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Granzyme M has a critical role in providing innate
immune protection in ulcerative colitis

F Souza-Fonseca-Guimaraes*,1,2,3, Y Krasnova1,4, T Putoczki5, K Miles1, KP MacDonald6, L Town1, W Shi7, GC Gobe8, L McDade1,
LA Mielke3, H Tye5, SL Masters5, GT Belz3, ND Huntington3, G Radford-Smith9,10,11 and MJ Smyth*,1,4,11

Inflammatory bowel disease (IBD) is an immunoregulatory disorder, associated with a chronic and inappropriate mucosal immune
response to commensal bacteria, underlying disease states such as ulcerative colitis (UC) and Crohn’s disease (CD) in humans.
Granzyme M (GrzM) is a serine protease expressed by cytotoxic lymphocytes, in particular natural killer (NK) cells. Granzymes are
thought to be involved in triggering cell death in eukaryotic target cells; however, some evidence supports their role in
inflammation. The role of GrzM in the innate immune response to mucosal inflammation has never been examined. Here, we
discover that patients with UC, unlike patients with CD, display high levels of GrzM mRNA expression in the inflamed colon. By
taking advantage of well-established models of experimental UC, we revealed that GrzM-deficient mice have greater levels of
inflammatory indicators during dextran sulfate sodium (DSS)-induced IBD, including increased weight loss, greater colon length
reduction and more severe intestinal histopathology. The absence of GrzM expression also had effects on gut permeability, tissue
cytokine/chemokine dynamics, and neutrophil infiltration during disease. These findings demonstrate, for the first time, that GrzM
has a critical role during early stages of inflammation in UC, and that in its absence colonic inflammation is enhanced.
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Inflammatory bowel disease (IBD) is a gut-associated inflam-
matory disorder, which stems from a dysfunctional mucosal
immune response to commensal bacteria.1 As a multifactorial
disease, IBD is the consequence of a complex interplay
between environmental triggers, genetic susceptibility, and
immunoregulatory defects, resulting in a pathogenesis that is
still poorly understood.2 These interactions result in the
inability of an individual to control the normal inflammatory
response to pathogens in the gut, leading to a chronic state of
sustained and inappropriate inflammation. IBD underlies
disease states such as ulcerative colitis (UC) and Crohn’s
disease (CD), with symptoms including weight loss, abdom-
inal pain, diarrhea, and rectal bleeding which often require
intensive medical therapy and resective surgery.3 The
pathogenesis of IBD, characterized by a defective mucosal
immune response to microbial exposure in the gastrointestinal
tract, is thought to be caused by a dysfunctional immune
response to host microbiota, infection by specific pathogens,
and/or a defective mucosal barrier to luminal pathogens.1,2

IBD patients also have a high risk of developing colitis-
associated colon cancer (CAC).4 Additionally, histological

assessment of inflamed ileal and colonic segments from IBD
patients typically shows increased infiltration of immune cells,
particularly neutrophils, as well as crypt abscesses, mucin
depletion, and ulcers—all correlating with the severity of small
bowel and colonic tissue damage.5

Cytotoxic pathways mediated by lymphocytes directly
trigger cell death in target cells.6 These cytotoxic pathways
are mediated by proteins such as perforin, which mediates
pore formation in the target cell surface and allows granzyme
(Grz)s to enter the intracellular compartment and induce cell
death.7 To date, five different Grzs have been identified in
humans (GrzA, GrzB, GrzH, GrzK, and GrzM), whereas mice
express eleven Grzs (GrzA, GrzB, GrzC, GrzD, GrzE, GrzF,
GrzG, GrzK, GrzL, GrzM, and GrzN).8,9 Walch et al.10 recently
demonstrated that Grzs (GrzA and GrzB) directly kill bacteria
through granulysin-mediated delivery, suggesting that Grzs
act as microbial modulating factors. Moreover, recently GrzA
was shown to be increased in the colon biopsies of UC
patients undergoing treatment with Etrolizumab, a monoclonal
antibody targeting the β7 integrin subunit. Higher levels of
GrzA could predict which patients were more likely to benefit
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from the therapy; however, the precise mechanism of action of
GrzA in UC remains to be addressed.11 GrzM was initially
described as being constitutively expressed by natural killer
(NK) cells,12,13 and specifically associated with inflam-
mation.14 This enzyme has been shown to preferentially
cleave methionine and leucine residues in target cells,
mediating direct, non-specific cell death.15,16 More recently,
GrzM was also shown to be an important mediator for the
release of MIP-1α from NK cells, inducing NK cell and
neutrophil recruitment during early microbial infection.17 We
now observe that GrzM expression is increased in inflamed
colon tissue samples from UC, but not CD patients. Further,
GrzM-deficient (GrzM− /−) mice are more sensitive to a mouse
model of IBD and IBD-induced colorectal cancer (CRC).
These findings demonstrate, for the first time, that GrzM has a
critical role in mediating the early stages of the gut mucosal
immune response.

