the literature for one working model. Thirty-two studies evaluating
proteins and twenty studies evaluating gene function contributing to the growth or egress
of Legionella in a host cell were included in this review. Six studies were included as viable
options to model growth rate efficiency within the cell and four studies were included to
model egress rate efficiency. To be included in the modeling studies, a change in growth
or egression rates based on a genetic knockdown needed to be measured. Nine studies
overlapped in these categories for a total of 53 included studies. The Preferred Reporting
Items for Systematic Review and Meta-Analyses (PRISMA) guidelines were used for this
review. The 2020 PRISMA checklist can be found in Supplemental Material S1.

3. Results
3.1. Lifecycle and Legionella Containing Vacuoles

L. pneumophila has multiple ways of invading the host cell, resulting in the bacteria
becoming encased in the phagosomal membrane [10]. The phagosomal membrane will
alter its thickness to resemble the thinner endoplasmic reticulum (ER) vesicle, and invade
the rough endoplasmic reticulum (RER) about 6 h after infection [42]. The bacteria are
then able to intercept vesicular traffic from the ER exit sites to create an organelle that
permits intracellular replication, preventing the destruction of the host cell—the Legionella
containing vacuole (LCV) [43]. In the first hour, the mitochondria cluster about the LCV.
Approximately 4–8 h after phagocytosis, the host cell’s ribosomes appear on the cytoplasmic
side of the vacuolar membrane while L. pneumophila multiplies in the vacuole. At the end
of the eighth hour, nearly all of the LCVs are studded with ribosomes and the bacteria
have a doubling time of about 2 h [44,45]. L. pneumophila will remain within the LCV until
hundreds of bacteria fill the vacuole and the monocyte ruptures [46].

L. pneumophila utilizes the Dot/Icm Type IV Secretion System (T4SS) and the Type
II Secretion System (TS2), in order to evade the phagosome-lysosome binding process,
allowing the bacteria to replicate within the host cell [46–48]. These systems share several
components, most likely having a common evolutionary origin [49–51]. Together, they
export over 300 effector proteins. TS2 exports multiple effectors which contribute to the
broad host range of L. pneumophila TS2, including protesase, RNase, lipase, phospholipase
A, phospholipase C, lysophospholipase A, and tartrate-sensitive and tartrate-resistant acid
phosphatase [52,53]. While the bacteria are replicating within the host cell, the LCV recruits
host proteins in order to aid in LCV maintenance, including calnexin, Sec22b, BiP, SAR1,
and Rab1, which are host factors involved in the endoplasmic reticulum (ER) recruitment
process [54–57]. Some of these proteins are soluble in the cytosol and enter the LCV.
They aide the LCV in avoiding intracellular degradation by establishing an ER-associated
replicative compartment [54,58,59]. Individual effector proteins and host cell proteins will
be discussed in further detail in Table 1.

LCVs that were expelled from host cells were found to have as many as 104 L. pneumophila
within a single vesicle [60]. More than 90% of vesicles containing viable L. pneumophila
cells, expelled from A. polyphaga or A. castellanii, were of a respirable size, <5 µm [39]. It is
theorized that one is more likely to become infected with L. pneumophila after inhaling a
contaminated vesicle as opposed to free bacteria [61].
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Table 1. Proteins associated with L. pneumophila’s ability to grow within and egress from a host cell.

Protein Function Target Reference

AnkB Translocated effector, allows proliferation of
bacteria. LCV [47,62]

AnkG
Prevents apoptosis of host cell allowing for
continued replication of L. pneumophila in

mammalian hosts.
Host protein gCq1R(p32) [63]

DsbA2
Catalyzes the disulfide bond formation required

for the extracytoplasmic assembly of the T4SS
system of L. pneumophila.

Dot/Icm T4SS [64]

Dot/Icm Type 4
Secretion System (T4SS)

Translocates over 300 proteins into the host cells.
Modulates host processes including

phagosome-lysosome binding, promotion of
ubiquitin conjugates, and suppression of dendritic

cell formation.

