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Abstract. Ewing sarcoma (ES) is a common primary 
malignancy in children and adolescents. Progression of treat-
ment methods hasn't contributed a lot to the imrovement of 
prognosis. To identify potential prognostic biomarkers, a 
meta-analysis pipeline of multi-gene expression datasets for 
ES from the Gene Expression Omnibus (GEO) was performed. 
Three datasets were screened and differential expression 
genes (DEGs) in ES samples compared with normal tissues 
were identified through limma package and subjected to 
network analysis. As a result, 1,470 DEGs were obtained 
which were mainly involved in biological processes associated 
with immune response and transcription regulation. Network 
analysis obtained 22 core genes with high network degree and 
fold change. Kaplan-Meier analysis based on ES datasets from 
The Cancer Genome Atlas identified five genes, including 
glycogen phosphorylase, muscle‑associated, myocyte‑specific 
enhancer factor 2C, tripartite motif containing 63, budding 
uninhibited by benzimidazoses1 and Ras GTPase-activating 
protein 1, whose altered expression profiles are significantly 
associated with survival. Changes of their expression values 
were further confirmed through RT-qPCR in ES cell and 
normal cell lines. Those genes may be considered as potential 
prognostic biomarkers of ES and should be helpful for its early 
diagnosis and treatment.

Introduction

Ewing sarcoma (ES) is an aggressive sarcoma of bone and/or 
soft tissue with a peak incidence in children and young 
adults, it is the third most common malignant primary bone 

tumor, following osteosarcoma and chondrosarcoma (1,2). 
Over the past decades, efforts have been made to maximize 
the chance of cure and pathogenesis of ES through collabo-
ration among clinicians, pathologists, and biologists (3). The 
overall survival (OS) for ES patients with localized disease 
is ~70%, but the OS of patients with metastatic disease is 
only ~30% (4). Further efforts should be made to improve 
these outcomes, especially for patients with metastatic and 
recurrent ES.

Efforts of researchers and clinicians have advanced the 
understanding of ES oncogenesis and the genetic predisposition 
for developing ES (5). ES is defined by a balanced transloca-
tion that involves the Ewing sarcoma breakpoint region 1 
(EWSR1) gene located on chromosome 22, and a member of 
the E26 transformation‑specific (ETS) family of transcription 
factors that mainly contain the friend leukemia integration 1 
(FLI1) and EST-related gene (ERG) genes (6). Two types of 
translocation are generally observed on the molecular analysis 
of ES samples. The first most common type, accounting for 
85% of the translocations, occurs when the EWSR1 fuse to 
the FLI1 gene which is located on chromosome 11, resulting 
in an EWSR1‑FLI1 fusion gene (7). The second most common 
translocation in ES, occurs when the EWS gene fuses to 
another member of the ETS transcription factor family, ERG, 
located on chromosome 21, resulting in an EWSR1‑ERG fusion 
gene (8,9). Besides FLI1 and ERG, other members of the ETS 
transcription factor family that can act as partners for EWSR1 
are ETV, ETV4, and FEV (10-12). These fusion oncoproteins 
might serve as potential diagnostic markers and therapeutic 
targets for ES. However, several reports demonstrated that in 
addition to the expression of FLI1 in ES, it can also be detected 
in other neoplasms including lymphoblastic lymphomas, 
Merkel cell carcinoma, desmoplastic small round cell tumor, 
and synovial sarcoma, endothelial cells and lymphocytes 
also normally express FLI1 (13‑15). To date, no specific and 
accurate molecular markers have been established for the early 
diagnosis and treatment of ES, and therefore identification of 
new molecular markers is urgently needed.

In the present study, a meta-analysis of several ES tran-
scriptome datasets from the Gene Expression Omnibus (GEO) 
was performed. Differential expressed genes (DEGs) in ES 
compared with normal tissues were identified and subjected 
to network analysis. A Kaplan-Meier analysis of core genes 
networks was performed and several survival-associated 
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genes were identified that could act as potential markers for 
the prognosis of patients with ES.

Materials and methods

Datasets. With the keyword of ‘Ewing Sarcoma’ and restric-
tion of organism=‘Homo sapiens’, platform=‘GPL570’ and 
attribute=‘Tissue’, a total of three datasets with the accession 
number of GSE34620 (5), GSE17618 (16) and GSE17674 (16) 
were obtained from the GEO (www.ncbi.nlm.nih.gov/geo/). 
There are 117 ES tissue samples in GSE34620 and 44 ES tissue 
samples in GSE17618 and without normal samples aside from 
the 18 in GSE17674. For GSE17674, a total of 44 ES tissue 
samples and 18 normal skeletal muscle samples were included. 
Table I demonstrates detailed information of datasets used in 
the present study.

Microarray preprocessing. The raw datasets were firstly 
normalized prior to differential expression analysis. In brief, 
the CEL files were imported into R (www.r‑project.org/), a 
free access statistics software, to conduct batch normalization 
with the sva package (17). Probe level expression values were 
transformed to gene level based on the microarray annota-
tion file. For genes corresponding to multi probes, the mean 
expression value was used.

Differential expression analysis. The limma package (18) was 
used for the identification of genes with aberrant expression 
profiles in ES compared with normal tissues. The t‑test and 
FDR correction were used to test significance of expression 
differences between ES and normal tissues, and only those 
genes with adjusted P<0.05 and |log2Fold Change|>1 (fold 
change >2 or <0.5) were considered with a significantly 
differential expression.

