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Abstract

The large nucleoporin Nup358/RanBP2 forms eight filaments that project from the nuclear pore into the cytoplasm where
they function as docking platforms for nucleocytoplasmic transport receptors. RNAi screens have implicated Nup358 in the
HIV-1 life cycle. The 164 C-terminal amino acids of this 3,224 amino acid protein are a cyclophilin homology domain
(Nup358Cyp), which has potential to bind the HIV-1 capsid and regulate viral progress to integration. Here we examined the
virological role of Nup358 in conditional knockout mouse cells and in RNAi-depleted human CD4+ T cells. Cre-mediated
gene knockout was toxic and diminished HIV-1 infectivity. However, cellular health and HIV-1 susceptibility were
coordinately preserved if, prior to gene inactivation, a transposon was used to express all of Nup358 or only the N-terminal
1340 amino acids that contain three FG repeats and a Ran-binding domain. HIV-1, but not N74D capsid-mutant HIV-1, was
markedly sensitive to TNPO3 depletion, but they infected 1–1340 segment-complemented Nup358 knockout cells
equivalently. Human and mouse CypA both rescued HIV-1 in CypA gene 2/2 Jurkat cells and TRIM-Nup358Cyp fusions
derived from each species were equally antiviral; each also inhibited both WT and N74D virus. In the human CD4+ T cell line
SupT1, abrupt Nup358 depletion reduced viral replication but stable Nup358-depleted cells replicated HIV-1 normally. Thus,
human CD4+ T cells can accommodate to loss of Nup358 and preserve HIV-1 susceptibility. Experiments with cylosporine,
viruses with capsids that do not bind cyclophilins, and growth arrest did not uncover viral dependency on the C-terminal
domains of Nup358. Our data reinforce the virological importance of TNPO3 and show that Nup358 supports nuclear
transport functions important for cellular homeostasis and for HIV-1 nuclear import. However, the results do not suggest
direct roles for the Nup358 cyclophilin or SUMO E3 ligase domains in engaging the HIV-1 capsid prior to nuclear
translocation.

Citation: Meehan AM, Saenz DT, Guevera R, Morrison JH, Peretz M, et al. (2014) A Cyclophilin Homology Domain-Independent Role for Nup358 in HIV-1
Infection. PLoS Pathog 10(2): e1003969. doi:10.1371/journal.ppat.1003969

Editor: Christopher Aiken, Vanderbilt University School of Medicine, United States of America

Received June 4, 2012; Accepted January 15, 2014; Published February 20, 2014

Copyright: � 2014 Meehan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by NIH grants AI077344 to EMP and CA077262 to JvD. The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: emp@mayo.edu

Introduction

All lentiviruses infect non-dividing cells in the monocyte-

macrophage lineage [1,2]. This fundamental property has

characterized this retroviral genus for over twelve million years

[3] and is not limited to macrophages since lentiviral vectors

readily transduce terminally differentiated or growth-arrested cells

from diverse tissues [4,5]. For HIV-1, proposed karyophilic

mediators of pre-integration complex (PIC) nuclear pore transit

have included signals in viral proteins (Matrix, Integrase, Vpr) as

well as a short central plus strand discontinuity generated during

reverse transcription [6]. Each has met with contradiction [7–12].

More recent evidence implicates the viral capsid [13–15].

Traffic between the cytosol and nucleus is gated by the nuclear

pore complex (NPC), a 120 megadalton structure composed of

multiple copies of more than 30 different nucleoporin proteins

[16]. Nucleoporins with hydrophobic phenylalanine-glycine (FG)

repeats line the central channel [17]. Transport receptors bind to

import or export signals in macromolecules to mediate cargo

translocation across the NPC via sequential low affinity FG

nucleoporin interactions. Most transport receptors belong to a

family of related proteins that includes the import receptor family

karyopherin b (importin-b, transportin-1, transportin-3) and the

export receptor CRM1 [18]. Some nuclear transport proteins and

nucleoporins have recently been implicated by siRNA screens and

other studies as HIV-1 dependency factors [19–29].

Nup358/RanBP2, hereafter designated by its initial name

Nup358 [30], is the largest FG nucleoporin (358 kDa). The chief

constituent of the eight NPC filaments that extend from the

cytoplasmic face of the pore (each filament consists of one Nup358

molecule), it plays essential roles in nucleocytoplasmic trafficking

and mitosis [31]. The most C-terminal segment of Nup358 is a

cyclophilin homology domain (CHD). Cyclophilin proteins are

peptidyl prolyl isomerases that catalyze cis-trans isomerization of

peptide bonds at susceptible proline residues to facilitate correct

protein folding. There are 16 human cyclophilin proteins [32].

Cyclophilin A (CypA) is a highly abundant cytoplasmic protein

that binds to a conserved exposed loop in the HIV-1 capsid (CA)

and facilitates HIV infection in human cells by still unclear

mechanisms [33–35]. Although CypA is incorporated into HIV-1
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virions [36,37], viral replication phenotypes correlate with target

cell CypA [38–41]. Cyclosporine (Cs) treatment or certain

mutations in the cyclophilin binding loop of HIV-1 capsid (e.g.,

G89V), both of which abrogate CypA binding, impair HIV-1

infectivity. In contrast, in rhesus macaque cells CypA facilitates

TRIM5alpha-mediated restriction of HIV-1 [41–43]. In CypA

knockout (PPIA 2/2) Jurkat CD4+ human T cells, wild type

HIV-1 and G89V viruses are equally impaired and Cs does not

have additive effect, which suggested that among the sixteen

human cyclophilin domain-containing proteins, only CypA has a

functionally relevant interaction with the HIV-1 capsid [44].

Recent evidence suggested that a primary function of CypA

binding to CA is to prevent sensing of viral DNA in the cytosol and

avert triggering of innate immune pathways [45,46].

Nup358 scored as a hit in two large scale siRNA screens for

HIV-1 dependency factors [19,20]. Of potential interest in

addition to the CHD, the C-terminal end of the protein also

contains an active SUMO E3 ligase domain [47,48]. There is

evidence that some HIV-1 virion proteins are sumoylated [49,50]

and that sumoylation of certain cellular proteins precedes

transport across the nuclear pore [31]. Nup358 also associates

with and regulates interphase microtubules [51], which play a role

in transit of the HIV-1 reverse transcription complex after nuclear

entry [52]. To date, studies on the protein’s role in the HIV life

cycle have used RNAi to deplete it, often in HeLa or 293T cells

[19,20,24,26,28,29]. Nup358 knockdown was reported to impair

infection of cells by HIV-1 in these studies and two observed

altered integration site distributions after knockdown [28,29].

