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ABSTRACT: Layered double hydroxides (LDHs) are representa-
tive of a 2D anionic clay. Simple and homogeneous synthesis of
interlayer-anion-controlled LDH is essential for studies and
industrial production. In this study, we report the one-pot
synthesis of an LDH that is selective for interlayer anions, which
was labeled as “decarboxylation-urea method”. We obtained LDHs
intercalated with NO3

−, Cl−, and SO4
2− by removing CO2 in this

method. The ionic conductivities of the prepared LDHs were
investigated for their applicability to electrolytes, and it was found
that Zn−Al LDH intercalated with NO3

− showed the highest ionic
conductivity (18 mS cm−1). Therefore, the LDH intercalated with
NO3

− synthesized using the decarboxylation-urea method is
promising as an alkaline solid electrolyte.

■ INTRODUCTION
Layered double hydroxide (LDH) is a hydrotalcite-like
compound and expressed by the following formula: [ M1−x

2+

Mx
3+ (OH)2 ] [An

n
−

−x·yH2O ], where M2+ is a divalent metal
cation (Mg2+, Co2+, or Ni2+), M3+ is a trivalent metal cation
(Al3+, Ga3+, or Fe3+), and An− is an interlayer anion (CO3

2−,
NO3

−, or Cl−). Similar to the brucite structure of Mg(OH)2,
LDH is characterized by a metal hydroxide layer that is
positively charged when a fraction of divalent metal cations is
substituted by trivalent metal cations. Anions are intercalated
between hydroxide layers together with water molecules to
maintain electroneutrality.1−5

LDHs have several characteristics, such as being environ-
mentally friendly, having high biocompatibility, intercalation of
organic anions, and proton or hydroxide ion conduction.
Hence, LDHs have been widely studied for applications such
as water treatment, CO2 adsorbents, drug delivery systems, and
ion-exchange hosts, for which LDHs should selectively
intercalate and deintercalate desired anions.6−12 Since the
ionic conductivity of LDH depends on the interlayer anion
species, such a technique is also essential for applications in
charge transport carriers such as electrode components.13−19

Despite that, it is still difficult to intercalate the desired anion
into LDH because CO3

2−-intercalated LDHs are preferentially
obtained. In addition, it is also not easy to exchange CO3

2−

with other anion species under ambient conditions.2,20,21

For LDH synthesis, coprecipitation is a commonly used
procedure. The LDH is precipitated by adding an alkaline
solution to a mixture of divalent and trivalent metal salts

dissolved in water to adjust the pH of the solution.4,22−24 This
method intercalates anions into LDH by dissolving them in
solution. However, the size, shape, and homogeneity of the
crystals are difficult to control because an increase in local pH
leads to inhomogeneous crystallization. The urea method, also
known as homogeneous precipitation, is another well-known
method. In this method, urea dissolved in a metal salt solution
is hydrolyzed by heating the solution as follows

(NH ) CO H O 2NH CO2 2 2 3 2+ +

NH H O NH OH3 2 4+ ++

CO H O CO 2H2 2 3
2+ + +

The pH increases slightly, followed by the homogeneous
crystallization of LDH. However, a significant amount of time
is required to obtain homogeneous hexagonal particles of the
desired sizes because the crystals grow slowly. Additionally,
only CO3

2−, which stems from the hydrolysis of urea, is
intercalated into the LDH.25−29 These methods are often
combined with hydrothermal processes, wherein the metal salt
solution is heated in a Teflon-lined autoclave over 100 °C to
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improve crystallinity. However, the combined methods require
additional steps to afford a favorable LDH even in the
coprecipitation method. Therefore, the interlayer anions of the
LDH synthesized via urea hydrolysis are often exchanged using
an ion-exchange and reconstruction method. In the ion-
exchange method, the interlayer anions of the prepared LDH
are exchanged with thermodynamically more stable anions by
soaking them in a solution of selected anions.2 While in the
reconstruction method, LDH is calcined before the soaking
process to form a metal oxide, which can reproduce LDH by
rehydration. The anions in the solution are then intercalated
simultaneously. However, the morphology of the reproduced
LDH is transformed.21,30,31 Methods such as sol−gel, manual
grinding, ultrasound-assisted, and electrochemical precipitation
have also been reported.32−37 Although these methods are
attractive to obtain LDH at a low cost, they are less frequently
used because of their complicated experimental procedures.