Results

GrzM expression is increased in the inflamed rectal
tissues from UC patients. mRNA analysis of mucosal
tissue biopsies from UC patients has been identified as a
potential tool to investigate gene expression at different time
points in this disease.11 To investigate whether GrzM may
either be present or highly expressed in the inflamed
intestinal segments of IBD patients, biopsies from inflamed
and non-inflamed regions of the cecum, transverse colon,
sigmoid colon, and rectum of UC patients; and from inflamed
and non-inflamed regions of the ileum of CD patients were
compared with tissue biopsies matched for intestinal seg-
ments from healthy controls. Biopsies were obtained at the
time of colonoscopy, processed for tissue mRNA extraction
and analyzed for GrzM mRNA (Table 1). Notably, GrzM
expression was elevated specifically in the inflamed tissues
of the rectal portions of UC patients, while no difference was
detected in CD patients.

GrzM is critical for colonic integrity during experimental
dextran sulfate sodium-induced colitis. Following on from
our finding that GrzM expression was elevated in the rectal
tissues of UC patients, we set out to investigate whether
GrzM expression was favorable or unfavorable in the UC
disease course. By taking advantage of the GrzM-deficient
mice previously described by our group,18 we performed a
screen with dextran sulfate sodium (DSS)-induced colitis
(Figure 1a), a mouse experimental model of human UC.19 We
observed that GrzM− /− mice were susceptible to weight loss
following a 5% DSS dose (Figure 1b). In concert, by using a
well-established histopathology characterization and scoring
system,20 we observed that the central-distal portion of the
colon of GrzM− /− mice post DSS treatment was dramatically
affected (Figures 1c and d). In agreement with the increased
gut pathology, enhanced neutrophil recruitment was detected
in the lamina propria region post DSS treatment (Figure 1e).
To investigate whether the enhanced colonic disease
phenotype seen in GrzM-deficient mice would also be
observed in other experimental models that are dependent
on gut integrity, we performed experiments using Toxoplasma

gondii21 and Citrobacter rodendium;22 however, we failed to
detect any difference between WT and GrzM− /− mice in
these conditions (data not shown).

GrzM expression inhibits excessive neutrophil infiltration
and promotes gut integrity. Neutrophils are critical for
bacterial leakage control and maintenance of homeostasis;
however, excessive recruitment and activation of these cells
may trigger mucosal injury and consequently worsen disease
symptoms.23 To verify whether GrzM deletion increased
the colonic infiltration by neutrophils at the steady state or
during DSS-induced colitis, homogenates of the intraepithe-
lial portion of the colon and lamina propria were assessed. In
concert, GrzM-deficient mice displayed increased neutrophil
infiltration, especially in lamina propria fractions after DSS
challenge (Figures 2a–c). As a consequence of excessive
neutrophil activation, gut integrity can be damaged during
IBD, and can allow luminal antigen and bacterial leakage into
the subepithelial tissues, resulting in enhanced inflam-
mation.24 To investigate whether gut integrity is affected in
the steady state or whether the damage is increased
following DSS treatment, we assessed intestinal permeability
using an FITC-dextran absorption assay.25 Gut integrity was
preserved in GrzM− /− mice during the steady state; however,
a dramatically elevated translocation of FITC-dextran from
gut to the circulation was detected when these mice were
challenged with DSS, suggesting that the presence of GrzM
is critical for gut integrity (Figure 2d). The gut integrity
dysfunction followed by induction of inflammation triggers
increased neutrophil chemotaxis and infiltration into the
inflamed tissue.
In addition, to investigate whether colonic lamina propria

or intraepithelial cells, specifically in the proximal or distal
fractions, were also infiltrated by lymphocyte subsets (pre-
viously described as potential expressers of GrzM26), we also
assessed the infiltration of CD8 T cells, γδ T cells, or Group 1
innate lymphoid cells (which incorporate NK cells and
ILC1s27) post DSS in WT mice. The gating strategy for the
quantification of these cell subsets from colonic tissue is
shown in Supplementary Figure 1. In agreement with the
increased neutrophil infiltration, all these lymphocyte subsets
were increased in numbers in the lamina propria in both distal
and proximal parts (Figure 2e). In the intraepithelial fraction,
predominant CD8 T cells and NK cells were increased in the
intraepithelial fractions in both distal and proximal parts, while
γδ T cells were in higher levels in the proximal part and ILC1s
increased in the distal part. Although all the potential GrzM-
expressing lymphocyte subsets were increased in the colonic
tissue post DSS challenge, the specific deficiency or depletion
of CD8 T cells, γδ T cells, or NK/ILC1 cells did not mimic the
GrzM-deficient mice phenotype (Supplementary Figure 2A–
D). Perforin (Prf1) is a molecule expressed by cytotoxic
lymphocytes that are used in killing by transiently inducing
pore formation target cells and allowing Grzs to be internalized
and induce cell death.28 Although perforin can act with Grzs to
induce cytotoxic events, the effects of GrzM in UC appeared to
be perforin independent, since the Prf1-deficient mice
displayed no enhancement of colitis post DSS challenge
(Supplementary Figure 2E). Colon length is a quantitative
measure of disease severity where the extent of inflammation
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directly correlates to increased edema, leading to an overall
shortening of the colon.29 In concert, elevation of pro-
inflammatory cytokines also correlates with increased disease
pathology in IBD.30 Although we observed enhanced colon
length shrinkage inGrzM- and TCRδ-deficient mice after DSS-
induced UC, in agreement with the weight loss data we only
observed elevation of G-CSF and TNF in the serum of GrzM-
deficient mice (Supplementary Figure 2F–H). Our results
indicate that the GrzM-mediated colonic protection involves a
mechanism that might require a complex participation of
multiple factors to promote protection in UC.