Using purified proteins, Schaller et al. subsequently showed that

the Nup358 CHD can bind to the HIV-1 CA N-terminal domain

(NTD) in vitro [29]. A TRIM-Nup358Cyp fusion protein

constructed to mimic a naturally occurring TRIM-Cyp protein

[53] inhibited infection [29]. Certain HIV-1 viral capsid mutants,

such as N74D, were not impaired by Nup358 knockdown in HeLa

cells and interact poorly with Nup358Cyp in vitro; however they

remained puzzlingly sensitive to TRIM-Nup358Cyp [29]. CypA

interaction-abrogating capsid mutations and cyclosporine reduced

Nup358 dependence. It was proposed that CypA engagement of

HIV-1 capsid directs the virus through a pathway in which a

subsequent Nup358Cyp-capsid interaction facilitates uncoating,

nuclear entry and integration [29].

While this hypothesis has appeal as a way to connect CA-

Cyclophilin protein binding with PIC transit across the nuclear

pore, a number of issues need to be considered in interpreting

existing data. Interaction in cells between the viral capsid and the

Cyp domain of the nucleoporin itself has not been demonstrated.

The capsid of the primate lentivirus SIVmac does not interact with

CypA or Nup358Cyp yet SIVmac shares with all lentiviruses the

property of non-dividing cell infection and it interacts with other

main early event factors such as TNPO3, CPSF6 and Nup153.

While the dissociation constant (Kd) for the interaction of HIV-1

CA with Nup358Cyp was initially reported on the basis of

isothermal titration calorimetry (ITC) to be 16 mM (compared to

7 mM for CypA) [29], this was later revised to 94 mM [54] and Lin

et al. reported an even weaker ITC-determined affinity

(Kd.200 mM) [55]. HeLa have been the main cell used for

Nup358 knockdowns in viral life cycle analyses [29]. These

cervical cancer cells are exceptionally genetically aberrant [56]

and might have been selected through their epic passage and

expansion history to have distinctive nuclear import pathways.

The large size of Nup358 (9.7 kb cDNA) complicates re-

expression of full-length protein or specific domain-deletion

mutants and these controls have not been performed. This might

be critical, because knockout of murine Nup358 is embryonic

lethal, as might be anticipated for a protein integral to a structure

with so fundamental a role in cellular homeostasis [57,58]. A

metazoan cell translocates approximately 106 cargos/second

across the nuclear envelope [59]. Indeed, Hamada et al. recently

showed that inactivation of the Nup358 gene in mouse embryonic

fibroblasts disrupts classical NLS (cNLS)- and M9-mediated

nuclear import and is rapidly lethal [58]. Importantly, preserva-

tion of nucleocytoplasmic transport and cellular viability was

achieved by expression of an N-terminal Nup358 fragment

harboring the leucine-rich region (LRR), three FG repeats and

the first Ran-binding domain (RBD1) [58]. Corroborative

evidence was provided by Wälde et al. [60]. Here we used this

genetic system to assess the role of Nup358 in the lentiviral life

cycle. Importantly, we were able to test in fully viable cells the

specific functional relevance of Nup358 C-terminal domains,

including the Cyp and SUMO E3 ligase domains. We also

analyzed RNAi-mediated Nup358 depletion in human cells. For

this we used not only HeLa cells but also human CD4+ T cell lines

that we acutely and stably depleted of Nup358. We found that if

human cells can accommodate homeostatically to loss of Nup358,

and mouse cells to loss of the C-terminal half, they remain

competent for viral early events.

Results

Derivation of knockout cell lines that express variable
segments of Nup358

Nup358 domain structure is illustrated in Figure 1A. We

derived Nup3582/2 mouse embryonic fibroblasts (MEFs) as

previously described [58], according to the scheme shown in

Figure 1B. The three independent floxed (F/F) MEF cell lines used

here, designated as lines 17, 18, and 19, were derived from 13.5

day old embryos and immortalized by transduction with large T

antigen. Cells were then transduced with a lentiviral vector

encoding Cre recombinase, which results in exon 2 excision and

Author Summary

The purified cyclophilin homology domain (CHD) of
Nup358/RanBP2 can interact with assembled HIV-1 capsids
in vitro, which suggests that, in cells, the incoming virus
core could be engaged functionally by the CHD prior to
nucleopore traverse. Interpretations of Nup358 knock-
downs have been complicated by toxicity due to globally
altered cellular nucleocytoplasmic transport and by a lack
of re-expression controls, which are difficult because of the
protein’s size. We present the first analyses of the HIV-1 life
cycle in Nup358 knockout cells and in Nup358-depleted
human CD4+ T cells, and the first detailed studies of
domain requirements and re-expression controls. We find
that the N-terminal portion containing three FG repeats
rather than the C-terminal portion of Nup358 is sufficient
to preserve HIV-1 infection susceptibility in dividing and
non-dividing gene knockout cells. Mouse and human
versions of CypA and Nup358Cyp are functionally equiv-
alent and TNPO3 displays marked dependency factor
activity in cells of both species. A human CD4+ T cell line
can be stably deficient in Nup358 without loss of HIV-1
permissivity. The data support an important, though
cyclophilin homology domain-independent, role for
Nup358 in the HIV-1 life cycle and demonstrate conserva-
tion of HIV-1 early event pathways between human and
mouse cells.

HIV-1 and Nup358/RanBP2
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simultaneously generates a frame-shift. Cre-mediated gene inac-

tivation in Nup358F/F cells causes progressive cell death starting

on day 5 after transduction, with complete loss of viable cells

between days 8 and 10. This correlates with loss of immunoblot-

detectable Nup358 by day 6 and absent nuclear rim staining for

Nup358 and RanGAP1, as well as with fundamental defects in

receptor-mediated nuclear import [58]. As expression of the N-

terminal 1340 amino acids preserves cNLS-mediated cargo import

and cell viability [58], we expressed this and other human Nup358

deletion mutants shown in Figure 1A prior to Cre/lox-mediated

gene inactivation, using a Tol2 transposon system [61] to express

them as GFP fusion proteins (e.g., GFP1-1340).

HIV-1 infection of Nup3582/2 cells
We initially compared de novo derived Nup3582/2 null cells to

stable 2/2 cells that express the transposon-encoded N-terminal

1340 amino acids required to support sustained viability

(Nup3582/2[GFP1-1340] cells). Two separate Nup358F/F lines (17

and 18) were transduced with a lentiviral vector encoding Cre

recombinase and pac, with selection in puromycin commencing

24 hours later. All untransduced control line 17 and line 18 cells

died in selection by 48 hours. On day 6 after Cre transduction,

deletion of exon 2 was confirmed (Figure 1C) and there was no

detectable Nup358 protein (Figure 1D), which coincided with the

appearance of progressive cell death in the culture. Ten-fold

inhibition of single cycle HIV-1 infection was observed in

Nup3582/2 cells that remained alive (Figure 1F). Thus, Nup358

gene inactivation impairs cellular permissivity to HIV-1 infection.