Hence, we consider that the coprecipitation or urea method
is suitable for the industrial production of LDH. Therefore, we
developed the improved urea method, in which the CO2 gas
generated by the thermal decomposition of urea is discharged
by bubbling a solution with an inert gas. Interestingly, this
simple procedure provided us with a technique to directly
intercalate selected anions into the LDH without ion exchange.
In this study, we describe the preparation of LDH using the
urea method and evaluate the crystal structure, morphology,
and ionic conductivity of the obtained LDHs.

■ EXPERIMENTAL SECTION
Preparation of LDH. We prepared Zn−Al LDHs based on

the following procedure: Zn(NO3)2·6H2O, Al(NO3)3·9H2O,
and urea were dissolved in 100 mL of H2O ([Al3+] = 0.05 mol
L−1) with different feed molar ratios of Zn2+ and urea to Al3+.
This aqueous solution was heated in an oil bath under reflux at
120 °C and stirred at 850 rpm for 24 h under an ambient
condition or an Ar atmosphere. The resulting white
precipitates were filtered under suction (polytetrafluoro-
ethylene (PTFE) membrane, 0.1 mm pore size), washed
with distilled water, and then dried for 24 h at 75 °C in air. We
also prepared LDHs by changing the divalent metal salts to (i)
ZnCl2 and AlCl3·6H2O or (ii) ZnSO4·7H2O and Al2(SO4)3.
The detailed synthesis conditions are summarized in Table 1.

As a reference, we prepared Zn−Al LDHs using the urea
method combined with the hydrothermal process and only the
urea method. For the urea method combined with the
hydrothermal process, Zn(NO3)2· 6H2O, Al(NO3)3· 9H2O,
and urea were dissolved in 100 mL of H2O ([Al3+] = 0.05 mol
L−1) with a feed molar ratio of [Zn2+]/[Al3+]/[urea] = 2:1:9.
Subsequently, the solution was incubated in a stainless steel
autoclave at 120 °C for 24 h. The resulting white precipitate
was filtered under suction (PTFE membrane, 0.1 mm pore
size), washed with distilled water, and then dried for 24 h at 75
°C. The Zn−Al LDH synthesized using only the urea method
was prepared by dissolving Zn(NO3)2 · 6H2O, Al(NO3)3 ·
9H2O and urea in 100 mL of H2O ([Al3+] = 0.05 mol L−1)
with a feed molar ratio of [Zn2+]/[Al3+]/[urea] = 2:1:9 or
2:1:3. The aqueous solution was heated in an oil bath under
reflux at 120 °C and stirred at 850 rpm for 24 h in air. The
resulting white precipitate was filtered under suction (PTFE
membrane, 0.1 mm pore size), washed with distilled water, and
then dried for 24 h at 75 °C in air.
Characterization. The interlayer anions of the prepared

samples were identified by X-ray diffraction (XRD); the XRD
patterns were obtained by a Smart Lab 3K/PD/INP (Rigaku)
using CuKa radiation with a scan step of 10° (2θ) for a minute.
Each sample was labeled based on the synthesis method,
interlayer anions, and a feed molar ratio of Zn and urea to Al,
as shown in Table 1. Scanning electron microscopy (SEM,
JSM-IT100, JEOL) was used to observe the morphology of the
prepared LDHs. The metal cation ratio (Zn2+/Al3+) of the
synthesized LDHs was determined by using inductively
coupled plasma emission spectroscopy (ICP, ICPS-8100,
Shimadzu).
Impedance Measurement. The ionic conductivities of

the prepared LDHs were measured by using the electro-
chemical impedance method. The LDH powder was pressed at
30 MPa to form pellets with a thickness and diameter of 1.0
and 14 mm, respectively. The Au layers were sputtered on both
sides of the pellet for electron conduction, which was then
placed in an impedance analyzer (SP-200, BioLogic Science
Instruments). The amplitude and frequency range were set to
100 mV and 100 mHz to 7 MHz, respectively. Impedance
measurements were performed in a constant-temperature
chamber at 80% relative humidity to maintain the temperature
and water content.

