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 The gas of magnetic monopoles in spin ice is governed by one key parameter: the monopole 

chemical potential. A signifi cant variation of this parameter could access hitherto undiscovered 

magnetic phenomena arising from monopole correlations, as observed in the analogous 

electrical Coulomb gas, like monopole dimerization, critical phase separation, or charge 

ordering. However, all known spin ices have values of chemical potential imposed by their 

structure and chemistry that place them deeply within the weakly correlated regime, where 

none of these interesting phenomena occur. Here we use high-pressure synthesis to create 

a new monopole host, Dy 2 Ge 2 O 7 , with a radically altered chemical potential that stabilizes 

a large fraction of monopole dimers. The system is found to be ideally described by the 

classic Debye – Huckel – Bjerrum theory of charge correlations. We thus show how to tune the 

monopole chemical potential in spin ice and how to access the diverse collective properties of 

magnetic monopoles.         
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 I
n the past two decades, remarkable technical advances have 
been made in pressure cell technology allowing researchers to 
carry out high-pressure investigations in the fi elds of chemistry, 

biochemistry, earth and planetary sciences and condensed matter 
physics. High pressure is used both in the laboratory and on an 
industrial scale to produce, for example, artifi cial diamonds, new 
superconductors and new forms of matter 1,2 . Pressure is also used 
to drive materials into new electronic states. Under high pressure, 
some materials become superconductors, others undergo magnetic 
phase transitions, and others undergo metal – insulator phase transi-
tions 3,4 . In magnetic pyrochlore oxides, pressure has been shown to 
freeze the spin-liquid ground state of Tb 2 Ti 2 O 7  (ref.   5). Pressure is 
therefore an important weapon in a researcher ’ s arsenal for explor-
ing phase space. 

 Th e canonical spin ices, Ho 2 Ti 2 O 7  and Dy 2 Ti 2 O 7 , with magnetic 
Ho or Dy ions 6 – 9 , are part of the pyrochlore family of oxides of 
general formula A 2 B 2 O 7  (ref.   10). Th ey have face-centred cubic (fcc) 
lattice constants of  a  fcc  ≈ 10.1    Å . Th ese materials are not very com-
pressible, and studies with high physical pressure have not revealed 
any signifi cant modifi cation of the spin ice properties 11 . Signifi cantly 
reduced lattice constants can be obtained in principle by replacing 
Ti 4    +      with a smaller B ion, such as Ge 4    +     , but it is found that at ambi-
ent pressure the pyrochlore structure is only stable, if the ratio of 
the ionic radii,   ρ      =     r   A   /  r   B  , is less than 1.55 (ref.   10). Dy 2 Ge 2 O 7  and 
Ho 2 Ge 2 O 7 , with   ρ    ≈  1.8, adopt a tetragonal structure, when synthe-
sized under ambient pressure 12 . Th e range of stability of the cubic 
pyrochlore form can be increased using a high pressure, high tem-
perature synthesis, which extends the regime of stability beyond 
  ρ    ≈  1.8 (ref.   13). Th e cubic pyrochlore form of Dy 2 Ge 2 O 7  prepared in 
this way has a lattice constant of 9.9290    Å , equivalent to a canonical 
spin ice under enormous physical pressure 11 . 

 Th e microscopic  ‘ dipolar spin ice ’  Hamiltonian of Ho 2 Ti 2 O 7  and 
Dy 2 Ti 2 O 7  includes complex dipolar and superexchange interac-
tions 14,15 . However, to a good approximation, it may be represented 
by a much simpler spin Hamiltonian that is equivalent to the original 
spin ice model 6,7 . In this description 9,14 , there are three parameters: 
the lattice constant  a  fcc , the rare earth magnetic moment   μ  , and an 
eff ective near-neighbour exchange parameter  J  eff  . Th e equilibrium 
statistical mechanics then maps onto the statistical mechanics of 
idealized water ice, such that the low-temperature magnetic state is 
equivalent to the proton disordered state of water ice H 2 O (refs   6,7), 
and shares with it the Pauling confi gurational entropy 8 . Th e spin ice 
state is thus equivalent to pure H 2 O, and its excitations are equiva-
lent to the ionic defects H 3 O     +      and OH  −   (refs   6,7,16,17). Th e success 
of this  ‘ near-neighbour spin ice ’  description may be attributed to 
the almost perfect self-screening of the dipole – dipole interaction 
between rare earth moments in the eff ective ground state 14 . 