When just the N-terminal 1340 residue fragment was expressed

prior to exon 2 excision (Nup3582/2[GFP1-1340] cells, Figure 1E,

lane 2), HIV-1 infectivity was rescued (Figure 1F). We also assessed

N74D CA mutant virus in Nup358 null cells. This mutant arises

under selection pressure in cells expressing CPSF6-358, a

truncation mutant of cleavage and polyadenylation factor 6 [24].

It has been reported to render the virus independent of CPSF6-

358, Nup153, Transportin-3 (TNPO3) and Nup358

[24,25,27,29,62]. N74D virus infection was equivalently inhibited

in the Nup358 null state (Figure 1F), but also rescued by GFP1-

1340. We did not observe significant reduction of 2-LTR circle

formation in the complete absence of the protein (Figure 1G),

suggesting a defect after nuclear entry. Integrated provirus

formation was decreased in the Nup358-null cells and this was

rescued by the GFP1-1340 fragment (Figure 1H). Therefore, the

data suggest that acute loss of Nup358 impairs the ability of HIV-1

to proceed to integration after entry. Importantly, however, the

cell viability-rescuing N-terminal segment containing the leucine-

rich domain, three FG repeats and one Ran-binding domain – but

lacking the CHD – is sufficient for rendering cells permissive to

HIV-1 infection.

We also infected cells with HIV-1 capsid mutant G89V, which

is defective for CypA binding. We verified that, as expected, this

virus was uninhibited by owl monkey TRIMCyp (OMTC) or the

same protein in which the OMTC Cyp domain was replaced by

the Nup358 CHD, whereas wild type HIV-1 was potently blocked

(Figure S1). These WT and G89V viruses were inhibited ten- and

six-fold respectively by acute Nup358 gene inactivation but this

was prevented if the 1-1340 N-terminal amino acid fragment was

pre-expressed (Figure 1I). SIVmac was inhibited less by the gene

excision but importantly, this difference did not depend on the

CHD as, similar to HIV-1, SIVmac was unimpaired in Nup3582/

2[GFP1-1340] cells (Figure 1I). Therefore, relative to control cells,

cells that express the N-terminal FG repeat-containing portion of

Nup358 supported undiminished infection by primate lentiviruses

whether or not their capsids bind cyclophilins (89G versus 89V,

SIVmac) or TNPO3 (74N versus 74D).

Infection of cells with trimmed filaments: The N-terminal
1340 amino acids of Nup358 segment support retroviral
infection

We then conducted further studies in Nup3582/2[GFP1-1340]

cells. We confirmed deletion of exon 2 and lack of detectable

Nup358 (Figure S2). Growth curves of paired lines were similar,

with less than 2 to 3 fold differences in total cell accumulation after

4 days of log phase expansion (Figure S3). Additional single cycle

infections revealed no significant differences in susceptibility to

infection between parental Nup358F/F and cells with trimmed

filaments (Figure 2A). To exclude that an excess of capsid was

Figure 1. Generation of Nup3582/2 cell lines. A) Domain structures of wild type human Nup358 and deletion mutants expressed in Nup358
null (2/2) cells. The leucine rich region (LRR) and NPC (nuclear pore complex targeting) domain mediate nuclear pore localization. The Nup358
proteins were expressed prior to Cre-lox mediated murine Nup358 gene inactivation, with eGFP fused to their N-termini. The resulting cell lines were
named Nup3582/2[GFP1-1340], Nup3582/2[GFP1-2561], etc. Pre-complementation with GFP-1-1340 prior to Cre-mediated knockout generates a situation
analogous to removing the 1,884 C-terminal amino acids of Nup358. R1-4: Ran binding domains 1–4. IR: internal repeat region, which has SUMO E3
ligase activity. CHD: cyclophilin homology domain. Vertical lines: FG repeats. B) Knockout cell line generation. Crossing Nup358 hypomorph mice
(Nup358H/H) with FLPeR mice to excise an expression-attenuating neoR insertion yields floxed (Nup358F/F) mice with loxP sites in introns flanking
exon 2 [58]. Thus, F/F MEFs display Nup358 expression equivalent to wild type (+/+) MEFs [58]. Three separate Nup358F/F lines, numbered 17, 18 and
19, were derived from 13.5 day old embryos. Transduction of these lines with a TSIN series lentiviral vector [80] encoding Cre recombinase was used
to excise exon 2, generating 2/2 17, 18, and 19 cell lines that were or were not pre-complemented with the proteins shown in Figure 1A. C) PCR
analysis of DNA isolated from parental Nup358F/F, stable Nup3582/2[GFP1-1340] MEFs, or Nup358F/F parental MEFs 6 days post Cre-expression using
primers spanning exon 2. The numbers below the lanes indicate individual F/F cell lines used. Expected bands are 650 bp for an Nup358F/F locus and
120 bp for a Nup3582/2 locus. D) Immunoblot for Nup358 in the cell lines tested in panel C with Nup358 antibody. Nup3582/2[GFP1-3224] is used as a
size control; note that it is slightly larger than endogenous Nup358 as predicted. Tubulin is used as a loading control. E) Immunoblotting of cell lines
using antibody to GFP. The predicted size for GFP1-1340 is 174 Kd. These lines, derived from F/F line 18, were used in the panel F-I experiments. The
lower band detected in all lanes, including GFP-lacking F/F cells, is a non-specific band detected by this antibody. F) Wild type reporter virus HIV-1luc

[80] and capsid mutant N74D HIV-1luc were used to infect Nup358F/F, Nup358F/F+Cre and Nup3582/2[GFP1-1340] cells. Luciferase activity was measured
24 hours later and normalized to trypan blue-excluding cells. Error bars denote the s. d. of duplicate luciferase activity measurements in each
experiment. The experiment shown is representative of N = 3 for wild type capsid and N = 2 for N74D capsid. G) HIV-1luc D64N was used to infect the
indicated cell lines and 2-LTR circles were measured in triplicate 22 hours post-infection. Each error bar denotes s. d. of 3 measurements of each
sample. H) Integration analysis on indicated cell lines. Integration was assayed on total DNA isolated from the indicated cell lines 10 days after
challenge with HIV-1luc with two inputs (10 and 50 ml). Each error bar denotes s. d. of 6 measurements of each sample. I) Infection with HIV-1, HIV-1
G89V and SIVmac, with and without Nup358 gene deletion, and with and without GFP1-1340 pre-expression. Experiments were performed as in
Fig. 1F. The x-axis numbers 17 and 18 refer to two independently derived MEF Nup358 knockout cell lines. For line 18, we infected in parallel cells in
which, prior to Cre-mediated gene expression, we had stably expressed a protein comprised of the N-terminal 1340 amino acid segment of Nup358
(black bars). Error bars denote the s. d. of duplicate luciferase activity measurements. Experiments are representative of N = 3 for wild type capsid HIV-
1, N = 2 for G89V capsid HIV-1, and N = 2 for SIVmac.
doi:10.1371/journal.ppat.1003969.g001
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saturating a block in the Nup3582/2[GFP1-1340] cells, we infected

the same cells with serial dilutions of virus. No significant

impairment in infection was apparent over a three log10 range

(Figure 2B). The challenge experiment was then repeated ten

times. The results, presented in Fig. 2C where values for GFP1-

1340-repleted 2/2 cells are graphed as a percentage of that in F/

F cells, affirmed the conclusion that infection is as efficient in cells

with trimmed Nup358 filaments as in cells with intact filaments.