Table 1. Preparation Conditions and Interlayer Anions of Layered Double Hydroxides (LDHs)
a feed molar ratio

samplea method interlayer anion Zn2+ Al3+ urea divalent metal salt atmosphere

H−CO3
2−(2:1:9) urea + hydrothermal CO3

2− 2 1 9 Zn(NO3)2·6H2O
U-CO3

2−(2:1:9) urea CO3
2− 2 1 9 Zn(NO3)2·6H2O Air

U-NO3
−(2:1:3) urea NO3

− 2 1 3 Zn(NO3)2·6H2O Air
D-NO3

−(2:1:9) decarboxylation-urea NO3
− 2 1 9 Zn(NO3)2·6H2O Ar

D-NO3
−(3:1:9) decarboxylation-urea NO3

− 3 1 9 Zn(NO3)2·6H2O Ar
D-NO3

−(4:1:9) decarboxylation-urea NO3
− 4 1 9 Zn(NO3)2·6H2O Ar

D-NO3
−(2:1:3) decarboxylation-urea NO3

− 2 1 3 Zn(NO3)2·6H2O Ar
D-NO3

−(2:1:6) decarboxylation-urea NO3
− 2 1 6 Zn(NO3)2·6H2O Ar

D-Cl−(2:1:9) decarboxylation-urea Cl− 2 1 9 ZnCl2 Ar
D-SO4

2−(2:1:9) decarboxylation-urea SO4
2− 2 1 9 ZnSO4·7H2O Ar

aThe samples were named on the basis of the synthesized method, interlayer anion, and feed molar ratio of the divalent metal salts. For example,
the Zn−Al LDH in the 1st row was synthesized by the urea method combined with the hydrothermal process together with CO3

2−-based metal
salts (ZnCO3 and Al2(CO3)3), where the feed molar ration of ZnCO3, Al2(CO3)3, and urea were 2:1:9. Therefore, we named this sample “H−
CO32-(2:1:9)”. Here, (i) the urea method combined with the hydrothermal process, (ii) urea method, and (iii) decarboxylation-urea method were
abbreviated as “H”, “U”, and “D”, respectively.
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■ RESULTS AND DISCUSSION
Characterization of the LDHs. First, we synthesized LDH

using a conventional hydrothermal synthesis and urea method.
The XRD patterns of H−CO3

2− (2:1:9) are shown by the
black line in Figure 1. H−CO3

2−(2:1:9) exhibited several

characteristic peaks originating from the layered structure of
LDH and small peaks originating from byproducts. According
to the reference and standard XRD patterns of JCPDS, such
side peaks are assigned to mainly ZnO2 and slightly Zn(OH)2

and/or ZnCO3.
38 The byproducts in the hydrothermal

synthesis of Zn−Al LDH were already discussed in previous
studies.39 In contrast, U-CO3

2−(2:1:9) and U-NO3
−(2:1:3)

exhibited only the characteristic peaks of LDH, which indicate
that the high-pressure condition of the hydrothermal process
leads to the generation of the byproducts. Note that some
weak peaks ascribed to the LDH were not observed due to
insufficient signal intensity. The (003) peaks of H−
CO3

2−(2:1:9) and U-CO3
2−(2:1:9) were located at 11.6 and

11.7°, respectively, corresponding to basal spacings of 0.767
and 0.756 nm. Conversely, the (003) peak of U-NO3

−(2:1:3)
was located at a lower angle (9.92°), corresponding to a basal
spacing of 0.890 nm. This different peak position suggests that
NO3