Functional enrichment analysis. To explore functions 
involved in differential expression genes (DEGs) in ES 
samples, the Database for Annotation, Visualization and 
Integrated Discovery (DAVID, david.ncifcrf.gov/) (19) 
was used for the functional enrichment analysis, and Gene 
Ontology (GO) terms and Kyoto Encyclopedia of Genes and 
Genome (KEGG) pathways with P-value <0.05 were screened 
out. In addition, to interpret associations among those 
functions, the enrichmentMap plug-in (20) of Cytoscape 
software (21) was used to perform crosstalk analysis of 
Biological Process (BP) terms.

Network analysis. By combining the network deposited in 
Protein Interaction Network Analysis (PINA, cbg.garvan.
unsw.edu.au/pina/) (22) and Menche's study (23), interaction 
pairs among DEGs were screened. Additionally, the MCODE 
plug-in of Cytoscape software was used to conducted modular 
analysis of the whole network.

Kaplan‑Meier analysis. Hub network genes (genes with 
high degree) should serve an important role in ES progres-
sion for the high number genes directly interacting with 
them. In the present study, a Kaplan-Meier analysis for hub 
network genes was conducted based on another ES-associated 
dataset downloaded from The Cancer Genome Atlas (TCGA; 

cancergenome.nih.gov/) to identify genes significantly 
associated with ES overall survival (OS).

Reverse transcription‑quantitative polymerase chain 
reaction (RT‑qPCR). Total RNA was isolated from ES cell 
lines A673 and normal mesenchymal stem cells (MSC, from 
Cyagen Biosciences, Guangzhou, China) using an RNeasy® 
Mini kit (Qiagen GmbH, Hilden, Germany) according to the 
manufacturer's protocol. First-strand cDNA was synthesized 
from 11 µg of total RNA using the Transcript or First Strand 
cDNA Synthesis kit (Roche Diagnostics, GmbH, Mannheim, 
Germany) according to the manufacturer's protocol. RT-qPCR 
reactions were performed on an ABI 7500 real-time PCR 
system (Applied Biosystems; Thermo Fisher Scientific, Inc., 
Waltham, MA, USA) using the following procedure: 95˚C for 
10 min, followed by 40 cycles of 95˚C for 30 sec and 60˚C for 
1 min. Primers used for glycogen phosphorylase (PYGM) are 
(5'->3'): Forward primer, 5-TTT CAC ACT CGT AAA GGA CCG 
CAA T-3, and reverse primer, 5-TGT TCT GTA GCG TCC GTC 
CCA TAT A-3. Primers used for myocyte‑specific enhancer 
factor (MEF)2C are (5'->3'): Forward primer, 5-TGG GTT GAT 
GAA GAA GGC TTA TGA G-3, and reverse primer, 5-TAA GGC 
CCT TCT TTC TCA ACG TCT C-3. Primers used for Tripartite 
Motif Containing (TRIM)63 are (5'->3'): Forward primer, 
5-AAG CCA GTG GTC ATC TTG CCG T-3, and reverse primer, 
5-CGT ACA CTC CGT GAC GAT CCA TGA-3. Primers used for 
BUB1B, budding uninhibited by benzimidazoses (BUB1B) 
are (5'->3'): Forward primer, 5-GTA TAA ACC ACA TCC TAA 
GCA CCA G-3, and reverse primer, 5-CTC TGC ACT GGT CAA 
TAG CTC GGC T-3. Primers used for Ras GTPase-activating 
protein (RACGAP)1 are (5'->3'): Forward primer, 5-TGG CAA 
ATT ATC TCT GAA GTG TCG A-3, and reverse primer, 5-CTC 
TTT GCT CAA TCT CAT TTA CAC A-3. GAPDH was used 
as an internal control. The 2-ΔΔCq method was used for data 
analysis (24).

Results

DEGs. Through the thresholds of adjusted P<0.05 and 
|log2Fold Change|>1, a total of 1,470 DEGs were obtained in 
ES samples compared to normal samples with 984 upregulated 
and 486 downregulated genes. Fig. 1A shows the heatmap of 
the top 100 most significant genes with green and red color 
representing low and high expression levels, respectively. 
Fig. 1B shows the distribution of DEGs with the green and 
red dots indicating down- and upregulated genes and the black 
dots indicating the non-differentially expressed genes.

Functional enrichment analysis. The significantly enriched 
KEGG pathways of down- and upregulated genes were sepa-
rately analyzed. As a result, a total of 25 KEGG pathways that 
significantly associated with substance metabolism, such as 
insulin signaling pathway, 2-Oxocarboxylic acid metabolism 
were significantly enriched in downregulated genes (Fig. 2A). 
However, upregulated genes were demonstrated to be involved 
in 17 KEGG pathways associated with cancer development 
and cell activity, including the p53 signaling pathway, and cell 
cycle (Fig. 2B).

GO terms enrichment analysis for DEGs was performed 
and 173 significantly enriched GO terms were identified. 
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For BP terms, their association through the enrichment Map 
plug‑in of Cytoscape software was explored. As a result, five 
clusters were obtained, which were associated with muscle 
contraction, cell division, extracellular matrix organization, 
response to stimuli and metabolism, respectively (Fig. 2C).