The observed rescue is not due to over-expression of GFP1-1340,

as this protein is expressed at a relatively low level (Fig. S2C).

Next we challenged the paired cell lines with additional

retroviruses: feline immunodeficiency virus (FIV), equine infectious

anemia virus (EIAV) and Moloney murine leukemia virus (MLV)

(Figure 2D, E, F). In all cases, no significant difference was observed

between Nup358F/F and Nup3582/2[GFP1-1340] cells. Importantly

then, mouse cells lacking the C terminal 1,884 residues of Nup358,

Figure 2. Detailed analysis of Nup358 knockout MEFs expressing the minimal Nup358 fragment, GFP1-1340. A) Paired cell lines (17,
18,19) either wild type Nup358F/F or stable knockout Nup3582/2[GFP1-1340] cells that express GFP1-1340 were infected with a VSV-G pseudotyped
single cycle reporter virus HIV-1luc. Samples were analyzed for luciferase activity 96 hours later and values were normalized to protein concentration.
Error bars indicate the standard deviation between duplicate luciferase activity measurements in each experiment. B) The indicated cells were
infected with serial dilutions of HIV-1luc reporter virus. C) Aggregate results of repeated experiments (n = 10) in stable Nup3582/2[GFP1-1340] knockout
cells, presented as a percentage of the values for parental Nup358F/F cells. The mean of the ten separate infection experiments is shown. 17 and 18
refer to separate Nup3582/2[GFP1-1340] stable knockout MEFs. The p-value obtained using a two tailed T test between 17 and 18 Nup358F/F and
Nup3582/2[GFP1-1340] was 0.62 and 0.79 respectively. D–F) Nup358F/F cells and Nup3582/2[GFP1-1340] cells were transduced with luciferase-encoding
retroviral vectors. (D) FIV; (E) EIAV; F) MLV. Samples were analyzed for luciferase activity 96 hours later and values were normalized to protein
concentration. Error bars indicate the standard deviation between duplicate luciferase activity measurements in each experiment. G) Results of 2-LTR
circle measurements (n = 5 experiments) in stable Nup3582/2[GFP1-1340] knockout cells, presented as a percentage of the values obtained in parental
Nup358F/F cells are shown for an integration competent (WT) and an integration mutant (IN D64N) HIV-1luc. Statistical analysis was performed using
two tailed T-test, p-values were 0.038 and 0.02 for WT and D64N samples respectively.
doi:10.1371/journal.ppat.1003969.g002
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which includes the SUMO E3 ligase and cyclophilin homology

domains, are normally permissive for infection with lentiviruses

from each of the three main species groups (primate, feline,

ungulate) as well as with a gammaretrovirus.

To assess nuclear import of viral DNA, 2-LTR circle formation

was determined with an integration-competent virus and with an

integrase catalytic center mutant virus (D64N). The latter was used

to maximize circle formation. Aggregate data from 5 separate

experiments with two independently derived MEF cell lines is

presented as a percentage of 2-LTR circles seen in the parental cell

lines (Figure 2G). A small but statistically significant difference

in 2-LTR circle formation was seen with 1.7-fold (wild type

IN, p = 0.038) and 1.3-fold (D64N, p = 0.02) less circles in

Nup3582/2[GFP1-1340] compared to Nup358F/F. No deficit in 2-

LTR circle generation was apparent in knockout cells expressing

full length Nup358 (Figure S4).

Nup358 1-1340 supports HIV-1 infection in non-dividing
cells

Because non-dividing cell infection by lentiviruses requires

nucleopore transit, we examined the effect of cellular Nup358 status

on the ability of HIV-1 to infect cells arrested in G1/S. Nup358F/F

and Nup3582/2[GFP1-1340] cells were treated with aphidicolin for

24 hours. FACS analysis with propidium iodide showed that 98% of

the cells were arrested in G1/S (Figure S5). Significant differences

were not observed between cells with intact and trimmed Nup358

filaments, whether or not cells were cycling (Figure 3).

Assessment of the SUMO E3 ligase domain and
additional C-terminal segments

Additional Nup358 2/2 cell lines that express human Nup358

variants containing more C-terminal regions were analyzed next.

GFP1-2561 contains zinc finger domains and two additional Ran-

binding domains but lacks the Cyp domain, while GFP1-3224DIR

lacks only the SUMO E3 ligase domain (Figure 1A). GFP1-3224 is

a fusion of eGFP to all of Nup358. As the Nup358 allele used for

all of our experiments is the human one, GFP1-3224DIR and

GFP1-3224 allowed us to also ask whether the human Nup358-

Cyp domain has unique properties versus the murine domain.

(Figure S6 shows an alignment of the mouse and human

Nup358Cyp domains). Deletion of exon 2 was verified (Figure

S7) and expression of GFP-Nup358 mutant proteins of predicted

size was confirmed (Figure 4A). HIV-1luc infection challenge did not

reveal significant differences in susceptibility to infection in three of

the four cell lines compared to F/F cells (Figure 4B). We did

consistently observe moderately higher luciferase activity levels in

HIV-1luc-infected MEFs expressing full length human Nup358

(GFP1-3224 cells, Figure 4B and Figure S8A). The reason for this is

not clear, but immunoblotting also indicated that there is more full

length human protein expressed in these cells than full length

murine protein in F/F cells (see Figure S8B). Challenges with an

HIV-1 vector in which expression is under the control of an internal

CMV promoter corroborated these results, but in this case, no

discrepancy between GFP1-3224 cells and the other lines was

observed (Figure 4C). Total integrated gag DNA copies were similar

in all the cell lines as well (Figure 4D). Lastly, we assessed N74D CA

mutant virus. As Figure 4E shows, the mutant virus behaved

similarly to wild type HIV-1 in the presence and absence of full

length Nup358, suggesting that whether or not HIV-1 utilizes the

alternative nuclear import pathway that has been hypothesized for

the N74D mutant virus and FIV [24], the presence of the Cyp and

SUMO domains in Nup358 is not highly consequential.