− was intercalated into the U-NO3
− instead of CO3

2−

considering the fact that the thermodynamic size of NO3
− is

slightly larger than CO3
2−5 Although CO3

2− from urea
hydrolysis is typically intercalated instead of NO3

− in the
urea method, our results suggest that the urea method possibly
controls the interlayer anions by decreasing the concentration
of urea. However, a decrease in the urea concentration is
unsuitable because of the deceleration of nucleation and crystal
growth. Hence, we considered the bubbling of the solution
with an inert gas during the synthesis to decrease the CO3

2−

generated from urea while maintaining a sufficient concen-
tration of urea. In this approach, the bubbling with inert gas
makes it possible to effectively degas such dissolved gas out.
Therefore, we can create a precursor-derived anion-rich
environment in the solution, followed by effectively intercalat-
ing such a target anion. Based on this, we synthesized LDHs by
urea hydrolysis with Ar bubbling. As shown in Figure S1
(Supporting Information), the relative XRD intensity of the
(003) peaks corresponding to the LDH layer intercalated with
CO3

2− and NO3
− increased with increasing the feed molar

ratio between urea and Al3+ under an air atmosphere (without
Ar bubbling), whereas a negligibly low intensity of the CO3

2−

peak was observed under an Ar atmosphere. Therefore, we

Figure 1. X-ray diffraction (XRD) patterns of layered double
hydroxides (LDHs) synthesized by each synthesis method and
standard XRD patterns of ZnO2 (JCPDS No. 00-013-0311), ZnCO3
(JCPDS No. 00-008-0449), and Zn(OH)2 (JCPDS No. 00-020-
1435). The vertical dotted lines guide the characteristic peaks for the
LDHs. The symbol “d(003)” in the figure means the vessel space.

Figure 2. Influence of the feed molar ratio of Zn2+ on the synthesis of LDHs using the decarboxylation-urea method. (a) XRD patterns, (b) the
metal cation ratio of LDH at different feed ratios of metal ions determined by inductively coupled plasma emission spectroscopy, and (c) scanning
electron microscopy (SEM) images.
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Figure 3. Influence of urea concentration on the synthesis of LDHs using the decarboxylation-urea method, (a) XRD patterns, and (b) SEM
images.

Figure 4. (a) XRD patterns, (b) schematic illustrations of the layered structure expected by XRD, and (c) SEM images of the LDHs synthesized in
the presence of different inorganic anions.
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obtained LDH intercalated with NO3
− despite the same

concentration of urea as that of U-CO3
2−(2:1:9) (Figure 1, the

lowest panel). This means that the Ar atmosphere is in a better
condition to remove CO3

2−, and we labeled this method
“decarboxylation-urea method”. The intercalation of other
anions into the LDH without ion exchange using this synthesis
method is discussed in subsequent sections.

Next, we synthesized LDH with different feed molar ratios
of Zn2+. As shown in Figure 2a, the XRD patterns exhibited
characteristic peaks of LDH at the same position for all of the
synthesized LDHs. In particular, we obtained LDH with
similar layered structures despite the fact that the cation ratio
(Zn2+/Al3+) determined by ICP was different (Figure 2b). A
similar cation ratio dependence has also been reported for the
coprecipitation method.23 The SEM images showed that the
morphology and diameter of the LDH particles were almost
identical, with a characteristic plate-like structure of less than 2
μm in all samples (Figure 2c). These results demonstrate that
the metal cation ratio barely affected the particle morphology
of the LDH.