Network analysis. Combined analysis of network of PINA 
and a study by Menche et al (23) identified 13,259 inter-
action pairs among the 1,470 DEGs. Modular analysis 
obtained a total of six network modules contained five 
upregulated and one downregulated module as shown in 
Fig. 3. For interpretation of the biological processes of 
every module, KEGG pathway analysis for module genes 
through KOBAS online tool (kobas.cbi.pku.edu.cn/) was 
conducted (25). As a result, besides cancer-associated 
pathways, KEGG pathways associated with nervous system 
diseases, such as Parkinson's disease, Huntington's disease, 

were also significantly enriched in several network modules 
(Table II).

Kaplan‑Meier analysis. To identify potential biomarkers 
involved in ES progression, simultaneously with network 
degree >10 (genes that directly interact with ≥10 other genes 
in the network) and |log2Fold Change|>2 were screened. As 
a result, 22 genes were obtained (Table III) which contained 
18 down- and 4 upregulated genes Fig. 4 demonstrates their 
expression profiles in normal and ES samples. Kaplan‑Meier 
analysis of the 22 genes based on the ES dataset from TCGA 
identified five genes, including PYGM, MEF2C, TRIM63, 
BUB1B and RACGAP1, which are significantly associated 
with ES OS (Fig. 5; P<0.05) in the present study. Consistent 
with the differential expression analysis, upregulation of the 
three downregulated genes, PYGM, MEF2C, TRIM63, is asso-
ciated with good ES prognosis, while, upregulation of the two 

Figure 1. Differential expression analysis. (A) Heatmap of expression levels of the top 100 most significant DEGs. Horizontal and vertical axis represent genes 
and samples respectively and blue and red color represent low and high expression levels, respectively. Color bar at the top of the heatmap indicates sample type 
with red and blue indicating the ES and normal samples. (B) Volcano plot of the genes. X and Y axis is log2Fold Change and -log10-based adjusted P-value. 
Green and red dots are the down-regulated and up-regulated genes, respectively and black dots are the non-differential expressed genes. DEG, differentially 
expressed genes; ES, Ewing sarcoma.

Table I. Microarray experiments used for meta-analysis.

 Characteristic
 --------------------------------------------------------------------------------------------
GEO ID Sample size used/total Case Control Platform PMID

GSE34620 117/117 Ewing sarcoma (117) NA GPL570 22327514
GSE17618 44/55 Ewing sarcoma (44) NA GPL570 22084725
 (exclude cell line)
GSE17674 62/62 Ewing sarcoma (44) Skeletal muscle (18) GPL570 22084725

ES, Ewing sarcoma; GEO, gene expression omnibus.
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upregulated genes, i.e., BUB1B and RACGAP1, are associated 
with poor ES prognosis (Fig. 5), which should provide valuable 
diagnosis and treatment biomarkers for ES.

RT‑qPCR. Expression differences of PYGM, MEF2C, 
TRIM63, BUB1B and RACGAP1 between the ES cell lines 
A673 and normal cell lines MSC were investigated using 
RT‑qPCR for their significant associations with OSCC's OS. 
Consistent with results from the microarray analysis, PYGM, 
MEF2C and TRIM63 were downregulated, and BUB1B and 
RACGAP1 were upregulated in the ES cell line compared with 
the normal cells (Fig. 6).

Discussion

Ewing sarcoma is the second most frequent bone malignancy 
in children and adolescents (26). Chemotherapy and surgery 
are currently the main therapeutic modalities for ES (27). 
Despite aggressive therapy, the OS of ES patients is still dismal. 
The cure rate could be notably improved by the identification 
of molecular markers to aid the effective early diagnosis of 
malignancy and the prevention of tumor metastasis. In the 
present study, a meta-analysis of the transcriptomes of ES 

samples from three gene expression microarray datasets was 
performed, and 1,470 DEGs were identified, consisting of 
984 up- and 486 downregulated genes. Using the DEGs, an 
ES disease network was constructed and six ES-associated 
disease clusters were obtained. Survival analysis identified 
five genes that were significantly associated with the survival 
rate of patients with ES.

GO term enrichment and clustering analysis were conducted 
for the 1,470 DEGs, and the GO terms were divided into five 
groups according to their biological roles in cell metabolism. 
The five groups are involved in the following physiological 
processes: Muscle contraction and morphogenesis, cell mitotic 
nuclear division and microtubule-based process, cell adhe-
sion, heat generation process, and gluconeogenesis. Advanced 
malignancies that are often associated with bone metastasis 
can cause skeletal muscle weakness; the skeletal muscle quality 
is associated with muscle contraction and morphogenesis (28). 
A previous study demonstrated that metastasis-induced trans-
forming growth factor (TGF)-β release from bone contributes 
to muscle weakness by decreasing Ca2+-induced muscle 
force production (29). Cell mitosis is closely associated with 
tumor progression and metastasis; there, microtubules have 
been a major target for anticancer drugs development (30). 