GrzM expression protects colonic epithelium from
inflammation-induced CRC. We next assessed whether
GrzM− /− mice would also be more susceptible to colon cancer
development. Colonic epithelial oncogenesis can either be
developed by sporadic progression due to genetic predisposi-
tion or following an inflammation-associated trigger.31 Azox-
ymethane (AOM) is a highly mutagenic chemical compound
that causes K-ras mutations. When used repeatedly via
intraperitoneal administration, it can trigger sporadic CRC,
and when used before DSS-induced inflammation it can trigger
inflammation-associated CRC.32 We failed to observe any
phenotype of sporadic CRC predisposition in GrzM− /− mice in
response to repetitive AOM treatment (data not shown).

However, when the inflammation-induced CRC model was
examined (Figure 3a), the GrzM− /− mice clearly displayed
susceptibility to the AOM-DSS-induced CRC demonstrated by
enhanced weight loss cycles (Figure 3b). As expected, GrzM-
deficient mice also displayed an increased number of
macroscopically visible colorectal polyps (Figures 3c and d).
Colon length was another indicator of increased inflammation,
since we observed a significant shortening of colon length in
GrzM-deficient mice compared with the wild-type (WT) control
mice at the same stages of inflammation (Figure 3e). This
suggests that the severity of inflammation during the AOM-
DSS model was enhanced in GrzM-deficient mice. This was
corroborated by the measurement of an enhanced histopathol-
ogy scoring of the middle parts of both mucosa and
submucosa sections in the colon of GrzM-deficient mice at
the end point of the experiment (Figure 3f). We also observed
that the effects of AOM-DSS in GrzM-deficient mice had a
systemic impact, since the mice displayed increased mesen-
teric lymph nodes and spleen sizes, as well as increased
leukocyte numbers in both compartments (data not shown).
Regarding the potential GrzM expression by colonic

epithelial cells, Wang et al.33 recently showed mouse GrzM
detection in mouse colon cancer cells using the anti-mouse
GrzM antibody clone aa31-257. In addition to this, another
anti-mouse GrzM antibody clone P-15 also recently became

Table 1 High levels of GrzM expression found exclusively in inflamed rectum portions of UC patients

95% CI

N Mean S.D. S.E. Lower bound Upper bound P-value P.adjust

Transverse colon in UC
C 22 6.47 0.40 0.09 6.29 6.65
UC.I 15 6.43 0.30 0.08 6.27 6.60 0.048 0.338
UC.NI 17 6.21 0.25 0.06 6.08 6.34
Total 54 6.38 0.35 0.05 6.28 6.47

Sigmoid in UC
C 22 6.32 0.29 0.06 6.19 6.45
UC.I 32 6.42 0.32 0.06 6.31 6.53 0.335 0.361
UC.NI 14 6.31 0.21 0.06 6.19 6.43
Total 68 6.36 0.29 0.03 6.29 6.43

Rectum in UC
C 22 6.29 0.18 0.04 6.21 6.37
UC.I 29 6.51 0.41 0.08 6.35 6.67 0.018* 0.028*
UC.NI 11 6.26 0.13 0.04 6.18 6.35
Total 62 6.39 0.32 0.04 6.31 6.47

Cecum in UC
C 22 6.38 0.29 0.06 6.25 6.50
UC.I 10 6.28 0.16 0.05 6.16 6.39 0.201 0.403
UC.NI 16 6.25 0.13 0.03 6.18 6.32
Total 48 6.31 0.23 0.03 6.25 6.38

Ileum in CD (non-inflamed)
C 21 6.609 0.424 0.093 6.416 6.802
CD.NI 21 6.572 0.386 0.084 6.396 6.747 0.766 0.825
Total 42 6.590 0.401 0.062 6.465 6.715

Ileum in CD (inflamed)
C 21 6.609 0.424 0.093 6.416 6.802
CD.I 25 6.429 0.390 0.078 6.268 6.590 0.140 0.656
Total 46 6.511 0.411 0.061 6.389 6.633

Samples from inflamed (I) or non-inflamed (NI) areas from different anatomical parts of the colons of ulcerative colitis (UC: transverse, sigmoid, rectum, and cecum) or
Crohn’s disease (CD: Ileum) patients were screened and analyzed for GrzM mRNA expression. Statistical analysis was performed using one-way ANOVA, where
*Po0.05 was considered for statistical significance.
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commercially available. To investigate whether these available
tools could help us decipher in which exact colon cellular
compartment GrzM is expressed, we initially assessed
whether the staining of both aa31-257 and P-15 antibody
clones was specific to mouse GrzM. We performed tissue

protein extraction from the colons of WT and GrzM-deficient
mice and subsequently performed western blot detection
according to the manufacturer’s instructions. However, we
found that both aa31-257 and P-15 clones were highly non-
specific, as there was staining in all the GrzM− /− samples