Icm/Dot Translocated
substrates (IDTS) [65–68]

DrrA
Required for host cytotoxicity. Recruits and

activates Rab1 on the plasma
membrane-derived organelles.

Host vesicular transport [56]

IcmSW
Mediates a conformational change facilitating

T4SS recognition of the effector protein, thereby
enhancing effector protein delivery

Translocation domain in the
effector protein [69]

IcmQ Forms pores in lipid membranes by utilizing a
chaperone/substrate relationship. [70]

IcmR Binds to the N-terminal of IcmQ inhibiting
membrane insertion and pore formation. IcmQ [70]

LbtP

Sidephore transport protein which allows for
growth in iron-limiting conditions. Prevents

premature exit of macrophage due to
low nutrients.

[26]

LbtU
Sidephore transport protein which imports
iron-bound legiobactin. Alos for growth in

iron-limiting conditions.
Legiobactin [26]

LegC3 Inhibits SNARE and Rab GTPase dependent
membrane fusion pathway [71]

LegK1 Modulates macrophage defense and inflammatory
response during infection of a host cell. NF-kB [72]

LegK2
Efficient recruitment of endoplasmic reticulum

markers allowing for timely intracellular
replication and ER uptake of the LCV.

T4SS [73]

LtpD Intracellular bacterial replication. Phosphatidylinositol
3-phosphate [74]

PieA Avoids phagososome/lysosome binding. Allows
for growth in the cell. LCV [75–77]

PI4P Localization of effectors to LCV early
during infection. [48,78]

PmrA Allows for intracellular growth in host cells. Dot/Icm Type 4 secretion
system [79]

RalF Exchange factor for the ARF family of GTPase.
Required for the localization of ARF of LCV ARF [80]

Rap1 Allows for intracellular bacterial replication. [81]
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Table 1. Cont.

Protein Function Target Reference

RpkA Localizes endosomal membranes, specifically
recruited to the phagosome. LCV [13]

RpoS
Stimulates intracellular replication and osmotic

resistance. Growth phase stress resistance in
protozoa. Maximum flagellin expression.

fliA, flaA, mip [82–84]

SidC
Involved in recruiting host ER proteins to the
surface of the LCV, allowing for intracellular

bacterial replication.
LCV, PtdIns(4)P [85]

SidF Allows for more bacterial replication by making
host cell resistant to apoptosis. NIP3, Mcl-rambo [86]

SidH Important in early phase of infection. Inhibits
cells death. [87]

SetA
Allows for bacterial virulence in the

post-exponential growth phase by preventing
entry of the LCBB into the endocytic network.

LCV [88]

3.2. Flagella

Similar to the various pathways L. pneumophila can use to infect host cells, the bacteria
utilize flagellin differently within different hosts and during various stages of development.
Flagellin and motility are required for the colonization of A. castellanii to activate the
NLRC4 pathway, but have an adverse effect during bacterial replication in mammalian
lungs [89]. L. pneumophila require flagellin to induce apoptosis of the host cell, but flagellin
are not required for replication within the host cell [90]. The flagella initiates the caspase
9 and effector caspase 3, activating the pro-apoptotic protein Bax and inhibiting the anti-
apoptotic protein X-linked inhibitor of apoptosis (XIAP) via the inhibition of the Akt
pathway [90]. Macrophages and dendritic cells use flagellin to assess the virulence of
bacteria [91]. Flagellin is responsible for activating the nuclear factor κB (NF-κB), p38
mitogen-activated protein kinases (MAPK), Jun N-terminal kinase (JNK), and transforming
growth factor β-associated kinase 1 (TAK1), which induce interleukin-8 (IL-8) activation,
the human immune response to L. pneumophila infection [92]. Nod-like receptors NOD1
and NOD2 are partially responsible for neutrophil recruitment and cytokine production
in the mammalian lung [93–95]. Flagellin can be translocated by the Dot/Icm complex
into the host cell cytosol, where macrophages and dendritic cells can use the protein to
assess the virulence of the bacteria [91,96]. Although L. pneumophila cannot replicate within
dendritic cells, it still utilizes the Dot/Icm complex to establish ER-derived LCV within
the cell [97]. The interaction between the flagellin and the host cell Nod-like receptors,
Ipaf and NLRC4, which both activate caspase 1 or TLR5, can induce the expression of
pro-inflammatory cytokines [89,98,99]. NLRC4 is not localized to a distinct structure within
the cell, allowing inflammasomes to gain access to different subsets of substrates. It also
activates caspase 7, which promotes non-apoptotic functions such as LCV maturation and
bacterial degradation [100].