Figure 2. Functional enrichment analysis. (A) Significantly enriched signaling pathways of downregulated genes and (B) upregulated genes. Vertical axis is 
the gene number contained in the corresponding signaling pathway. The bar color indicates significance with the darker representing the more significant 
ones. (C) Crosstalk analysis of the BP terms of DEGs. Node and edge represent terms and interactions between two terms. Darker node color indicates more 
significance and larger node represents more genes contained in each term. Thicker edge indicates more overlapping genes between two terms. BP, biological 
processes; DEG, differentially expressed genes.
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Table II. Significantly enriched KEGG pathways of the six network modules.

A, Module 1   

Pathway Pathway ID P-value FDR

Parkinson's disease hsa05012 6.01x10-5 8.51x10-4

cGMP-PKG signaling pathway hsa04022 9.64x10-5 8.51x10-4

RNA transport hsa03013 1.05x10-4 8.51x10-4

Calcium signaling pathway hsa04020 1.20x10-4 8.51x10-4

Huntington's disease hsa05016 1.47x10-4 8.51x10-4

HTLV-I infection hsa05166 3.44x10-4 1.66x10-3

Ribosome biogenesis in eukaryotes hsa03008 1.06x10-3 4.38x10-3

Ribosome hsa03010 2.47x10-3 8.96x10-3

Viral carcinogenesis hsa05203 5.30x10-3 1.71x10-2

B, Module 2   

Spliceosome hsa03040 3.82x10-19 6.87x10-18

African trypanosomiasis hsa05143 1.35x10-2 6.87x10-2

Malaria hsa05144 1.87x10-2 6.87x10-2

Pathogenic Escherichia coli infection hsa05130 2.09x10-2 6.87x10-2

RNA degradation hsa03018 2.90x10-2 6.87x10-2

Gap junction hsa04540 3.30x10-2 6.87x10-2

mRNA surveillance pathway hsa03015 3.45x10-2 6.87x10-2

NF-kappa B signaling pathway hsa04064 3.49x10-2 6.87x10-2

AGE-RAGE signaling pathway in diabetic complications hsa04933 3.78x10-2 6.87x10-2

TNF signaling pathway hsa04668 4.11x10-2 6.87x10-2

Leukocyte transendothelial migration hsa04670 4.40x10-2 6.87x10-2

C, Module 3   

RNA degradation hsa03018 9.77x10-3 2.76x10-2

Parkinson's disease hsa05012 1.79x10-2 2.76x10-2

Wnt signaling pathway hsa04310 1.80x10-2 2.76x10-2

cGMP-PKG signaling pathway hsa04022 2.09x10-2 2.76x10-2

Influenza A hsa05164 2.21x10-2 2.76x10-2

Calcium signaling pathway hsa04020 2.26x10-2 2.76x10-2

Huntington's disease hsa05016 2.42x10-2 2.76x10-2

HTLV-I infection hsa05166 3.23x10-2 3.23x10-2

D, Module 4   

Cell cycle hsa04110 7.15x10-8 2.29x10-6

DNA replication hsa03030 2.48x10-7 3.96x10-6

Pathogenic Escherichia coli infection hsa05130 8.33x10-7 8.88x10-6

Gap junction hsa04540 3.89x10-4 3.11x10-3

Phagosome hsa04145 1.17x10-3 7.51x10-3

MicroRNAs in cancer hsa05206 4.21x10-3 2.25x10-2

E, Module 5   

Cysteine and methionine metabolism hsa00270 6.92x10-3 2.95x10-2

Pathogenic Escherichia coli infection hsa05130 8.42x10-3 2.95x10-2

Gap junction hsa04540 1.34x10-2 3.12x10-2

Apoptosis hsa04210 2.11x10-2 3.26x10-2

Phagosome hsa04145 2.33x10-2 3.26x10-2
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Physiological thermogenesis is beneficial for damaging tumor 
tissues and improving the clinical outcomes of patients with 
cancer, while hyperthermia has a direct killing effect on 

tumor cells and can have an inhibitory effect on tumor metas-
tasis (31). Gluconeogenesis is a metabolic process whereby the 
body generates glucose from non-carbohydrate carbon source 

Table II. Continued.

F, Module 6   

Pathway Pathway ID P-value FDR

Oocyte meiosis hsa04114 3.67x10-6 2.25x10-5

Cell cycle hsa04110 3.75x10-6 2.25x10-5

HTLV-I infection hsa05166 3.28x10-5 1.31x10-4

Ubiquitin mediated proteolysis hsa04120 5.36x10-4 9.19x10-4

Thyroid cancer hsa05216 7.52x10-3 1.00x10-2

Progesterone-mediated oocyte maturation hsa04914 2.46x10-2 2.95x10-2

Calcium signaling pathway hsa04020 4.46x10-2 4.86x10-2

Pathways in cancer hsa05200 9.57x10-2 9.57x10-2

FDR, false discovery data; KEGG, Kyoto Encyclopedia of Genes and Genome.

Figure 3. Modular analysis of network. Node and edge represent genes and interactions among genes. Green and red color indicate down-regulation and 
up-regulation respectively.
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and provides energy for the growth and survival of cells (32). 
Studies have suggested that gluconeogenesis could cause a 
metabolic stress and therefore disrupt the metabolic rewiring 
of cancer cells (33,34). The five GO term groups identified in 
the present study, are all involved in cancer progression and 
metastasis, representing the typical ES progression-associated 
biological processes (35,36).