HIV-1 requirement for TNPO3 in Nup358FF and Nup3582/

2[GFP1-1340] MEFs
To assess the similarity of mouse and human early event

dependency factor systems, we depleted the karyopherin b TNPO3

(Transportin-3) in Nup358FF and Nup3582/2[GFP1-1340] cells

(Figure 5A). TNPO3 has been implicated in HIV-1 early events,

with conflicting evidence for nuclear import and post-import roles

and for integrase or capsid as the principal viral interactor with this

protein [19,22,23,27,28,62–66]; Indirect action via effects on

intracellular CPSF6 location may also be important [67,68].

Immunoblotting at 72 hours after siRNA addition confirmed

TNPO3 depletion (Figure 5A). The cell lines were challenged with

WT and N74D reporter viruses. Figure 5B shows that the WT virus

is strongly dependent on TNPO3 in Nup358F/F and Nup3582/

2[GFP1-1340] cells but the N74D virus is not. This strong phenotype

contrasts with the results obtained with Nup358 depletion in our

study. They are consistent with previously published results in

human cells and they suggest that HIV-1 utilizes common nuclear

import pathways in the cells of both mammals. The results establish

as well that TNPO3 dependency does not depend upon the C-

terminal 1,884 amino acids of Nup358.

Functional equivalence of the mouse and human
versions of CypA and Nup358Cyp

The role of the cellular prolyl isomerase CypA in lentiviral life

cycles is complex [69]. HIV-1 capsid interaction with CypA

facilitates HIV-1 infection in most human cells. In rhesus macaque

or African green monkey cells, interaction with CypA paradox-

ically decreases HIV-1 infectivity by facilitating TRIM5alpha-

mediated restriction. On the other hand, CypA does not interact

with the primate lentivirus SIVmac. Its role in lentiviral life cycles

has been investigated for two decades but remains incompletely

Figure 3. Growth arrested cell experiments. MEFs were growth-
arrested in aphidicolin 1 mg/ml for 24 hours prior to infection with HIV-
1luc. Aphidicolin was maintained throughout the experiment. Growth
arrest was confirmed by FACS analysis (Figure S5). Cells were harvested
for luciferase activity measurement 48 hours after infection. Error bars
indicate the standard deviation for duplicate luciferase activity
measurements in each experiment.
doi:10.1371/journal.ppat.1003969.g003

HIV-1 and Nup358/RanBP2

PLOS Pathogens | www.plospathogens.org 6 February 2014 | Volume 10 | Issue 2 | e1003969



HIV-1 and Nup358/RanBP2

PLOS Pathogens | www.plospathogens.org 7 February 2014 | Volume 10 | Issue 2 | e1003969



understood [69]. Schaller et al. recently proposed that engagement

of cytoplasmic CypA by capsid is the first step of a nuclear

transport pathway involving TNPO3, Nup358, and Nup153 [29].

They reported that, unlike the HIV-1 CA-CypA interaction, in

vitro binding of assembled capsids to the Nup358 Cyp domain is

cyclosporine-insensitive. Intracellular restriction of HIV-1 by

TRIM-Nup358Cyp was, unlike TRIMCyp restriction, also not

rescued by cyclosporine, but this drug did rescue the virus from

cellular Nup358 depletion [29]. Two groups subsequently

presented evidence for a model in which CypA shields incoming

HIV-1 from detection by a cytosolic DNA sensor [45,46]. CypA is

highly conserved in mammals and the amino acid sequences of

mouse and human CypA are 98% identical. Here, we first

ascertained that levels of CypA were comparable between

Nup358F/F and Nup3582/2[GFP1-1340] cells (Figure 6A). We then

tested whether cyclosporine impacted viral phenotypes in a

Nup358-dependent manner. When 5 mM cyclosporine was added

to cells at the point of infection, no difference was noted

(Figure 6B). This was in clear contrast to owl monkey kidney

cells (positive control), where this induced a marked rescue from

TRIMCyp inhibition as expected [53].

We next expressed mouse CypA in CypA gene knockout

(PPIA2/2) human Jurkat cells [44] to determine if it can substitute

functionally for human CypA. Mouse and human CypA each

rescued the HIV infectivity defect in PPIA2/2 cells, showing

functional equivalence of the two CypA proteins (Figure 6C).

Finally, as noted above, TRIMNup358Cyp inhibits both WT and

N74D HIV-1 [29]. We tested if mouse Nup358Cyp and human

Nup358Cyp were similarly antiviral when used in this way to

replace the Cyp domain of owl monkey TRIMCyp (Figure 6D,E).

Equivalent expression of the TRIMhNup358Cyp and proteins was

confirmed (Figure 6D) and the effects on HIV-1 WT, HIV-1

N74D, FIV and MLV were determined (Figure 6E). The

lentiviruses, but not MLV, were inhibited equally by both

OMThNC and OMTmNC (Figure 6E). Therefore mouse and

human Nup358Cyp can bind lentiviral capsids equivalently and

this binding is dependent on the CA cyclophilin binding domain.

Nup358-depleted human CD4+ T cells
We inferred from the foregoing results that there is substantial

conservation of HIV-1 nuclear import pathways between mouse

and human cells. The effects of acute Nup358 depletion could be

indirect and depend on the important role this protein has in

maintaining nucleocytoplasmic transport of many cellular cargos

and transport receptors and hence in preserving homeostasis.

Alternatively, the N-terminal segment containing the three FG

Figure 4. Nup358 variants with additional C-terminal regions. A) Immunoblot demonstrating expression of appropriate Nup358 mutant
proteins. Primary antibody is to GFP. B) HIV-1 reporter virus challenge of indicated cell lines. C) HIV-1 mCherry vector challenge of indicated cells.
Cells were transduced with vector TsinCherry and analyzed by FACs 72 hrs later. Two separate infections at two inputs (10 ml and 2 ml) are shown.
10,000 events were collected per sample. D) Total integrated gag DNA copies in the indicated MEF cells were measured ten days post transduction.
Results are normalized to GAPDH copies. E) Indicated cell lines were challenged with an HIV-1luc N74D capsid mutant virus. Luciferase activity was
analyzed as described. Error bars indicate the standard deviation between duplicate luciferase activity measurements in each experiment. 17 and 18
refer to independently derived MEF cell lines. This experiment was repeated twice with similar results.
doi:10.1371/journal.ppat.1003969.g004