3.3. Interferons

Type I interferons (IFN-α/β), which boost the immune system in response to an in-
fection, are induced by L. pneumophila after the Dot/Icm complex translocates bacterial
DNA into the cytosol of the host cell [101–103]. A downstream signaling adaptor in the
stimulator of interferon genes (STING) pathway is required for type I IFN induction in
response to an upstream sensor of the cytosolic DNA [104–106]. Type I IFNs directs the
activation of both Stat 1 homodimers and IFN-stimulated gene factor 3 (ISGF-3) which are
integral in the activation of the IFN-I autocrine loop [107]. Type II IFNs (IFN-γ) utilize the
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classical pathway to activate macrophages with only the Stat1 homodimer. Both Type I
and Type II IFNs play an integral role in the innate immune response of the macrophage
to intracellular microbes [107]. Even low doses of IFN are effective in preventing the
replication of L. pneumophila in macrophage host cells [108]. IFN-activated macrophages
inhibit the bacteria from proliferating mainly by reactive oxygen intermediate and reactive
nitrogen intermediate independent mechanisms, and secondarily by nutritionally depen-
dent mechanisms [109]. One key protein in suppressing the IFN response to L. pneumophila,
SdhA, is discussed in Table 2 [110].

Table 2. Genes associated with L. pneumophila’s ability to grow within and egress from a host cell.

Gene Function Target Reference

Dot/Icm Complex Avoids phagososome/lysosome binding. Allows
for growth in the cell and genetic conjugation. LCV [75–77,111,112]

ankB Intracellular replication in U937, A. polyphaga,
and human monocyte-derived macrophages. [62]

ccm locus Growth, intracellular infection and virulence,
especially in low iron environments Cytochrome c [25]

dotA

Intracellular replication within macrophages,
required in the immediate stages of infection to

prevent lysozyme fusion. Not required for
growth within amoeba or nematodes.

[75,113–117]

dotB Not required for intracellular growth in amoeba. [113]

dotO Infection of A549 alveolar epithelial cells. Activates caspase 3, 8, 9, and 1.
Released HMGB1. [118]

katA
Bifunctional catalase-peroxidase. Keeps

hydrogen peroxidase levels low in the cell
allowing intracellular multiplication.

LAMP-1, recruits phagosomes [113,119,120]

katB
Bifunctional catalase-peroxidase. Keeps

hydrogen peroxidase levels low in the cell
allowing for intracellular multiplication,

LAMP-1, recruits phagosomes [113,119,120]

pilD Intracellular growth in U937 and amoeba Type II Secretion System [53]

rib Expression of pore-forming toxin/activity [121]

sidJ Growth in macrophage and amoeba [115]

sdjA Growth in protozoan, but not macrophages [115]

sdhA
Prevention of cell death-Mutation has increased
nuclear degradation, mitochondrial distribution,
membrane permeability, and caspase activation

Type I IFN expression [110,122]

sdeC Efficient intracellular growth [101]

3.4. Mediated Cell Death

Naip5, a Nod-like receptor protein, initiates cell death through the activation of
caspase 1, causing a pore formation and resulting in pyroptosis, caspase 1-mediated cell
death [123–127]. Caspase 1 activation is mediated in response to a translocated Dot/Icm
substrate and recombinant flagellin in the cytosol, and will not occur in IPAF mutant
cells [100,123,128]. This process stimulates autophagy in macrophages, resulting in the
redirected trafficking of the LCV to lysosomes [129,130].