As previously stated, based on the 1,470 DEGs, an ES 
disease network was constructed, and six disease clusters 
were ultimately identified. Several cancer‑associated signaling 
pathways and metabolic processes were observed by enrich-
ment analysis for the DEGs in each cluster. The cGMP-PKG 

signaling pathway was significantly enriched in the DEGs 
of clusters 1 and 3 and proved to be closely associated with 
tumor progression. Upregulated cGMP and its downstream 
protein kinase G (PKG) are known to inhibit the proliferation 
and induce the apoptosis of colon cancer cells, and activated 
intracellular cGMP-PKG pathway is known to enhance the 
degradation of β-catenin in SW480 colon cancer cells (37-39). 
Calcium signaling pathways were observed in clusters 1, 3 
and 6; these signaling pathways serve a significant role in the 
cell apoptosis process (35). Under pathological conditions, the 
Ca2+ level is markedly increased in many types of cells, resulting 
in the enhanced expression of pro-apoptotic factors (40). 

Figure 4. Heatmap of the 22 genes with network degree >10 and |log2Fold-Change|>2. Horizontal and vertical axis represent genes and samples, respectively 
and green and red color indicate low and high expression levels, respectively.

Table III. A total of 22 genes with degree>10 and |log2(Fold-change)|>2.

Gene symbol Full name logFC Degree

ACTA1 Actin, α 1, skeletal muscle -5.18 31
TNNT1 Troponin T1, slow skeletal type -4.19 15
PYGM Glycogen phosphorylase, muscle associated -4.02 15
MYBPC2 Myosin binding protein C, fast type -3.91 13
NEB Nebulin -3.31 14
FHL1 Four and A half LIM domains 1 -3.23 11
TCAP Titin-Cap -3.13 11
TRIM63 Tripartite motif containing 63 -3.01 27
RYR1 Ryanodine receptor 1 -2.94 10
TTN Titin -2.90 36
ACTN2 Actinin α 2 -2.86 16
SGCG Sarcoglycan γ -2.68 14
CRYAB Crystallin α B -2.59 14
EEF1A2 Eukaryotic translation elongation factor 1 α 2 -2.57 11
ENO3 Enolase 3 -2.13 11
MEF2C Myocyte enhancer factor 2C -2.06 10
PRKCQ Protein kinase C θ -2.06 19
FLNC Filamin C -2.02 16
RACGAP1 Ras GTPase activating protein 1 2.15 10
BUB1B BUB1 mitotic checkpoint serine/threonine kinase B 2.20 12
EZH2 Enhancer of zeste 2 polycomb repressive complex 2 subunit 2.61 31
CCND1 Cyclin D1 2.75 16
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Curcumin, a traditional Chinese medicine, may induce cell 
apoptosis through upregulating the Ca2+ level in lung cancer 
cells (35,41,42). Certain disease-type markers, including 
Parkinson's disease (PD) associated genes [VDAC1 (43), 
VDAC3 (44)], were observed in clusters 1 and 3. Many studies 
have demonstrated that the cancer incidence in patients with 
PD is significantly lower than in the patients without PD, but the 
detailed mechanism remains to be explored (45). Many DEGs 
involved in the cell cycle process were in clusters 4 and 6. Cell 
proliferation is an essential mechanism for the growth, devel-
opment and regeneration of eukaryotic organisms. Therefore, 

targeting the cell cycle process to regulate cell proliferation has 
been one of the most effective approaches to treat cancers (46). 
Other signaling pathways or metabolic processes such as the 
mRNA surveillance pathway, the AGE-RAGE signaling 
pathway in diabetic complications, RNA degradation, cysteine 
and methionine metabolism and others were also observed 
in certain clusters. These signaling pathways or metabolic 
processes observed by enrichment analysis of the DEGs 
may participate in the progression and metastasis of ES and 
could also be considered potential molecular targets for early 
diagnosis and therapy (35,36).

Survival analysis revealed that five DEGs were signifi-
cantly associated with the survival rates of ES patients. BUB1B 
and RACGAP1 were markedly upregulated in the ES samples. 
BUB1B, a member of the spindle assembly checkpoint protein 
family, has been associated with many types of cancer (47,48). 
Upregulated expression of BUB1B enhanced the prolif-
eration, migration, and invasion ability of prostate cancer cell 
lines (48). RACGAP1 is a component of the central spindle 
and essential for the induction of cytokinesis. Overexpressed 
RACGAP1 was associated with poor disease-free and overall 
survival, and may act as an independent predictive marker 
for lymph node metastasis, recurrence and poor prognosis of 
colorectal cancer (49-51). The present results demonstrated 
that the expression of BUB1B and RACGAP1 in ES samples 
is negatively associated with the survival rates of ES patients. 
In addition, the downregulated expression of PYGM, MEF2C, 
and TRIM63 was also observed in the present study, with 
their expression being positively associated with the survival 
rates of ES patients. The present results suggest that BUB1B, 

Figure 6. Validation of the data with RT‑qPCR. The five genes identified 
in microarray data were validated by RT-qPCR. BUB1B, budding uninhib-
ited by benzimidazoses1; MEF2C, myocyte‑specific enhancer factor 2C; 
PYGM, glycogen phosphorylase; RACGAP, ras GTPase-activating protein 1, 
TRIM63, Tripartite Motif Containing 63. **P<0.01 and ***P<0.001 A673 
vs. MSC group.