In contrast, the structure of LDH depended on the urea
concentration. Figure 3a shows the XRD patterns of LDHs
synthesized with different feed molar ratios of urea. Although
the characteristic peaks of LDH were observed in all samples,
the particles of D-NO3

−(2:1:3) were aggregated, unlike those
of D-NO3

−(2:1:6) and D-NO3
−(2:1:9) (Figure 3b). Fur-

thermore, the size of the LDH particles decreases with a
decreasing urea content. This result can be explained by the
fact that the crystal growth rate decreases with a decrease in
urea. Hence, the concentration of urea plays an important role
in the formation of LDH particles in the decarboxylation-urea
method, similar to the conventional urea method.
Direct Intercalation of Different Anions. As mentioned

above, we demonstrated the possibility that the decarbox-
ylation-urea method intercalates any anions between the layers
of LDH instead of CO3

2−, possibly leading to anion-controlled
LDH. To focus on this availability, we synthesized LDHs by
dissolving inorganic anions (NO3

−, Cl−, and SO4
2−) in a

precursor solution (Figure 4a). Based on the peak position at
(003) in the XRD patterns, we determined the basal spacings
to be 0.755 nm (CO3

2−), 0.787 nm (Cl−), 0.883 nm (NO3
−),

and 0.886 nm (SO4
2−). The difference in the basal spacings

suggests that the target anion molecules were intercalated and
are in good agreement with previous studies.340 The brucite-
like layer of Zn−Al LDH is known to be 0.48 nm,41 so that we
estimated the interlayer distance of each sample to be 0.275
nm (CO3

2−), 0.307 nm (Cl−), 0.403 nm (NO3
−), and 0.406

nm (SO4
2−). These structural characteristics of the LDHs are

illustrated in Figure 4b. Although the largest interlayer distance

for D-SO4
2−(2:1:9) had the largest interlayer distance, this can

be understood by the fact that SO4
2− is the largest anion in

those demonstrated in this study, and the interlayer distances
for other samples were different independent of the size of the
intercalated anion. Such a dependence of interlayer anion on
the interlayer distance might be due to the different structures
of interlayer water or hydrated water, which probably result in
the different ionic conduction and thermal behaviors of the
LDHs.42

Interlayer anions usually follow ion-exchange equilibrium
constants in the order of CO3

2− > SO4
2− > OH− > F− > Cl− >

Br− > NO3
− > I−2. In contrast, our observations strongly

indicate that the selected anion is intercalated regardless of the
ion-exchange equilibrium constants. This indicates that CO3

2−

was effectively removed from the system during the reaction
without intercalation into the LDH. The intercalated anion
species were also confirmed by FT-IR measurements
(Supporting Information, Figure S2). Therefore, the decar-
boxylation-urea method is suitable for the synthesis of anion-
controlled LDHs.

From the SEM observations, we found another aspect of the
morphology and structure of LDH (Figure 4c). Except for the
SO4

2− type, plate-like particles were clearly observed, in which
the diameters of these particles were 2 mm for D-Cl−(2:1:9)
and less than 2 mm for U-CO3

2−(2:1:9) and D-NO3
−(2:1:9).

This difference suggests that the anions in the precursor
solution have a possible effect on the crystal growth. Another
possibility is that the basal spacing of the LDH might affect the
size of the LDH particles. However, the size of the particles
barely affected the basal spacing because the basal spacings of
U-CO3

2−(2:1:9) and D-NO3
−(2:1:9) differed greatly despite

their similar particle sizes. The D-SO4
2−(2:1:9) particles

aggregated with each other, which could be due to the
generation of byproducts, such as alunite, from sulfate and
aluminum ions (Figure S3). Therefore, the LDH prepared by
the decarboxylation-urea method controlled the morphology
and size of the LDH particles via anions in the precursor
solution.
Ionic Conductivity. Finally, we conducted ionic con-

ductivity measurements of the prepared LDHs using the
electrochemical impedance method to evaluate their perform-
ance in electrochemical devices, such as electrolytes. Figure
5a,b shows the complex impedance plots (100 mHz to 7 MHz)
for LDHs with different interlayer anion species at 80 °C and
80% relative humidity. In each Nyquist plot, we observed two
relaxation modes: a semicircle at the high-frequency region and
a straight-like curve at the low-frequency region. The faster
relaxation corresponds to a grain boundary resistance (or mass
transfer resistance), and the slower relaxation is related to an