Despite normal caspase 1 function, if the cytosolic protein NAIP5 is defective, the
macrophage is permissive to the bacteria replicating [127,131]. All macrophages require
a competent Dot/Icm complex in order for the cell to undergo apoptosis [132]. ASC,
the apoptosis-associated speck-like protein, containing a caspase recruitment domain,
is an adaptor protein not associated with pyroptosis, but rather aids in mediated-cell
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death via an independent inflammasome pathway [123]. ASC plays a role in the negative
regulation of caspase 1-dependent host cell death [133]. ASC is required for the secretion
of inflammatory cytokines IL-1β and IL-18 [123,128,134]. Cytokine processing occurs in a
single, large, punctate structure in host cells, where ASC and caspase 1 are recruited [134].
Caspase 1 is required for efficient cytokine processing, as a mutant form of caspase 1 is
unable to support cytokine cleavage [134].

Caspase 3 is essential for apoptosis in monocytes, macrophages, and alveolar epithelial
cells. While the bacteria activate caspase 3 upon invasion, apoptotic death is not executed
until late stages of infection, after the bacteria have completed replication [135]. The protein
is associated with effective Dot/Icm mediated anti-apoptotic stimuli which cause the cell
to resist the apoptotic inducer during bacterial replication [100]. The caspase proteins and
non-apoptotic functions of executioner caspases are modulated, temporally and spatially,
during infection, determining permissiveness to intracellular bacterial proliferation [100].

The host death of infected macrophages occurs in a biphasic model. The induction of
apoptosis occurs during the early stages of infection and the independent and temporal
induction of necrosis occurs during the late stages of intracellular replication [121]. In a sim-
ilar manner as the bacteria kills the protozoan host, necrosis and cytolysis of macrophages
by L. pneumophila is mediated by pore-forming activity or toxin [121,136]. The pore-forming
activity is signaled after the bacteria have finished replicating in the host cell. Mutants
which are incapable of pore-forming activity can replicate within the host cell but are unable
to lyse the host cell and egress. They will eventually be released by the host, most likely by
apoptotic death [121].

L. pneumophila utilizes multiple mechanisms to induce cell death, which can vary
depending on the host cell. L. pneumophila uses type II and IV secretion systems to cleave
large subunit ribosomal RNA resulting in decreased mitochondrial messenger RNAs in
Dictyostelium discoideum (D. discoideum) [137]. However, even in other protozoan hosts, such
as A. castellanii, L. pneumophila do not use this method. Contact-dependent cytotoxicity is
required for the egress of L. pneumophila from the amoeba, while it is not needed for the
bacteria to survive and thrive within the host cell [113]. In dendritic cells, mitochondria-
regulated apoptosis occurs within 1 h [138]. This process is initiated by caspase 3 or
BH3-only proteins [96].

3.5. Stress

Amoeba are known as a Trojan Horse for pathogenic microorganisms, serving as both
reservoirs and vehicles for the bacteria in the environment [14]. Furthermore, amoeba
can serve as a unicellular incubator, allowing the bacteria to adapt to life within a human
macrophage, favoring pathogenesis [14]. Environmental stressors such as high tempera-
tures, unfavorable pH, osmotic pressure, or presence of disinfectants can cause amoeba to
encyst, a life-stage particularly protective to intracellular bacteria [61]. The double layered
cyst is particularly resilient, surviving in temperatures from −20 ◦C to 42 ◦C and showing
resistance against disinfectants, such as chlorine [139]. The amoeba will return to the
trophozoic form when environmental conditions are more favorable. L. pneumophila have
been observed in both trophozoites and cyst hosts [140]. Vesicles expelled from protozoan
host cells have demonstrated resilience when exposed to biocides in cooling towers for up
to 24 h, ultrasound, and vast temperature ranges (−70 ◦C to 35 ◦C) [39].