Figure 5. HIV-1 TNPO3 dependence is the same in human and mouse cells. A) Indicated cell lines were transfected with control siRNA or
siRNA for TNP03. At 72 hours after transfection, cells were harvested and analyzed for TNPO3 protein levels. Tubulin loading control is shown also. B)
MEFs treated with siRNAs (solid black bars: control siRNA; hatched gray bars: TNPO3 siRNA) were challenged with WT or N74D HIV-1 reporter virus.
Intracellular luciferase activities were determined 72 hrs after infection. 17 and 18 refer to two independently derived MEF Nup358 knockout cell
lines. P value, obtained using a two tailed T test, for the difference between control compared to TNPO3 siRNA is 0.005.
doi:10.1371/journal.ppat.1003969.g005
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Figure 6. Human and mouse cyclophilin domains are functionally similar. A) CypA protein levels in Nup358F/F and Nup3582/2[GFP1-1340] cell
lines. Wild type and knockout Jurkat cells were included as positive and negative controls respectively. B) Cyclosporine (Cs) has minimal effect on HIV
infection in the presence or absence of the C-terminal domain. Indicated cell lines were transduced with HIV-1 reporter virus in the presence of
absence of 5 mM Cs. OMK cells were included in the experiment as a positive control. C) Jurkat PPIA2/2 cells were transduced with lentiviral vectors
expressing either a HA tagged human or untagged mouse cyclophilin. Cells expressing the indicated constructs were challenged with HIV reporter
virus (top panel). Cyclophilin expression was confirmed using antibody to CypA (lower panel). D) TRIM-CHD fusion proteins. The Cyp domain of owl
monkey TRIMCyp (OMTC) was replaced with the human or mouse Nup358 CHD (creating proteins OMThNC and OMTmNC respectively). The proteins
were expressed stably in CrFK cells, which lack endogenous TRIM5alpha or TRIMCyp restriction. Cells were transduced with dual promoter vectors
that express GFP and OMTC, OMThNC or OMTmNC. Expression of appropriate sized fusion proteins was confirmed by western blotting with rat anti-
HA. Equivalent GFP expression was also observed. Tubulin was immunoblotted as a loading control. E) Parental and restriction factor-expressing CrFK
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repeats may interact directly with the PIC component or a PIC-

associated transport receptor. Previously reported Nup358 knock-

down experiments have used HeLa cells frequently [24,26,29].

Indeed we confirmed the inhibitory effect of Nup358 knockdown

in these cells, as well as resistance of the N74D capsid-mutant virus

(Figure 7A,B). However, because HeLa cells are not representative

of the normal in vivo CD4+ T cell targets of HIV-1 and have also

accumulated an extreme burden of genetic aberrations ([56]; see

also [70]), they might be unrepresentative in pertinent respects,

especially nuclear transport pathways. We therefore carried out

transient and stable Nup358 depletions in an HIV-1-susceptible

human CD4+ T lymphocyte cell line, SupT1 (Figure 8).

Single cycle HIV-1 infection was inhibited when SupT1 cells

were depleted acutely with Nup358 shRNA-transducing lentiviral

vectors (Figure 8A–C). Infections with normalized inputs showed

that CypA binding mutant HIV-1 (G89A) had reduced infectivity

compared to wild type HIV-1 in the parental and knocked down

cells (Figure S9). The HIV-1 N74D CA mutant was also inhibited

by the Nup358 depletion (Fig. 8C, left columns). Similar to what

we observed when Nup358 was abruptly depleted in primary

mouse cells by Cre excision of the gene, there was temporary

growth cessation followed by visible cell death in the culture 7–10

days after knockdown. However subsequent passage of the

shRNA-transduced SupT1 cells yielded stably Nup358-depleted

cells that were indistinguishable from the parental cell line in

growth rate, maximum culture density, individual cell morphology

and cluster morphology. Nup358 remained depleted (Figure 8D).

SUMO-1 conjugated RanGap1 requires Nup358 for protection

from SUMO-1 isopeptidases [58]. Confirming functionally the

immunoblotting with the two antibodies, there was little detectable

sumoylated RanGap1 (77 kDa band) and a concomitant increase

in unconjugated RanGap1 (65 kD band) in the stable Nup358

depleted cells (Figure 8E). However, in these healthy Nup358-

deficient human CD4+ T cells there was no significant inhibition

of HIV-1, N74D HIV-1, FIV or MLV (Figure 8C,F). Integration

levels in control and Nup358-depleted cells were identical

(Figure 8G).

To assess viral dependence further, SupT1 cell lines were

assessed for extent, specificity and stability of Nup358 depletion

(Figure 9A) and simultaneously infected with multiple different

retroviruses (Figure 9B). The RNAi was highly specific to Nup358

as shown by probing with an antibody that detects it and three

other FG repeat nucleoporins (Figure 9A). In addition, the

knockdown was stable, persisting over 5 months in culture.

SIVmac showed the same profile as HIV-1 in single input

experiments (Figure S10). We challenged cells over a range of viral

inputs with this virus, HIV-1, HIV-1 cyclophilin binding mutant

capsid viruses (P90A, G89A, G89V), as well as FIV, EIAV and

MLV (Figure 9B). MLV was the most affected by acute depletion,

consistent with the growth-arresting effect, with approximately a

one log shift to the right. For the lentiviruses, there was moderate

infection impairment after acute Nup358 depletion whether the

virus capsid protein can (HIV-1) or cannot (SIVmac, HIV-1 P90A,

G89A, G89V) bind the Nup358 CHD. With the exception of a

slight inhibitory effect on EIAV, the tested viruses were

unimpaired in stably depleted SupT1 cells. Thus, in this human

CD4+ T cell line, capsid ability to bind cyclophilins did not

correlate with viral phenotypic response to acute or stable Nup358

depletions.

Discussion

We have examined the role of Nup358/RanBP2 in the HIV-1

life cycle using a conditional knockout system that completely

eradicates the protein from cells, as well as human CD4+ T cells

depleted with RNAi. Our results are in agreement with previous

knockdown studies in concluding that acute depletion of Nup358

does clearly inhibit HIV-1 infection [19,20,24,26,28,29]. This is

the first study to carry out domain analyses and back-comple-

mentation studies and the first to use human CD4+ T cells. We

emphasize four main observations. One is that the N-terminal

1340 amino acids of Nup358 are sufficient to prevent loss of

viability and major nuclear import pathway competence in

Nup358 gene-knockout cells [58,60]. A critical housekeeping

function of Nup358 appears to be the capture of recycling

RanGTP–importin-b complexes at the cytoplasmic face of the

nuclear pore, thus maintaining the Ran-GTP cycle, cNLS-

mediated cargo import and cellular health. The 1340 amino acid

segment with RBD1 is sufficient, while deletion of RBD1

abrogates cNLS-containing cargo import [58]. Acute removal of

Nup358 may alter the nucleocytoplasmic transport of many

cellular cargos. Our experiments establish that the N-terminal

portion with one Ran-binding domain and three FG repeats is

sufficient for maintaining lentiviral competence to proceed after

entry to integration and proviral transcription. Thus, our results

indicate that Nup358 does play an important role in the HIV-1 life

cycle, albeit one that is more likely to depend on the FG repeats,

akin to the role recently demonstrated for these elements in

Nup153 [71], rather than the CHD.