Figure 5. Overall survival curves of the five genes significantly associated with ES prognosis obtained through the Kaplan‑Meier analysis. Blue and red curve 
are samples with lower and higher expression levels than the median, respectively. Plus signs are censored values. The P-value was obtained through log-rank 
test. ES, Ewing sarcoma; HR represents hazard ratio.
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RACGAP1, PYGM, MEF2C, and TRIM63 may be considered 
potential markers for the prognosis of ES, but this needs to be 
investigated further.

In summary, the transcriptomes of ES samples from three 
independent gene expression chips was investigated and six 
disease clusters based on the 1,470 DEGs was constructed. 
Several cancer-associated signaling pathways, metabolic 
processes, or disease types were identified by the enrichment 
analysis, that could act as potential markers for early diag-
nosis and as targets for therapy. Survival analysis revealed that 
five DEGs were significantly associated with the survival rates 
of ES patients and could be considered predictive markers for 
the prognosis of ES, but this needs to be investigated further.

In the present study, a comprehensive analysis of three 
ES-associated microarray datasets was conducted and 
several KEGG pathways and GO term clusters that may be 
involved in ES progression were obtained. Additionally, five 
genes that are significantly associated with OS of patients 
with ES were identified, which may be helpful for ES early 
diagnosis and treatment, but this needs to be validated in 
future studies.

Acknowledgements

Not applicable.

Funding

No funding was received.

Availability of data and materials

The datasets generated and/or analyzed during the current study 
are available in the NCBI repository: https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE34620; https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE17618; https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE17674.

Authors' contributions

YXQ put forward the ideas of this article, wrote this article 
and analyzed the data. SJB helped revise the manuscript, 
analyzed the data and put forward ideas for the article. ZHY 
helped with acquisition of data, and analysis and interpre-
tation of data. WS provided valuable instructions and the 
figure combinations, analyzed the data and study design, 
and helped revising the manuscript. All authors read and 
approved the final manuscript.

Ethics approval and consent to participate

Not applicable.

Patient consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

 1. Balamuth NJ and Womer RB: Ewing's sarcoma. Lancet Oncol 11: 
184-192, 2010.

 2. Sand LG, Szuhai K and Hogendoorn PC: Sequencing overview 
of ewing sarcoma: A journey across genomic, epigenomic and 
transcriptomic landscapes. Int J Mol Sci 16: 16176-16215, 2015.

 3. Kovar H, Alonso J, Aman P, Aryee DN, Ban J, Burchill SA, 
Burdach S, De Alava E, Delattre O, Dirksen U, et al: The first 
European interdisciplinary ewing sarcoma research summit. 
Front Oncol 2: 54, 2012.

 4. Pau lussen  M,  A h rens  S,  Bu rd a ch  S,  Cr a f t  A, 
Dockhorn-Dworniczak B, Dunst J, Fröhlich B, Winkelmann W, 
Zoubek A and Jürgens H: Primary metastatic (stage IV) Ewing 
tumor: Survival analysis of 171 patients from the EICESS 
studies. European intergroup cooperative ewing sarcoma studies. 
Ann Oncol 9: 275-281, 1998.

 5. Postel-Vinay S, Veron AS, Tirode F, Pierron G, Reynaud S, 
Kovar H, Oberlin O, Lapouble E, Ballet S, Lucchesi C, et al: 
Common variants near TARDBP and EGR2 are associated with 
susceptibility to Ewing sarcoma. Nat Genet 44: 323-327, 2012.

 6. Delattre O, Zucman J, Plougastel B, Desmaze C, Melot T, Peter M, 
Kovar H, Joubert I, de Jong P, Rouleau G, et al: Gene fusion with 
an ETS DNA-binding domain caused by chromosome transloca-
tion in human tumours. Nature 359: 162-165, 1992.

 7. Delattre O, Zucman J, Melot T, Garau XS, Zucker JM, Lenoir GM, 
Ambros PF, Sheer D, Turc-Carel C, Triche TJ, et al: The Ewing 
family of tumors‑a subgroup of small‑round‑cell tumors defined 
by specific chimeric transcripts. N Engl J Med 331: 294-299, 1994.

 8. Sorensen PH, Lessnick SL, Lopez-Terrada D, Liu XF, Triche TJ 
and Denny CT: A second Ewing's sarcoma translocation, t(21;22), 
fuses the EWS gene to another ETS-family transcription factor, 
ERG. Nat Genet 6: 146-151, 1994.

 9. Potratz J, Dirksen U, Jurgens H and Craft A: Ewing sarcoma: 
Clinical state-of-the-art. Pediatr Hematol Oncol 29: 1-11, 2012.

10. Jeon IS, Davis JN, Braun BS, Sublett JE, Roussel MF, Denny CT 
and Shapiro DN: A variant Ewing's sarcoma translocation (7;22) 
fuses the EWS gene to the ETS gene ETV1. Oncogene 10: 
1229-1234, 1995.

11. Kaneko Y, Yoshida K, Handa M, Toyoda Y, Nishihira H, 
Tanaka Y, Sasaki Y, Ishida S, Higashino F and Fujinaga K: Fusion 
of an ETS-family gene, EIAF, to EWS by t(17;22)(q12;q12) chro-
mosome translocation in an undifferentiated sarcoma of infancy. 
Genes Chromosomes Cancer 15: 115-121, 1996.