4. Discussion
4.1. L. pneumophila in Premise Plumbing Systems

Legionellosis is of particular concern in large premise plumbing systems, such as those
found in hospitals or hotels, due to water stagnation, institutional hot water being kept
under 50 ◦C, and disinfectant dissipating throughout the large systems [141–144]. The
elderly and immunocompromised have higher incidence rates of LD, making hospitals
and nursing care facilities of even greater concern [145–147]. Patients with ambulatory
impediments may take longer to shower, leading to longer exposure times to L. pneumophila



Microorganisms 2022, 10, 141 9 of 17

if it is present in the premise plumbing system [148]. Due to the seriousness of LD and
the increasing incidences of legionellosis throughout the US, there have been many cam-
paigns to eradicate the bacteria from premise plumbing systems, specifically in biofilms
where the bacteria are significantly more difficult to treat than free living L. pneumophila.
The endosymbiotic relationship L. pneumophila has with protozoa makes eradication of
the bacteria within the biofilm of premise plumbing systems exceedingly difficult [149].
As L. pneumophila use the protozoa as a reservoir the bacteria are particularly resistant to
typical disinfection measures [135]. L. pneumophila’s lifecycle and factors affecting the bac-
teria’s persistence and virulence have been well documented. However, a comprehensive
literature review providing information necessary to model L. pneumophila’s growth within
and egress from host cells within a biofilm was not available, necessitating this article.

4.2. Genetic Knockdowns

Genetic knockdowns or mutations would not only affect the individual bacterium,
but extend to its progeny, affecting all future generations. Therefore, a knockdown or
mutation that is nonlethal, but lowers the bacterium’s infectivity would then lower the
infectivity of all of the bacterium’s descendants. Genetic knockdown information, which
affects L. pneumophila’s ability to replicate within and egress from the host cell, was drawn
from the literature. Data are only reported in this article if they were sufficient to use in
a mechanistic model, requiring that: (a) they were reported in a peer-reviewed journal,
(b) they had greater than three data points, (c) they were validated, (d) the genes effected
are responsible for pathogenesis, and (e) they were comparable to the other data provided.
Table 2 summarizes the functions of genes essential for L. pneumophila to grow within
and egress from host cells. Variations in methodologies, timeframes, and units reported
(i.e., log vs. percentage reduction) present a challenge in using data from the literature
in one comprehensive model. In this article, the rates at which the modified bacteria had
reduced capacity to grow within or egress from the host cell after the knockdown when
compared to the wildtype are reported in the same units as the cited article in the “change
in growth efficiency” or the “change in egress rate efficiency” columns in Tables 3 and 4,
respectively. The degradation of growth or egress rates are also expressed as percentages in
Tables 3 and 4, for the sake of uniformity in modeling. Percentages were chosen over log
reductions as some genetic knockdowns cause only a minor change in growth or egress.
For modeling purposes, it is recommended that future research report their results in
percentage reductions. There is a great deal of redundancies within the gene functions in
L. pneumophila, making the bacteria more robust to environmental stressors and adaptable
to its environmental conditions. However, it is clear that specific genetic knockdowns, such
as the ones described in Tables 3 and 4, reduce the bacteria’s virulence in the biofilm and
premise plumbing systems.

Table 3. Effect of genetic knockdowns on the growth of L. pneumophila within a host cell.

Gene Host Cell Change in Growth
Rate Efficiency 1

Degradation of
Growth Rate 2 Process

dotA U937 35–56% 35–56% Phagosome–lysosome fusion occurs [77].

dotA A. Castellanni Incapable of replication 100% Phagosome–lysosome fusion occurs [150]

dsbA A. castellanni 1
2 log reduction 68% Defective oxidative protein folding

necessary for replication [151]

icmQ U937 Incapable of replication 100% Defective pore formation in the
macrophage [152]

icmR U937 1.5 log reduction 97% Defective pore formation in the
macrophage [152]

icmS U937 1.75 log reduction 98% Phagosome–lysosome fusion occurs [152]
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Table 3. Cont.