Figure 1 DSS-induced colitis reveals GrzM as a critical factor for disease protection. Mice were challenged with 5% DSS in the drinking water for 4 days, and samples were
assessed 7 or 14 days post first DSS treatment day, according to the experimental design proposed in (a). (b) DSS-induced weight loss was measured daily throughout the 14-day
experimental period. Statistical analysis was performed using Mann–Whitney test. Results are representative from pool of two experiments, and are expressed in mean±S.D.
n= 5 mice per experiment (n= 10 total), and *Po0.05 was considered for statistical significance. (c) Representative histological sections (HE stain) from the proximal (P) and
distal (D) colon parts from WTor GrzM-deficient mice at baseline, 7 days post 5% DSS (d7), and 14 days post 5% DSS (d14). (d) Histopathological scoring quantification from
colons post 5% DSS. Statistical analysis was performed using Mann–Whitney test. Results are expressed in mean± S.E.M. n= 6 mice per group, *Po0.05, ** (or ##) Po0.01,
and *** (or ### or λλλ) Po0.001. *Comparison between WT group, #comparison between GrzM-deficient group, and λcomparison between WTand GrzM-deficient groups. (e)
Ly6G immunohistochemistry illustrates the increased neutrophil (Ly6G+ revealed by DAB stain (brown die, indicated by brown arrows) in representative areas of the colonic
lamina propria of WT and GrzM-deficient mice post 7 days after DSS challenge
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Figure 2 DSS treatment induced higher neutrophil infiltration in colons of GrzM-deficient mice. (a) Representative dot blots from both colon lamina propria and intraepithelial
phase of WTand GrzM-deficient mice pre and post 7 days of (7d) 5% DSS treatment. Neutrophils were gated from leukocyte gate (CD45.2+) as Ly6C+Ly6G+. (b) Neutrophils were
compared within their respective % of CD45.2+ leukocytes from both lamina propria (LP) and intraepithelial (IEL) parts. (c) Bead-based absolute counting was utilized to quantify
neutrophils from both lamina propria and epithelium. Results are expressed in mean± S.E.M., and *Po0.05, **Po0.01, and ***Po0.001 were considered as statistically
significant by Mann–Whitney test. Results are representative from the pool of two independent experiments with n= 5 in each group (n= 10, total). (d) Gut integrity of naive WT
and GrzM-deficient animals, or post 7 days after DSS challenge, was assessed by measuring the in vivo gut permeability post oral gavage administration of FITC-dextran for 4 h
and then respective FITC detection in plasma. Results are expressed in mean±S.E.M., and **Po0.01 was considered as statistically significant by Mann–Whitney test. Results
are representative from the pool of two experiments with n= 3 in each group (n= 6, total). (e) CD8 T cell, γδ T cell, conventional NK (cNK), and ILC1 cell quantification from the
proximal-central (PC) and distal-central (DC) parts of IEL and LP colonic fractions, post 7 days after DSS challenge in WT mice. Results are expressed in mean± S.E.M., and
*Po0.05, **Po0.01, or ***Po0.001 was considered as statistically significant by Mann–Whitney test. Results are representative from n= 7 independent biological replicates for
each group
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(Supplementary Figure 3). Among immune cells, NK cells
have been described as the major expressers of GrzM, while
expression in other innate T cells (CD8, and γδ T) can occur at
a reduced level.26,34 To test whether any of these cells could
demonstrate an increased mean fluorescence intensity when
labeled with the aa31-257 antibody, intracellular staining and

flow-cytometry analysiswere performed. However, the aa31-257
staining was again revealed as highly non-specific since
all GrzM− /− cells stained positive (Supplementary Figure 4).
Given that the mouse anti-human GrzM mAb does not cross-
react with mouse GrzM,35 these results suggest that there are
still no available tools to adequately detect mouse GrzM.