12. Peter M, Couturier J, Pacquement H, Michon J, Thomas G, 
Magdelenat H and Delattre O: A new member of the ETS family 
fused to EWS in Ewing tumors. Oncogene 14: 1159-1164, 1997.

13. Folpe AL, Hill CE, Parham DM, O'Shea PA and Weiss SW: 
Immunohistochemical detection of FLI-1 protein expression: A 
study of 132 round cell tumors with emphasis on CD99-positive 
mimics of Ewing's sarcoma/primitive neuroectodermal tumor. 
Am J Surg Pathol 24: 1657-1662, 2000.

14. Rossi S, Orvieto E, Furlanetto A, Laurino L, Ninfo V and 
Dei Tos AP: Utility of the immunohistochemical detection of 
FLI-1 expression in round cell and vascular neoplasm using a 
monoclonal antibody. Mod Pathol 17: 547-552, 2004.

15. Lin O, Filippa DA and Teruya-Feldstein J: Immunohistochemical 
evaluation of FLI-1 in acute lymphoblastic lymphoma (ALL): 
A potential diagnostic pitfall. Appl Immunohistochem Mol 
Morphol 17: 409-412, 2009.

16. Savola S, Klami A, Myllykangas S, Manara C, Scotlandi K, 
Picci P, Knuutila S and Vakkila J: High expression of comple-
ment component 5 (C5) at tumor site associates with superior 
survival in Ewing's sarcoma family of tumour patients. ISRN 
Oncol 2011: 168712, 2011.

17. Leek JT, Johnson WE, Parker HS, Jaffe AE and Storey JD: The 
sva package for removing batch effects and other unwanted 
variation in high-throughput experiments. Bioinformatics 28: 
882-883, 2012.

18. Diboun I, Wernisch L, Orengo CA and Koltzenburg M: 
Microarray analysis after RNA amplification can detect 
pronounced differences in gene expression using limma. BMC 
Genomics 7: 252, 2006.

19. Huang da W, Sherman BT and Lempicki RA: Systematic and 
integrative analysis of large gene lists using DAVID bioinfor-
matics resources. Nat Protoc 4: 44-57, 2009.

20. Merico D, Isserlin R, Stueker O, Emili A and Bader GD: 
Enrichment map: A network-based method for gene-set enrich-
ment visualization and interpretation. PLoS One 5: e13984, 2010.



YIN et al:  ANALYSIS OF MULTI EWING SARCOMA MICROARRAY DATASETS4238

21. Kohl M, Wiese S and Warscheid B: Cytoscape: Software for 
visualization and analysis of biological networks. Methods Mol 
Biol 696: 291-303, 2011.

22. Cowley MJ, Pinese M, Kassahn KS, Waddell N, Pearson JV, 
Grimmond SM, Biankin AV, Hautaniemi S and Wu J: PINA v2.0: 
Mining interactome modules. Nucleic Acids Res 40 (Database 
Issue): D862-D865, 2012.

23. Menche J, Sharma A, Kitsak M, Ghiassian SD, Vidal M, 
Loscalzo J and Barabási AL: Disease networks. Uncovering 
disease-disease relationships through the incomplete interac-
tome. Science 347: 1257601, 2015.

24. Livak KJ and Schmittgen TD: Analysis of relative gene expres-
sion data using real-time quantitative PCR and the 2(-Delta Delta 
C(T)) method. Methods 25: 402-408, 2001.

25. Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong L, Gao G, 
Li CY and Wei L: KOBAS 2.0: A web server for annotation and 
identification of enriched pathways and diseases. Nucleic Acids 
Res 39: W316-W322, 2011.

26. Hamanoue S and Makimoto A: Ewing sarcoma. Gan To Kagaku 
Ryoho 34: 175-180, 2007 (In Japanese).

27. Ray-Coquard I and Le Cesne A: A role for maintenance therapy 
in managing sarcoma. Cancer Treat Rev 38: 368-378, 2012.

28. Fearon KC, Glass DJ and Guttridge DC: Cancer cachexia: 
Mediators, signaling, and metabolic pathways. Cell Metab 16: 
153-166, 2012.

29. Waning DL, Mohammad KS, Reiken S, Xie W, Andersson DC, 
John S, Chiechi A, Wright LE, Umanskaya A, Niewolna M, et al: 
Excess TGF-β mediates muscle weakness associated with bone 
metastases in mice. Nat Med 21: 1262-1271, 2015.

30. He Y, Yan D, Zheng D, Hu Z, Li H and Li J: Cell division cycle 
6 promotes mitotic slippage and contributes to drug resistance 
in paclitaxel-treated cancer cells. PLoS One 11: e0162633, 2016.

31. Yan B, Ouyang R, Huang C, Liu F, Neill D, Li C and Dewhirst M: 
Heat induces gene amplification in cancer cells. Biochem Biophys 
Res Commun 427: 473-477, 2012.

32. Rui L: Energy metabolism in the liver. Compr Physiol 4: 177-197, 
2014.

33. Ma R, Zhang W, Tang K, Zhang H, Zhang Y, Li D, Li Y, Xu P, 
Luo S, Cai W, et al: Switch of glycolysis to gluconeogenesis 
by dexamethasone for treatment of hepatocarcinoma. Nat 
Commun 4: 2508, 2013.