A second important observation was made in immortalized

human CD4+ T cells. Here similar acute toxicity and concomitant

decreases in HIV-1 infection were observed after RNAi-mediated

depletion. However, when these cells adapted to stable Nup358

deficiency, HIV-1 infection was not impaired (Figure 8F, Figure 9).

In both mouse cells and SupT1 cells, if the global cellular

alterations caused by abrupt Nup358 loss are ameliorated, viral

infection is concomitantly rescued. The toxicity observed in both

abruptly gene-inactivated mouse cells and in abruptly knocked

down SupT1 cells shows that significantly altered cellular

physiology can follow sudden deprivation of Nup358. Comparable

inhibition of lentiviruses that do or do not bind cyclophilins in

acutely depleted mouse (Figure 1I) and human cells (Figure 9)

suggests a CHD-independent virological role. That HIV-1 is not

blocked in stably Nup358-depleted SupT1 cells supports a cellular

homeostasis disruption model rather than a cofactor role mediated

through the Nup358 CHD.

Third, we obtained evidence that viral nuclear import

pathway(s) are substantially conserved between mouse and

human cells. We show that TNPO3 facilitates infection in

MEFs as in human cells. This is independent of the Nup358Cyp

domain and was apparent in both WT MEFs and cells where

only the Nup358 N-terminal amino acids were present. Fusions

of mouse Nup358Cyp or human Nup358Cyp to owl monkey

TRIM equivalently inhibited both WT and N74D HIV-1.

Therefore, both species Nup358Cyp domains function similarly

in this assay. We also show that mouse CypA can rescue the

CypA deficit in Jurkat PPIA2/2 cells. Thus the murine elements

of the proposed sequential cyclophilin binding pathway are

functional.

cells (OMTC, OMThNC, OMTmNC) were challenged with WT HIV-1luc, N74D HIV-1luc,, FIVluc, and NB-MLVluc. Luciferase activity was measured at 2 days
post transduction and normalized to cell number.
doi:10.1371/journal.ppat.1003969.g006
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Fourth, we analyzed the phenotypes of HIV-1 capsid mutants,

including the TNPO3 interaction-defective N74D, and cyclophilin

binding mutants P90A, G89A, and G89V. We further tested

SIVmac, the capsid of which does not bind CypA or the Nup358

CHD. These experiments did not identify Nup358Cyp depen-

dence in mouse or human cells. The roles of CypA-capsid

interactions in lentiviral replication are complex and they remain

incompletely understood. In HeLa cells and monocyte-derived

macrophages (MDM), differential effects between wild type HIV-1

and such viruses led to the proposal that a sequential CypA-

Nup358 CHD interaction regulates core uncoating and that the

failure of P90A HIV-1 to propagate in MDM (and the block

imposed in these cells by CsA) may be due to inability to access

this pathway [29]. However, more recent studies in MDMs and

dendritic cells attribute this block to a different model in which

CypA binding to CA acts to shield against activation of the

cytosolic DNA sensor cGAS [45,46]. It is likely that the

perturbations that follow sudden depletion of a key nucleoporin

can differentially impact the infectivities of viruses that do or do

not bind CypA through mechanisms that do not depend upon the

Nup358 CHD. Here, in mouse cells, SIVmac was less affected

than HIV-1 by acute Nup358 depletion but both were unaffected

when the FG repeat domain-containing, CHD-minus N-terminal

1340 amino acids were present (Figure 1I). In SupT1 cells, on the

other hand, acute Nup358 depletion diminished the infectivity of

viruses that can or cannot bind CypA similarly (Figure 9).

There are now three instances in which the HIV-1 life cycle has

been evaluated in stable cell lines in which Nup358 has been

knocked out or depleted: the Nup3582/2[GFP1-1340] MEFs and

SupT1 cells (present work), and the HeLa cell clones of Schaller et

al. The data taken together may suggest that HeLa cells and

SupT1 cells accommodate differently to persist in the stable

Nup358-depleted state, with SupT1 cells adapting in such a way

that HIV-1 nuclear import is not impaired. Cell, tissue and context

dependent differences in nuclear pore composition may impact

how a given cell type tolerates nucleoporin depletion [72]. The

Nup358 2/2 MEFs studied here are very informative in this

regard as they differ from all the present and prior Nup358

knockdowns in completely lacking any Nup358 protein. These

cells are unable to adapt and survive without pre-repletion of the

1–1340 N-terminal segment that contains RBD1 and three FG

repeats, but then are able to support undiminished HIV-1 infection.

The dispensability of the CHD, and conversely the importance of the

N-terminal FG repeat-containing segment, for HIV nuclear import

in these cells is a departure from the proposed sequential cyclophilin-

binding model. However, given this protein’s central role in nuclear

import, it is not a surprising one. RBD1 is essential for recycling

importin-b to the nuclear rim. A number of karyopherin-b family

members, such as importin-b, importin-7 and TNPO3 have been

implicated in PIC nuclear import [21,73,74]. TNPO3 been suggested

to facilitate nuclear import and integration, with both integrase and

capsid implicated in various studies as the viral determinant

[19,22,23,27,28,62–67]. Because Nup358 is important for nuclear

shuttling of transportin and importin-b [58,75], it may also be

involved in TNPO3 activity. In HeLa cells, knockdown of

Nup358 led to TNPO3 relocalization away from the nuclear rim

and into the cytoplasm [76]. Thus proper trafficking of TNPO3

could be Nup358-dependent. Nup358 has also been shown to

enter a cytoplasmic pool that colocalizes with interphase

microtubules [51]. The N-terminal 1–900 amino acids are

required for this association. This is another possible route

whereby Nup358 might support viral nuclear import. It remains

possible also that Nup358 serves more than one role in the

lentiviral life cycle and this may be cell type-specific. A recent

study found that binding to in vitro assembled HIV CA-NC

complexes was similar for Nup358 proteins having or lacking the

cyclophilin homology domain, suggesting that additional regions

of Nup358 may play a role in CA binding [77].

Figure 7. Acute depletion of Nup358 in Hela cells. A) Hela cells were transfected with control siRNA or Nup358 specific siRNA. Cells were
harvested at 72 and 120 hours and analysed by western blot with two different antibodies. The m414 antibody detects several FG containing
nucleoporins, such that the lower molecular weight nucleoporins serve as loading controls and evidence for specific Nup358 depletion. B) At
72 hours, the transfected cells were challenged with WT or N74D CA HIV-1luc and analysed 48 hours after for luciferase activities.
doi:10.1371/journal.ppat.1003969.g007
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Acutely gene-disrupted mouse cells display impaired infection

by WT and N74D HIV-1. While the N74D virus replicates poorly

in macrophages, and this has been interpreted as consistent with

use of a Nup358-independent nuclear import pathway [29], a

recent study suggested that this block in macrophages is instead

due to an earlier block, prior to reverse transcription [78].