Figure 3 Enhanced inflammation-induced CRC is observed in GrzM-deficient mice. Mice were challenged with AOM/DSS, and samples were assessed according to the
experimental design proposed in (a). (b) DSS-induced weight loss was measured twice/week throughout the experimental period of 77 days. Statistical analysis was performed
using multiple T tests using the Sidak–Bonferroni method. Results are expressed in mean±S.D. n= 15 mice per group, and *Po0.05 was considered for statistical significance.
(c) Macroscopical representative images are displayed for one representative WTand one GrzM-deficient mice at the end of the experiment. A cotton stick containing Alcian Blue
solution (1%) was used to swap along the opened colon tissue to enhance the CRC polyp visualization, indicated by the black arrows. (d) Colorectal (CRC) polyp numbers were
counted at the end point of the experiment. Statistical analysis was performed using Mann–Whitney test. Results are expressed in mean± S.E.M., n= 10 per group, and
**Po0.01 was considered for statistical significance. (e) Colon length at the end point of the experiment is represented in cm. Statistical analysis was performed using Mann–
Whitney test. Results are expressed in mean± S.E.M., n= 5–10 mice per group, and *Po0.05 was considered for statistical significance. (f) Colon histopathology at the end
point of the experiment is represented in pathological score from the mucosa and submucosa tissue sections. Statistical analysis was performed using Mann–Whitney test.
Results are expressed in mean± S.E.M., n= 5 mice per group, and *Po0.05 was considered for statistical significance
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GrzM deficiency results in a distinct cytokine/chemokine
profile in the colon during experimental colitis. Several
cytokines and chemokines are involved in the ‘physiological
inflammation’ of the normal intestine, and may also have
important roles in the pathogenesis of IBD orchestrated by
the dynamics of the inflammatory response.30 We performed
a kinetic analysis to determine which cytokines/chemokines,
from a total of 23 targets, would be affected during
DSS-induced colitis progression in the distal colonic segment
of GrzM-deficient mice (Experimental summary in Table 2).
Strikingly, G-CSF, IL-1α, IL-1β, IL-17A, MIP1α, MIP1β,
RANTES, and TNFα levels were elevated in GrzM-deficient
mice during disease progression, especially at the end point
of the experiment (after 7 days of DSS treatment)
(Supplementary Figure 5). In contrast, IFN-γ, IP-10, and
IL-23 were decreased in GrzM-deficient mice during the
colitis progression. (Supplementary Figure 6). We failed to
detect any GM-CSF, IL-2, and IL-13 cytokines in the colon
homogenates (data not shown), while KC, MCP-1, IL-6,
IL-10, IL-12p70, IL-21, IL-22, IL-28A/B, and TGF-β1 levels
were unaffected (data not shown). Our results indicate that
the presence of GrzM is critical for the appropriate cytokine/
chemokine response during DSS-induced colitis.

Discussion

Our current study demonstrates a relationship between GrzM
and gut mucosal protection in UC. Grzs are serine proteases
produced by cytotoxic lymphocytes that are well known for
their potential to induce cell death in target eukaryotic cells.
However, previous evidence has shown that GrzM may
also participate in inflammatory processes, such as MIP-1α
regulation during Listeria monocytogenes infection, and the
regulation of secretion of pro-inflammatory cytokines during
endotoxic shock.14,17 Here, we have shown that GrzM also
has a role during the disease progression of UC. Following up
on our clinical evidence that GrzM expression is elevated
exclusively in the inflamed rectum (distal part of the colon) of
UC patients, we have taken advantage of the GrzM-deficient
mice to demonstrate in a series of in vivo experiments that host
GrzM expression significantly affects the regulation of colonic
inflammation. To initially address whether host GrzM would
provide a protective advantage or a disadvantage during
experimental colitis, we elected the DSS-induced colitis model
as a UC experimental model as it has a number of similarities
with human UC.19 We observed that host GrzM was critical for
the protection against colitis, and that its absence results
in a significant worsening of colitis in mice following DSS
treatment. Surprisingly, the most affected colonic areas in the
GrzM-deficient mice were the distal-central segments, which
correspond to the distal colon and rectum in UC patients,
where we observed elevated GrzM expression during active
colitis. These results strongly suggest that GrzM can act
directly to induce colonic protection during UC in this specific
anatomical region of the gut.
Certain host mutations were described as enhancers of gut

permeability, resulting in a dysfunctional immune response to
host microbiota, infection by specific pathogens, and/or a
defective mucosal barrier to luminal pathogens.1 To assess
whether GrzM-deficient mice naturally display gut permeability

at steady state, or whether it is enhanced during DSS
challenge, we performed a gut integrity assay based on
FITC-dextran leakage from the gut to the blood compartment.
We have identified that gut integrity was not compromised at
steady state, but worsened during DSS treatment. Our results
also reinforced the finding that enhanced colon damage in
GrzM-deficient mice seemed to be limited to the experimental
model used, as no such phenotype was observed in other gut-
related infection/pathology models including Toxoplasma
gondii and Citrobacter rodentium infections. During inflamma-
tory tissue damage occurring in UC, inflamed tissues typically
represent trans-epithelial migration of neutrophils, which can
alter the gut barrier function by enhancing the epithelial
paracellular permeability during disease progression.36 Along
with the enhanced pathology and increased gut permeability
seen during DSS treatment, as expected, we also observed an
enhanced neutrophil infiltration in the colonic lamina propria in
GrzM-deficient mice.
IBD-induced CRC is a subsequent clinical complication that

can account for up to 15% of all deaths among IBD patients,
and IBD patients are at least six times more likely to develop
CRC. To explore whether host GrzM is involved in protection
against CRC development, we assessed well-established

Table 2 Temporal cytokine/chemokine profiles in distal colon of GrzM-deficient
mice during experimental DSS-induced UC

D0 D1 D3 D5 D7

GM-CSF nd nd nd nd nd
G-CSF nd nd nd ns ↑↑↑
IFN-γ ns ↓↓↓ ns ns ns
IL-1α nd nd nd ns ↑↑↑
IL-1β nd nd nd ns ↑↑↑
IL-2 nd nd nd nd nd
IL-6 nd nd ns ns ns
IL-10 nd nd nd nd ns
IL-12p70 ns ns ns ns ns
IL-13 nd nd nd nd nd
IL-17A nd nd nd ↑ nd
IL-21 ns ns ns ns ns
IL-22 ns ns ns ns ns
IL-23 ns ns ↓↓ ns ns
IL-28A/B ns ns ns ns ns
IP-10 ns ↓ ns ns ns
KC nd nd nd ns ns
MCP-1 nd nd nd nd ns
MIP-1α nd nd nd nd ↑↑↑
MIP-1β nd nd nd ns ↑↑↑
RANTES ns ns ns ↑ ns
TGF-β1 ns ns ns ns ns
TNFα nd nd nd ↑ ns