34. Khan MW and Chakrabarti P: Gluconeogenesis combats cancer: 
Opening new doors in cancer biology. Cell Death Dis 6: e1872, 
2015.

35. Xu X, Chen D, Ye B, Zhong F and Chen G: Curcumin induces the 
apoptosis of non-small cell lung cancer cells through a calcium 
signaling pathway. Int J Mol Med 35: 1610-1616, 2015.

36. Ventura S, Aryee DN, Felicetti F, De Feo A, Mancarella C, 
Manara MC, Picci P, Colombo MP, Kovar H, Carè A and 
Scotlandi K: CD99 regulates neural differentiation of Ewing 
sarcoma cells through miR-34a-Notch-mediated control of 
NF-kB signaling. Oncogene 35: 3944-3954, 2016.

37. Tetsu O and McCormick F: Beta-catenin regulates expression of 
cyclin D1 in colon carcinoma cells. Nature 398: 422-426, 1999.

38. Li H, Liu L, David ML, Whitehead CM, Chen M, Fetter JR, 
Sperl GJ, Pamukcu R and Thompson WJ: Pro-apoptotic 
actions of exisulind and CP461 in SW480 colon tumor cells 
involve beta-catenin and cyclin D1 down-regulation. Biochem 
Pharmacol 64: 1325-1336, 2002.

39. Ren Y, Zheng J, Yao X, Weng G and Wu L: Essential role of 
the cGMP/PKG signaling pathway in regulating the proliferation 
and survival of human renal carcinoma cells. Int J Mol Med 34: 
1430-1438, 2014.

40. Lv Y, Fang M, Zheng J, Yang B, Li H, Xiuzigao Z, Song W, 
Chen Y and Cao W: Low-intensity ultrasound combined with 
5-aminolevulinic acid administration in the treatment of human 
tongue squamous carcinoma. Cell Physiol Biochem 30: 321-333, 
2012.

41. Seo SR and Seo JT: Calcium overload is essential for the 
acceleration of staurosporine-induced cell death following 
neuronal differentiation in PC12 cells. Exp Mol Med 41: 
269-276, 2009.

42. Ma TS: Sarcoplasmic reticulum calcium ATPase overexpression 
induces cellular calcium overload and cell death. Ann N Y Acad 
Sci 853: 325-328, 1998.

43. Narendra D, Kane LA, Hauser DN, Fearnley IM and Youle RJ: 
p62/SQSTM1 is required for Parkin-induced mitochondrial 
clustering but not mitophagy; VDAC1 is dispensable for both. 
Autophagy 6: 1090-1106, 2010.

44. Shamir R, Klein C, Amar D, Vollstedt EJ, Bonin M, Usenovic M, 
Wong YC, Maver A, Poths S, Safer H, et al: Analysis of 
blood-based gene expression in idiopathic Parkinson disease. 
Neurology 89: 1676-1683, 2017.

45. Bajaj A, Driver JA and Schernhammer ES: Parkinson's disease 
and cancer risk: A systematic review and meta-analysis. Cancer 
Causes Control 21: 697-707, 2010.

46. Diaz-Moralli S, Tarrado-Castellarnau M, Miranda A and 
Cascante M: Targeting cell cycle regulation in cancer therapy. 
Pharmacol Ther 138: 255-271, 2013.

47. Ding Y, Hubert CG, Herman J, Corrin P, Toledo CM, 
Skutt-Kakaria K, Vazquez J, Basom R, Zhang B, Risler JK, et al: 
Cancer-Specific requirement for BUB1B/BUBR1 in human 
brain tumor isolates and genetically transformed cells. Cancer 
Discov 3: 198-211, 2013.

48. Fu X, Chen G, Cai ZD, Wang C, Liu ZZ, Lin ZY, Wu YD, 
Liang YX, Han ZD, Liu JC and Zhong WD: Overexpression 
of BUB1B contributes to progression of prostate cancer and 
predicts poor outcome in patients with prostate cancer. Onco 
Targets Ther 9: 2211-2220, 2016.

49. Zhao WM and Fang G: MgcRacGAP controls the assembly of 
the contractile ring and the initiation of cytokinesis. Proc Natl 
Acad Sci USA 102: 13158-13163, 2005.

50. Kitamura T, Kawashima T, Minoshima Y, Tonozuka Y, Hirose K 
and Nosaka T: Role of MgcRacGAP/Cyk4 as a regulator of the 
small GTPase Rho family in cytokinesis and cell differentiation. 
Cell Struct Funct 26: 645-651, 2001.

51. Imaoka H, Toiyama Y, Saigusa S, Kawamura M, Kawamoto A, 
Okugawa Y, Hiro J, Tanaka K, Inoue Y, Mohri Y and 
Kusunoki M: RacGAP1 expression, increasing tumor malignant 
potential, as a predictive biomarker for lymph node metastasis 
and poor prognosis in colorectal cancer. Carcinogenesis 36: 
346-354, 2015.

This work is licensed under a Creative Commons 
Attribution-NonCommercial-NoDerivatives 4.0 
International (CC BY-NC-ND 4.0) License.