 Although dipole – dipole interactions may be ignored in the 
spin ice ground state, in ref.   17 it was shown that inclusion of the 
dipole – dipole interaction in the excited states causes the  ‘ ionic 
defects ’  of spin ice to behave as magnetic charges that interact via 
the magnetic Coulomb law. Th e description of these defects as mag-
netic monopoles was fi rmly established in ref.   16 by approximat-
ing the microscopic spin Hamiltonian Ho 2 Ti 2 O 7  and Dy 2 Ti 2 O 7  to a 
 ‘ dumbbell model ’ , where fi nite dipoles replace spins. Th e dumbbell 
model approximately restores dipolar corrections that are integrated 
out in the near-neighbour description, but still retain three param-
eters 16 . Th ese are the monopole  ‘ contact distance ’ ,  a a= 3 4fcc /    (the 
lattice constant of the diamond lattice inhabited by the monopo-
les), the elementary monopole charge  Q     =    2  μ   /  a  (refs   16,17) and the 
monopole  ‘ self-energy ’    ν  , that replaces  J  eff   (ref.   16). In ref.   18, the self 
energy   ν   was equated with a monopole chemical potential in the 
grand canonical ensemble. 

 Th e monopole system is a magnetic Coulomb gas of decon-
fi ned monopoles and antimonopoles with overall charge neutrality, 
which closely approximates a magnetic electrolyte ( ‘ magnetolyte ’ ) 

in the grand canonical ensemble 18 – 24 . Accordingly, experiments on 
the canonical spin ices reveal strong evidence of the standard fi eld 
response of such a system, the Wien eff ect 19,23,24 , as well as of the 
applicability of Debye-H ü ckel theory in zero applied fi eld 21 . In the 
magnetolyte description of spin ice, the scale of length may be set 
by the contact distance  a  and the scale of energy may be set by the 
Coulomb energy at contact,   μ   0  Q  2  / 4  π a . Diff erent spin ices — that is, 
diff erent triplets {Q,  a ,   ν  } — should have identical monopole interac-
tion potentials if energies and lengths are scaled by the above charac-
teristic quantities — so called  ‘ corresponding states ’  behaviour. Th us, 
the zero-fi eld magnetolyte properties should be fully controlled by 
the dimensionless temperature  T  * (    =    4  π k   B  T a  /   μ   0  Q  2 ) and the dimen-
sionless monopole density per lattice site  x  ( ∝  ca  3 , where  c  is the con-
centration). Th ese two parameters,  T  *  and  x , map out a phase space 
which, as mentioned above, is expected to be surprisingly rich. 

 Th e  x     −     T  *  phase behaviour of spin ice has not been determined 
in detail, but by analogy with electrolyte models 25 – 27 , we would 
expect a gradual transition from a weakly correlated magnetolyte 
at relatively large  T  *  /  x  to a strongly correlated magnetolyte at small 
 T  *  /  x  ( Fig. 1 ). However, in a given spin ice,  T  *  and  x  cannot be inde-
pendently varied as  x  is a function of  T  *  and the chemical potential 
  ν   (Methods). Th us, any one spin ice material maps out a single tra-
jectory in the space of  x  and  T  * , and existing spin ices are found to 
be fi rmly in the weakly correlated regime ( Fig. 1 ). In this regime, 
the fraction of bound monopole-antimonopole pairs is suffi  ciently 
small that it may be neglected for most purposes (the fi eld response 
being an exception: see ref.   23). Considering, for example, Dy 2 Ti 2 O 7 , 
the chemical potential,   ν  , is found to be     −    4.35   K (ref.   28), which 
consists (in magnitude) of half the energy required to create a (    +        −    ) 
contact pair,   ε   pair  /  k   B    ≈  5.7   K, plus half the energy required to unbind 
the pair,   μ   0  Q  2  / 4  π ak   B    ≈  3   K. As the dipole (    +        −    ) pair is much higher in 
energy than the individual (    +     or     −    ) charges, the pairing tendency is 
weak. In contrast, it can be seen that   ν    ≈  3   K is the chemical potential 
that puts monopole – antimonopole pairs or (hetero-)dimers at the 
same free energy as free monopoles, and thus marks the boundary 
between the weakly and strongly correlated regimes ( Fig. 1 ). 