Abbreviations: nd, not detected; ns, not significant. Distal part of colons of WTor
GrzM-deficient mice was harvested in different time points after 5% DSS
challenge (days 0, 1, 3, 5, and 7), homogenized in tissue protein extraction
buffer, and analyzed for the indicated cytokines/chemokines. Pool of two
independent experiments of n= 5 mice each (total n= 10). Statistical analysis
was performed using one-way ANOVA followed by Tukey’s post hoc test, where
*Po0.05 (↑ for significantly higher, or ↓ for significantly lower than WT),
**Po0.01 (↑↑ for significantly higher, or ↓↓ for significantly lower than WT), and
***Po0.001 (↑↑↑ for significantly higher, or ↓↓↓ for significantly lower than WT)
were considered for statistical significance.
• Pro-inflammatory neutrophil-related cytokines/chemokines analyzed: GM-CSF,
G-CSF, IL-17A, and KC.
• Chemokines analyzed: IP-10, MCP-1, MIP-1α, MIP-1β, and RANTES.
•Pro-inflammatory cytokines analyzed: IFN-γ, IL-1α, IL-1β, IL-2, IL-6, IL-12, IL-13,
IL-21, IL-23, IL-28A/B, and TNFα.
• Anti-inflammatory, tissue repair proteins: IL-10, IL-22, and TGF-β1.
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models that mimic both IBD-induced CRC in GrzM-deficient
mice and their respective WT controls.32 As expected, the
absence of GrzM expression resulted in an enhanced
AOM–DSS-induced CRC, which is exclusively dependent on
enhanced colonic inflammation. Another study recently
showed that GrzM expression in epithelial cells contributes
to chemoresistance and epithelial–mesenchymal transition
(EMT) during colon carcinogenesis, demonstrating that GrzM
expression increases in colon cancer tissues and cell lines
upon enhanced EMT phenotype.33 We could not assess EMT
in our model, but when we tested the anti-mouse GrzM
antibodies used in the study by Wang et al.,33 these reagents
were highly non-specific as determined by negative control
GrzM-deficient samples. Precise cellular GrzM expression
assays remain controversial and limited, as there is still no
efficient/specific method to detect GrzM in mice, and GrzM-
reporter mice are still not available. A technique of tagging
GrzM with a fluorescent label and then using live-cell imaging
may demonstrate whether GrzM is secreted from NK cells
or whether it has intracellular functions instead; however,
a limiting factor is that recombinant GrzM is not commercially
available.
Several cytokines and chemokines have an important role in

the pathogenesis of IBD, and modulation of specific cytokines
is a current clinical therapeutic strategy (e.g., neutralizing
antibodies to TNFα).30 Considering that different colonic
segments can display different colitis intensities according to
our previous data, we homogenized in tissue protein extrac-
tion buffers and screened 23 cytokines/chemokines from the
distal colon segments at different time points following DSS
treatment. Certain pro-cytokines and chemokines were
elevated at later time points following DSS treatment in the
mice: G-CSF, IL-1α, IL-1β, IL-6, IL-17A, MIP-1α, MIP-1β,
RANTES, and TNFα. IL-1 cytokines and TNFα are classically
produced by macrophages or dendritic cells (DCs) via TLR
sensing of the commensal microbiota.37 TNFα neutralization,
but not IL-1 neutralization, was already shown to be effective in
DSS-induced colitis by favoring mucosal healing.38 In addi-
tion, IL-1 and TNFα were also demonstrated to be associated
with colorectal tumorigenesis by contributing to tissue
inflammation-induced oncogenesis.39,40 This evidence corro-
borates our findings of enhanced colitis and inflammation-
induced tumorigenesis outcomes in GrzM-deficient mice
subjected to DSS challenge. Chemokines are also critical
factors in regulating immune cell trafficking to inflammatory
sites. MIP-1α, MIP-1β, and RANTES are chemokines that
have already previously been shown to contribute to the
exacerbation of IBD in experimental mouse models via
overzealous neutrophil attraction and infiltration of the colonic
tissues.41–44 In addition, G-CSF and IL-17A are important
cytokines that activate neutrophil innate functions to
control bacterial infection, but in excess, they have already
been described as contributing to exaggerated neutrophil
activation and consequent tissue damage during DSS-
induced colitis.45,46 This evidence can provide an explanation
for our observations of enhanced neutrophil infiltration of the
colonic tissues of GrzM-deficient mice after DSS treatment,
and the associated tissue damage and enhanced disease
outcome. IFN-γ and IFN-γ-induced protein (IP-10) were also
observed in lower concentrations in the GrzM-deficient

epithelium during d1 of colitis. The functions of IFN-γ and
IP-10 are to promote Th1 differentiation and to attract these
cells to the inflammation site, respectively.47,48 Th1-related
cells and cytokines were previously shown to represent a
favorable prognostic sign in human CRC initiation.49 The
decreased IFN-γ and IP-10 levels in distal colon homogenates
might also suggest that the anticancer Th1 response may be
reduced in GrzM-deficient mice. Further research is neces-
sary to elucidate the specific stage of the disease progression
in which GrzM has a role, and to demonstrate that this
enzyme might offer complementary benefits for treating or
preventing UC.