Figure 5. Electrochemical impedance analysis of the prepared LDHs, where panel (a) shows the Nyquist plots, panel (b) is an enlarged figure of
(a), and panel (c) illustrates the Arrhenius plots.
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interface resistance between LDH and electrode. On the other
hand, a relaxation mode ascribed to a bulk resistance (or
charge-transfer resistance) was hardly observed because of
insufficient frequency range or was an indistinguishable
contribution from a grain boundary resistance. Here, we
determined ionic conductivity based on the following equation

L
R A

=
×

where σ (S cm−1), L (cm), R (W), and A (cm2) are the ionic
conductivity, thickness, resistance, and measurement area of
the pellet, respectively. The resistance value was obtained from
the cross section of the semicircle and X-axis, which is the total
resistance of the bulk and grain boundary resistances. Figure 5c
illustrates the temperature dependence of the ionic con-
ductivity (Arrhenius plots) of the prepared LDHs. The ionic
conductivities of all of the samples increased with temperature
and differed in each sample. The ionic conductivity at 80 °C
decreased in the order of D-NO3

−(2:1:9) > D-SO4
2−(2:1:9) >

D-Cl−(2:1:9) > U-CO3
2−(2:1:9). In particular, the LDH

intercalated with NO3
− exhibited the highest ionic conductivity

(D-NO3
−(2:1:9):18.0 mS cm−1), which is also higher than that

reported in other studies using the coprecipitation method and
hence suitable for electrochemical applications.16,17 Zhang et
al. reported that smaller-sized LDHs had higher ionic
conductivity due to much adsorbed water on the surface of
LDH particles.43 However, although the particle sizes of U-
CO3

2−(2:1:9) and D-NO3
−(2:1:9) were similar, the ionic

conductivity of D-NO3
−(2:1:9) was more than 103 times

higher than that of U-CO3
2−(2:1:9). Therefore, the ionic

conductivity should be dominated by the mobility of the
interlayer anions in the LDH particles. What is the important
point here is that the slope of the plots in each sample gave us
similar activation energy for ionic conduction (ca. 20 kJ/mol)
except for D-SO4

2−(2:1:9). The larger activation energy for D-
SO4

2−(2:1:9) might be due to the presence of the byproduct
described in Figure 4b. These indicate that OH− ions liberated
from interlayer water are the dominant species for ionic
conduction regardless of the interlayer anion species. However,
our impedance data does not clearly provide information on
the bulk resistance, and thus, it is difficult to separately discuss
the anion mobility inside the basal space of the LDH.
Nevertheless, the difference in the conditions of interlayer
water by the interlayer anion species may be a possibility. In
future work, we will investigate the diffusibility and bonding of
the interlayer water.

■ CONCLUSIONS
We developed a one-pot synthesis method for LDHs
intercalated with selected anions. The crystalline structures,
particle morphologies, and ionic conductivities of the obtained
LDHs were assessed. In the conventional urea method,
controlling the interlayer anions is difficult in one-pot systems
because the LDH intercalates with CO3

2− that is generated by
the hydrolysis of urea. In contrast, we synthesized LDH
intercalated with selected anions by Ar bubbling to remove
CO3

2− in a one-pot process. This method was labeled as the
“decarboxylation-urea method”. Consequently, the LDHs
synthesized using our method were endowed with the
following characteristics: (1) the metal cation ratio of the
prepared LDHs reflects the metal cation concentration of the
precursor solution. (2) The morphology of the prepared LDH
particles was affected by the concentration of urea in the

precursor solution, and the particle size increased with the
increasing concentration of urea. (3) The morphology of the
prepared LDH particles depends on the anion species in the
precursor solution. (4) The ionic conductivity of LDH varied
with the interlayer anions, and the Zn−Al LDH intercalated
with NO3

− showed the highest ionic conductivity of 18 mS
cm−1. These results indicate that the decarboxylation-urea
method has a high versatility for LDH synthesis. We believe
that this study will provide a novel technique to afford
interlayer-anion-controlled LDHs and provide new insights
into the effects of interlayer anions on the physical properties
and morphologies of LDHs.
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