 Th e only way to experimentally approach the strongly correlated 
regime in  Figure 1  is therefore to change the chemical potential   ν   by 
changing the energy of pair creation. Fortunately, the latter depends 
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          Figure 1    |         Creating strongly correlated magnetic monopoles in spin ice. 
A corresponding states diagram for spin ice in terms of reduced 

temperature  T  *  and monopole density,  x . A given spin ice material maps 

out a single trajectory but the canonical spin ices such as Dy 2 Ti 2 O 7 , 

Ho 2 Ti 2 O 7  lie in the weakly correlated regime (green), rather than in the 

strongly correlated regime (blue). By high-pressure synthesis, we have 

created a new spin ice Dy 2 Ge 2 O 7  that lies on the boundary of strong 

and weak correlation (red line), and hence has signifi cant monopole 

dimerization at all measured temperatures (we have also created Ho 2 Ge 2 O 7  

but this lies in the weakly correlated regime). The strongly correlated 

regime (lower right) has monopole correlations beyond simple pairing, 

potentially leading to a gas-liquid transition or charge ordering.  
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in large part on exchange constants that vary with distance 16 . Th us 
a change of lattice constant from 10.1 to 9.93    Å , as achieved by sub-
stituting Ti for Ge in Dy 2 Ti 2 O 7  ( Fig. 2 ), may be suffi  cient to radically 
alter the chemical potential. We have discovered that this is indeed 
the case, and that Dy 2 Ge 2 O 7 , which has a much smaller lattice con-
stant than any spin ice hitherto investigated, lies almost precisely 
on the boundary of the strongly and weakly correlated regimes in 
 Figure 1 . Th is means that it has signifi cant monopole dimerization 
at all measured temperatures. 

 It should be noted that the chemical potential and phase behav-
iour discussed here is not the same as those discussed in refs   16,22 in 
connection with a fi eld-induced phase transition 29 . Th us the authors 
of ref.   16 argue that the magnetic fi eld in that case favours ordering 
of positive and negative monopoles on diff erent sublattices, leading 
to the phase transition, and use the terminology  ‘ staggered chemi-
cal potential ’  to describe this. Experimental evidence in support of 
this scenario is presented in ref.   22. However, the chemical potential 
we refer to is very diff erent in that it tunes the number density of 
monopoles without favouring any local ordered arrangement, and 
is thus equivalent to the chemical potential of ions in an electrolyte 
(which is not true of the  ‘ staggered chemical potential ’  of ref.   16).  

 Results  
  Pauling entropy   .   Phase pure cubic Dy 2 Ge 2 O 7  and Ho 2 Ge 2 O 7  were 
prepared and characterized as described in the Methods. Here 
we describe our results in detail for the Dy compound only, and 
simply note that we have performed a similar characterization 
of the Ho compound, which proved to be less interesting in 
the present context, as it has a more typical chemical potential 
( Fig. 1 ). Th e magnetic entropy determined by integrating the specifi c 
heat divided by temperature ( c   m   /  T ) is shown in  Figure 2 , where the 
Pauling residual entropy expected for spin ice 8  is extremely well 
reproduced. Magnetometry measurements on Dy 2 Ge 2 O 7  showed 
this material to have a very similar magnetic moment to Dy 2 Ti 2 O 7 . 
Incurring negligible error, we henceforth assume that the magnetic 
moment per Dy is equal in the two materials (9.87   μ   B ) 15 .   

  Debye-H ü ckel theory   .   In  Figure 3,  we show the measured  c   m   /  T  
plotted against temperature and fi tted to Debye-H ü ckel theory with 
monopole chemical potential   ν      =    (3.35    ±    0.05)   K. Th e method we 

use has been developed to extend Debye-H ü ckel theory to a good 
approximation into the high-temperature regime; when applied to 
Dy 2 Ti 2 O 7  this method gives a similarly good fi t to  c   m  ( T ) /  T  with a 
chemical potential of the expected magnitude. It is based on map-
ping the system to a lattice gas with site exclusion. Th e lattice gas 
is considered to have a temperature-varying chemical potential 
equal to the sum of the true chemical potential as defi ned in ref. 
  28 and the standard Debye-H ü ckel Coulombic correction to the 
chemical potential 30 . Without the latter correction, the predicted 
specifi c heat (dotted line in  Fig. 3 ) describes the experimental data 
well in the limit of high and low temperature, highlighting that this 
approach is a robust method of deriving an experimental estimate 
of the monopole chemical potential that is not signifi cantly biased 
by the limitations of Debye-H ü ckel theory. In passing, we note that 
the origin of the approximate collapse of the experimental data and 
Debye-H ü ckel calculation onto the ideal lattice gas model at high 
temperature has a diff erent origin to that at low temperature. In the 
latter case, the monopole gas is suffi  ciently dilute that interactions 
can be neglected, whereas in the former case, a dense and interact-
ing monopole gas reproduces apparent ideal gas behaviour, as the 
result strong Coulombic screening. 