Materials and Methods
Clinical samples, RNA isolation, and sequencing. Patients with a
confirmed diagnosis of either UC or CD undergoing colonoscopy for surveillance or
assessment of their disease, and healthy controls undergoing screening
colonoscopy because of a family history of CRC, were recruited into an established,
ethically-approved study investigating the natural history and pathogenesis of IBD.

Mice. C57BL/6J WT mice were purchased from the Walter and Eliza Hall Institute
of Medical Research and housed at the QIMR Berghofer Medical Research
Institute. C57BL/6 GrzM-deficient mice were previously described by our group,18

and were bred at the QIMR Berghofer Medical Research Institute. C57BL/6 perforin
(Prf1)-deficient50 and TCRδ-deficient mice51 were bred at the QIMR Berghofer
Medical Research Institute. Conditional transgenic NK cell-deficient mice
(NKp46cre ×Mcl-1fl/fl) were previously described by our group,52 and were bred
at the Walter and Eliza Hall Institute of Medical Research. In certain experiments,
anti-CD8 (clone 53.5.8), or respectively control IgG (control group), was
administered in a 100 μg i.p. dose at day − 1, day 0, and day 7 relatively to
DSS administration to induce CD8 T-cell depletion.53 All mice used were females
between the ages of 8 and 14 weeks. All experiments were approved by QIMR
Berghofer Medical Research Institute and Walter and Eliza Hall Institute of Medical
Research animal ethics committees.

In vivo DSS-induced IBD. To induce colitis, WT and other indicated
genotypes/antibody-depletion group were treated with either 0 or 5% DSS
(molecular mass 40–50 kDa; USB, Affymetrix Inc, Ohio, USA), dissolved in their
sterile drinking water and provided ad libitum over a 4-day period to simulate the
inflammatory conditions experienced during IBD, according to a previously
described protocol.29 A baseline weight was recorded for each mouse before
treatment and weight was then monitored daily for the subsequent 2-week period.
After 4 days, the DSS treatment was replaced with normal autoclaved water to allow
for inflammation progression and resolution. On days 7 (acute inflammation) and 14
(tissue recovery period) post DSS treatment, mice were killed via CO2 asphyxiation,
and biopsies were taken to investigate the inflammatory conditions.

In vivo AOM-DSS-induced CRC. AOM/DSS-induced CRC was performed
as previously described.32 Briefly, WT and GrzM-deficient mice were individually
tagged, had their body weights measured, and were injected i.p. with 10 mg/kg of
AOM (Sigma-Aldrich, St. Louis, MO, USA) diluted in PBS. After 7 days post AOM
treatment, 2.5% DSS was administered in their drinking water to simulate the
chronic inflammatory conditions experienced prior the development of CRC polyps.
After 7 days, the DSS treatment was replaced by normal autoclaved water to allow
for inflammation progression and resolution during the following 2 weeks. Another
two cycles of 2.5% DSS treatment for 7 days and normal drinking water for 14 days
were performed. During the treatment period, weight was monitored twice a week.
After 77 days post AOM injection (tissue recovery period), mice were killed via CO2

asphyxiation, and biopsies were taken to investigate the inflammatory conditions.

Histology and histopathology assessment. Colonic tissues from
unchallenged, DSS, or AOM-DSS treated mice were rolled into Swiss rolls and
fixed in PBS–Formalin 10% for 48 h and then submitted for paraffin processing and
HE or GRAM staining performed routinely by the QIMR Berghofer Medical Institute’s
Histology Facility. Slides were then scanned using an Aperio XT slide scanner using
× 40 scan magnification. Histopathology in colon samples from DSS-induced UC
experiments was assessed as previously described,20 using the following
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parameters for histopathological scoring: Crypt integrity: 0= normal; 1= irregular
crypts, including the presence of apoptosis; 2=mild crypt loss, and/or mild
epithelial loss from surface of bowel; 3= severe crypt loss; 4= complete crypt loss
with an intact epithelial cell layer; 5= complete loss of crypts and surface epithelium
(ocrypt width); and 6= complete loss of crypts and surface epithelium (4crypt
width). Infiltration of muscle: 0= normal; 1=mild; 2=moderate; and 3= severe.
Infiltration of inflammatory cells into mucosa: 0= normal; 1=mild; 2=moderate; and
3= severe. Infiltration of inflammatory cells into submucosa: 0= normal; 1=mild;
2=moderate; and 3= severe. Scores were added, resulting in a total scoring range
of 1–17. Histopathology in colon samples from AOM-DSS-induced CRC experiments
was assessed as previously described by our group,54 using the following parameters
for histopathological scoring: Epithelial integrity: 0= normal; 1= hyper proliferation;
2=o50% crypt loss; 3=450% crypt loss; 4= complete crypt loss; and 5= ulcer.
Presence of inflammatory cells: 0= none; 1=mild; 2=moderate; and 3= severe.
Scores were added, resulting in a total scoring range of 0–8.