Gene Host Cell Change in Growth
Rate Efficiency 1

Degradation of
Growth Rate 2 Process

icmT U937 Incapable of replication 100% Phagosome–lysosome fusion occurs [153]

icmW U937 2 log reduction 99% Phagosome–lysosome fusion occurs [153]

katA A. castellanni 2 log reduction 99% Susceptible to exogenous hydrogen
peroxide [113]

katB A. castellanni 2 log reduction 99% Susceptible to exogenous hydrogen
peroxide [113]

lvgA U937 10-fold decrease 90% Phagosome–lysosome fusion occurs [150]

lvgA A. castellanni 10-fold decrease 90% Phagosome–lysosome fusion occurs [150]
1 Expressed in units reported in the original literature. 2 Degradation of Growth Rate refers to the percentage of
bacteria decrease within the host cell as compared to the wild-type.

Table 4. Effect of genetic knockdowns on the egress of L. pneumophila within a host cell.

Gene Host Cell Change in Egress Rate
Efficiency 1

Degradation of Egress
Rate 2 Process

dotA U937 75–85% 75–85% Defect in inserting pores in eukaryotic
membranes [132]

dotBCD U937 80% 80% Defect in inserting pores in eukaryotic
membranes [132]

icmGCD U937 70–75% 70–75% Defect in inserting pores in eukaryotic
membranes [132]

icmJB U937 65–80% 65–80% Defect in inserting pores in eukaryotic
membranes [132]

icmT U937 90% 90% Defect in pore-formation to egress from
cell [153]

legK2 A. castellanni 1.5 log reduction 96.8% Defect in ER recruitment on the LCV [73]

rib U937 70–95% 70–95% Defective in necrosis-mediated killing of
the host cell [121]

rib WI-26 85–98% 85–98% Defective in necrosis-mediated killing of
the host cell [121]

1 Expressed in units reported in the original literature. 2 Degradation of Egress Rate refers to the percentage of
bacteria decrease egressing from the host cell as compared to the wild type.

4.3. Contribution to the Literature

This study summarizes information from the literature, which is vital to model the
growth within and egress from host cells, and how these mechanisms can be influenced by
environmental stressors, such as disinfectants. In recent years the importance of replication
within host cells for the virulence of L. pneumophila in human macrophages has become
clear [35]. It is important to incorporate this knowledge into future predictive models so as
to fully understand the infectivity of the bacteria to humans. This paper summarizes the
information available in the literature to allow for said more substantial predictive models.

4.4. Limitation of This Systematic Review

This review serves to summarize the data available in the literature regarding how
oxidative stress affects L. pneumophila’s lifecycle, specifically during its replication and
egress phases. It looks at how oxidative stress affects genetic regulation in the bacteria
and how those genes affect these lifecycle traits. However, there is still much work to
be done in understanding the lifecycle of L. pneumophila, its interaction with the host
cell, how environmental stressors change this relationship, and what genes are involved.
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Furthermore, this study did not focus on the antibiotic resistance of L. pneumophila in
the environment or in humans. This will undoubtedly be a topic of high importance in
the future and would be helpful to incorporate in monitoring for the bacteria and future
risk analysis.

5. Future Directions

This review summarizes knowledge and data that can be used to build an intracellular
growth model for L. pneumophila in the biofilm. It is clear that replication within a host
cell is vital to incorporating infectivity and virulence while modeling the lifecycle of
L. pneumophila. The genes that regulate protein secretion and ultimately the phylogenic
characteristics of effective replication in and egress from the host cells are used to model the
lifecycle of the bacteria. The stochastic method was used in modeling this data as a result of
the uncertainty and variability of environmental stressors effects, as well as the lack of data
conducive to modeling. Stochastic methods allow for systems and data uncertainty and
variability to be accounted for and used in the model estimates. The modeling framework
for the intracellular growth part of the predictive model is represented in Figure 1. The
environmental quality and oxidative stress impact genetic knockdown which in turn affects
phylogenetic outcomes, resulting in replication rate degradation. The modeling framework
in Figure 1 allows for a mechanistic model of replication rates due to oxidative stress.
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