 As a further test for consistency, we may use our fi tted value of   ν   
to derive a value of the eff ective near-neighbour coupling constant, 
 J  eff  , according to the relationship discussed in ref.   16, and then com-
pare this with a  J  eff   estimated from the temperature of the specifi c 
heat maximum, as discussed in ref.   31. Th e result is  J  eff      =    (0.62    ±    0.1) 
K, (0.60    ±    0.1) K, respectively, estimates that are equal, within exper-
imental error. For Dy 2 Ti 2 O 7 , the corresponding value is  J  eff    ≈  1.1   K, 
which is roughly twice as large. Th e large diff erence is accounted 
for by a more negative (antiferromagnetic) exchange contribution 
to the spin – spin interaction in Dy 2 Ge 2 O 7  that opposes the positive 
(ferromagnetic) dipolar coupling, that is almost the same in the two 
compounds.   
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    Figure 2    |         Proof that Dy 2 Ge 2 O 7  (open) and Ho 2 Ge 2 O 7  (solid) have the 
characteristic Pauling zero point entropy of spin ice and water ice. The 

experimental molar entropy, found by integrating the magnetic specifi c 

heat  C   m   divided by temperature  T , when referenced to its high temperature 

value of 2 R ln(2) per diamond lattice site, reveals a zero temperature 

component of  R ln(3 / 2) equal to the Pauling value. The inset shows the 

Rietveld refi ned x-ray powder diffraction pattern of the cubic pyrochlore 

phase of Dy 2 Ge 2 O 7  with a lattice parameter of 9.9290(5)  Å . Errors in the 

data are smaller than the symbols and represent     ±    1  σ  .  
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      Figure 3    |         Measured heat capacity per mole of Dy 2 Ge 2 O 7  at zero fi eld 
compared with theoretical models. Main fi gure: the modifi ed Debye-

H ü ckel theory (Black line), with monopole chemical potential   ν      =    3.35(5) 

K the only adjustable parameter, gives an excellent description of the 

experimental magnetic heat capacity of Dy 2 Ge 2 O 7  (points). Dashed black 

line shows the heat capacity of an ideal lattice gas with onsite exclusion 

with the same chemical potential. This model describes the data well at 

low temperatures where Coulomb interactions may be neglected, and at 

high temperatures where the interactions are strongly screened. Inset: the 

effect of varying chemical potential from     −    3.35   K (appropriate to Dy 2 Ge 2 O 7  

(DGO)) to     −    4.35   K (appropriate to Dy 2 Ti 2 O 7  (DTO)).  
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  Bjerrum pairing   .   Th e measured chemical potential,     −    3.35   K, puts 
Dy 2 Ge 2 O 7  in a regime where monopole dimerization should be 
very signifi cant. To confi rm this, we have used the classic theory 
of Bjerrum 32 , who separated the contribution of closely spaced 
charges out of Debye-H ü ckel theory and regarded these as distinct 
chemical entities to be considered alongside the free charges. In 
 Figure 4,  we present the energy  u ( T ) of the system found by inte-
grating the specifi c heat. Th e result of Debye-H ü ckel    +    Bjerrum 
theory, as described in the Methods, is shown to give an excellent 
description of the low-temperature data, without the addition of any 
new fi tting parameters. Th is result is not in contradiction with the 
fi t of  Figure 3 , as the modifi ed Debye-H ü ckel theory described in 
the Methods, including the short-distance contribution of charge 
interactions, naturally incorporates the eff ect of Bjerrum pairs, to an 
excellent approximation. Th e monopoles of Dy 2 Ge 2 O 7  are found to 
be about 50 %  dimerized at all measured temperatures.    