Sample preparation for flow-cytometry analysis. Mesenteric lymph
nodes and spleens were homogenized in PBS into 40 μm cell strainers, followed by
red blood cell (RBC) lysis. Colonic lamina propria and intraepithelial leukocytes
(IELs) were prepared as previously described.22 Fresh colons were harvested from
CO2 killed mice, cleaned by flushing 10 ml of cold PBS using a gavage syringe
needle, cut into ~ 0.5 cm sections and dissociated in 2% FCS HANKS Ca+ Mg+-free
media with 5 mM EDTA for 30 min at 37 °C with gentle rotation to obtain the IEL
fraction (supernatant). The subsequent tissues were then digested for 45 min in 2%
FCS RPMI 2 mg/ml Collagenase III (Worthington Biochemical, Lakewood, NJ,
USA), 0.4 U Dispase (Invitrogen, Thermo Fisher Scientific, Grand Island, NY, USA),
and DNAse 1 μg/ml (Roche Diagnostics USA, Indianapolis, IN, USA) for isolation of
lamina propria leukocytes. Cells from both IEL and lamina propria fractions were
further purified by centrifugation on 40%/80% Percoll gradient for 20 min at 900 × g
without breaks. Cells harvested from single-cell suspensions from various organs
were incubated for 15 min in Fc blocking buffer (2.4G2 antibody). Cells were then
stained with the following antibodies: anti-mouse -B220 (RA3-6B2), -CD3 (17A2),
-CD4 (GK1.5), -CD8 (53-6.7) -CD19 (1D3), -Foxp3 (FJK-16S) -γδTCR (GL3), -Ly6C
(HK1.4), -Ly6G (1A8), -NKp46 (29A1.4), -NK1.1 (PK136), and -TCRβ (H57-597). All
mAbs were purchased from eBiosciences (San Diego, CA, USA), BD Biosciences
(San Jose, CA, USA), or Biolegend (San Diego, CA, USA). Zombie Yellow, or
Zombie UV, Fixable Viability Kit (Biolegend) was used to assess viability. Acquisition
was performed using LSR II Fortessa Flow Cytometer (BD Biosciences). Analysis
was achieved using Flowjo (Tree Star, Ashland, OR, USA) software.

Colon homogenates and cytokine detection. Fresh colons biopsies
from unchallenged (d0) or 5% DSS-treated mice (d1, d3, d5, and d7) were flushed
with 10 ml of cold PBS using a gavage syringe needle for stool content cleaning.
Colons were then gently dried with absorbent tissue, length was measured with
support of a ruler to allow the separation of distal colon parts, which were then
weighed and homogenized as previously described55 using T-PER Tissue Protein
Extraction Reagent (Thermo Fisher Scientific Life Sciences, Waltham, MA, USA;
supplemented with PhosSTOP Phosphatase and complete Mini protease inhibitor
tablets (Roche)), according to the manufacturer’s instructions. All samples were
stored at − 80 °C until analysis. After filtering samples in 40 μm filters, and
centrifugation at 10 000 × g to pellet debris, the concentrations of a panel of
cytokines and chemokines in supernatants were measured as previously
described.56 The detection methods applied were either by using Cytometric Bead
Array (CBA) technology (BD Biosciences) according to the manufacturer’s
instructions (for GM-CSF, G-CSF, IL-1α, IL-1β, IL-2, IL-6, IL-10, IL-13, IL-17A,
KC, MCP-1, MIP-1α, MIP-1β, RANTES, TNFα) or by using ELISA Duoset Kits
(R&D Systems, Minneapolis, MN, USA) according to the manufacturer’s instructions
(for IFN-γ, IL-12p70, IL-21, IL-22, IL-23, IL-28A/B, TGF-β1). In all cases, cytokine
levels were normalized to the weight of the respective colon explant.

Gut integrity assay. Gut integrity was assessed before or after 4 days of
treatment with 5% DSS as previously described.25 Naive or DSS-treated mice
(d7 post DSS) were kept without food or water for 4 h, and treated by oral gavage
with 300 μl of FITC-dextran molecular weight 4000 (Sigma-Aldrich) at 60 mg/ml.
Plasma was obtained after 4 h of FITC-dextran treatment, diluted 1 : 1 with PBS
and fluorescence was read in a plate reader (485/535 nm) using a standard curve.

Statistical analysis. Statistical analysis was achieved using Graph Pad Prism
(La Jolla, CA, USA) or SPSS Software (Chicago, IL, USA). Data were considered to

be statistically significant where the P-value was equal to or less than 0.05.
Statistical tests used were the Mann–Whitney test or one-way ANOVA with Tukey’s
post hoc test for treatments/genotypes comparison, multiple T tests using the
Sidak–Bonferroni method for weight loss comparison, and the Mantel–Cox Log
Rank test for survival.
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