 Discussion 
 We may put these results in the context of the corresponding states 
diagram (essentially the phase diagram of  T  *  versus  x ) for the 
restricted primitive model electrolyte, a basic model of electrolyte 
behaviour. In the case of a continuum electrolyte, there are three 
signifi cant boundaries on this diagram marking, respectively, the 
onset of signifi cant dimerization, the conductance minimum, and 
phase separation (see, for example,  Fig. 1  in ref.   25). In Dy 2 Ge 2 O 7,  
we have reached the fi rst of these boundaries for spin ice. To reach 
the other boundaries would require us to fi nd a spin ice material 
with |  ν  | � 3.3   K. However, a lattice Coulomb gas-like spin ice may 
show yet more complex phase behaviour in this limit, including 
charge-ordered phases 26,27 . In fact, the ultimate limit of tuning the 
monopole chemical potential to   ν   � 3   K has already been identi-
fi ed through numerical studies on the dipolar spin ice model 14 . 
In monopole language, this structure consists of the ordering of 

 ‘ double charges ’      ±    2 Q  to give a magnetic structure with  ‘ 4 spins 
in / 4 spins out ’  on alternate tetrahedra. Th is structure (also known 
as the FeF 3  structure) becomes stable at   ν      =    2.4   K,  J  eff      =    0.2   K. In the 
unchartered region between   ν    ≈  3.3   K and   ν    ≈  2.4   K, we would expect 
to fi nd a great deal of interesting physics associated with increas-
ing monopole correlations and the gradual appearance of double 
charges. Our results illustrate that this region should be accessible 
to experiment, as we have shown how high-pressure methods aff ord 
the opportunity of dramatically altering the chemical potential of 
magnetic monopoles in spin ice, to the degree where new aspects of 
monopole physics can be revealed.   

 Methods  
  Sample preparation and characterization   .   Batches of up to 50   mg of the pyro-
chlore dysprosium germanate, Dy 2 Ge 2 O 7 , were made in a Walker-type, multi-
anvil press. Stoichiometric amounts of Dy 2 O 3  and GeO 2  were ground thoroughly, 
wrapped in gold foil, compressed to 7   GPa and heated to 1,000    ° C. Rietveld 
refi nement of the X-ray powder diff raction pattern confi rmed the face-centred 
cubic space group, (Fd-3m, No. 227) and the absence of any tetragonal pyroger-
manate. Th e room temperature lattice parameter was determined to be 9.9290(5)    Å , 
( Fig. 2  (inset)). Temperature- and fi eld-dependent magnetization measurements 
confi rmed a rare earth magnetic moment of  ~ 10     μ   B  and a Curie – Weiss constant of 
0.0   K. Th e heat capacity was measured using a thermal relaxation method between 
0.34 and 25   K. Th e lattice contribution was subtracted from the measured specifi c 
heat to reveal the magnetic contribution. Th e energy  u ( T ) was found by numerical 
integration of the measured specifi c heat.   

  Heat capacity analysis   .   To calculate the specifi c heat, the energy per diamond lat-

tice site,  u , was written  u     =    |  ν  | x  , where  x  is the number of monopoles per lattice site: 

 x k T k TB B= − + − −exp( | |)/ [ exp( | |)/ ]n n n n
DH DH1 1

  . Here   ν   DH  is the standard 
Debye-H ü ckel correction to the chemical potential (related to the electrochemical 
activity coeffi  cient): | ν  DH | /  k   B   T     =     l   T   / ( l   D      +     a ), where  l   T      =      μ   0  Q  2  / (8  π k   B   T ), is the Bjerrum 

length,  l Q x k TVD B d= −[ /( )] /m0
2 1 2   is the Debye length, and  V   d   is the volume per 

diamond lattice site (for a detailed discussion of these quantities, see ref.   23). Using 
these equations  x  and  l   D   were determined self consistently, and then the specifi c 
heat was found by diff erentiating  u . 

 To incorporate charge dimers, we considered them as near-neighbour pairs, 
which is appropriate on a lattice 26 . Th eir chemical potential is   ν    d      =    2|  ν  | −    μ   0  Q  2  / (4  π a ), 
giving the number of pairs per diamond lattice site:  x   B   ≈ 2exp    −    |  ν    d  | / ( k   B   T ). Th e 
Debye-H ü ckel correction was modifi ed to avoid double counting these pairs as 
follows:   ν    DH   / ( k   B   T ) →  l   T   / ( l   D      +    2 a ). Th e energy was then calculated as:  u     =    |  ν    d  | x   B      +    |  ν  | x , 
which was compared with the measured  u ( T ). 

 Th ese methods have been comprehensively tested and shown to provide 
a robust analysis of specifi c heat data on spin ice materials. Th ey were used to 
estimate the curves in  Figures 1, 3 and 4 . In  Figure 1,  the chemical potentials 
used are: 3.35   K (DyGe), 4.35   K (DyTi), 5.5   K (HoGe) and 5.8   K (HoTi) in an 
obvious notation; for the Ho materials, these are only rough estimates, owing to 
the diffi  culty of accurately isolating the electronic specifi c heat from the nuclear 
component 9 .                           
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