Additionally, the N74D virus is actually hypersensitive to

cyclosporine [78] despite its apparent diversion from the

hypothesized CypA-Nup358Cyp pathway, and it at the same

time remains sensitive to TRIM-Nup358Cyp inhibition ([29], and

the present study). Its resistance to TNPO3 depletion, which we

here confirm (Figure 5 and 7), indicates that numerous factors may

determine the phenotype of this virus.

Unlike the 2/2 MEFs, viable Nup358-depleted SupT1 cells

could be derived without re-expression of any part of the protein.

Thus, these human CD4+ T cells are able to adapt to the lack of

Nup358 and remain fully permissive to HIV-1. The notion that

HIV-1 can utilize nuclear import mechanisms flexibly [24], with

which our study is consistent, is also likely to apply to diverse

cellular cargos. It will be of interest to determine the reasons

underlying the different adaptability of these mouse fibroblasts and

human CD4+ T cells to Nup358 deprivation, as this may shed

light on hypothesized alternate nuclear import pathways. It will

also be of interest to determine HIV-1 integration site distribution

patterns in our cell lines, as it remains possible that although

overall levels of integration and early gene expression were not

substantially affected, integration targeting may differ.

In summary, permissivity to HIV-1 early events is preserved

if cells achieve cellular homeostasis after Nup358 loss (loss of

the whole protein in the case of the human T cells and effective

loss of the C-terminal 1,884 amino acids in the conditional

knockout mouse fibroblasts). Viral phenotypes may reflect two

main and not mutually exclusive sequelae to removal of a major

nucleoporin from the NPC: secondary effects resulting from

Figure 8. Acute and stable Nup358 depletion in human CD4+ T cells. A) SupT1 cells were transduced with a lentiviral vector that co-
expresses mCherry and a Nup358-targeted shRNA. Four days after transduction, cells were uniformly mCherry-positive and protein depletion was
confirmed using mab414. Two separate cell lines were generated (second and third lanes of immunoblot). B) At the same time that cells were
sampled for the immunoblotting shown in (A), they were challenged with HIV-1luc and luciferase activities were analyzed at 48 hours after infection.
C) Infection of Supt1 cells with HIV-1 and HIV-1 N74D capsid mutant reporter viruses after acute (left) and stable (right) knockdown. See panel 8D and
associated text for description of the stable line. D) SupT1 cells 6 weeks after shRNA transduction with two different antibodies confirms persistent
knockdown of Nup358. The two lanes in the top immunoblot are from the same film of the same gel. Note that the smaller nucleoporins detected by
mAb414 confirm equal loading. E) Equal numbers of cells from parental SupT1 or stable shRNA knockdown cells were lysed and used in western blot
for RanGAP1. In the absence of Nup358, sumoylated RanGAP-1 levels decrease, and there is an increase in un sumoylated parent. F) Control (black
bars) and stable Nup358 knockdown cells (hatched bars) were challenged with HIV-1luc (WT or N74D), FIVluc, and MLVluc. G) Integration levels in
control (black bar) and stably Nup358-depleted SupT1 cells (hatched bars) were analyzed by Alu-PCR.
doi:10.1371/journal.ppat.1003969.g008
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systems biology-level perturbations as the nucleocytoplasmic

trafficking of ca. one million cellular cargos per second is altered,

or as suggested by the gene knockout cells pre-complemented

with the N-terminal 1340 amino acids, there may be a direct

cofactor role in which binding of Nup358 to a viral component or

PIC-bound transport receptor is functionally important. Similar

to Nup153 [71], this may involve engagement by FG repeats,

which are present in that N-terminal region as well as in most

other portions of the protein, even in the cyclophilin domain

(Fig. 1A).

Figure 9. Verification of SupT1 knockdown in acutely and stably depleted cells and challenge with HIV-1, HIV-1 G89A, HIV-1 P90A,
SIVmac, FIV, EIAV and MLV. A) Extent, specificity and stability of shRNA knockdown. Cells frozen 1, 2, and 5 months after stable depletion by
shRNA transduction were thawed, passaged for ten days and lysates were immunoblotted with mAb 414, which recognizes Nup358, Nup214,
Nup153 and Nup62. Two different exposures of the left immunoblot are shown. A second immunoblot of the stable cell lines was also done (right
blot). The mCherry marker co-encoded by the shRNA-transducing lentiviral vector was assessed by FACS to further verify stability of expression. These
experiments were done simultaneously with the viral challenges shown in Fig. 9B. MW: molecular weight. C: control. A: acute. 1, 2, 5: cells assessed at
1, 2, and 5 months after stable cell line derivation. B) Control cells, acutely depleted cells and stably depleted cells that were assessed in panel A by
immunoblotting (lanes C, A and 1 respectively) and FACS were challenged with HIV-1, HIV-1 G89A, HIV-1 P90A, SIVmac, FIV, EIAV and MLV vectors.
G89V vector gave the same result as G89A vector (data not shown).
doi:10.1371/journal.ppat.1003969.g009
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Materials and Methods

Nup3582/2 cells
Animal research was performed with the written approval of the

Mayo Clinic Institutional Animal Care and Use Committee in

accordance to all federal, state, and local guidelines and with

fidelity to the guidelines in The Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health and the

accreditation and guidelines of the Association for the Assessment

and Accreditation of Laboratory Animal Care. Nup3582/2 mouse

embryonic fibroblasts were derived as described [58]. Nup358H/H

(hypomorph) mice were crossed with FLPeR transgenic mice.

Three independent MEF cell lines were derived from 13.5 day old

embryos. These were immortalized by transduction with murine

stem cell retrovirus expressing large T antigen. Cells were then

transduced with a lentiviral vector encoding Cre recombinase to

remove exon 2, which frameshifts Nup358. Re-expression of

human RanPB2 deletion mutants was achieved using a Tol2

transposon system [61]. As previously observed by Hamada et al.

(ref [58]; see Fig. S5 therein), 2/2 MEFs pre-complemented with

GFP1-1340 express relatively low levels of this protein. Fig. S2

shows flow cytometry. They are not detectably GFP-fluorescent by

standard epifluorescence microscopy. MEFs were maintained in

DMEM with 10% FBC, PSG, Na pyruvate, Non essential amino

acids and Beta mercaptoethanol. To generate Nup358 null cells,

400,000F/F cells were plated per well of a 6 well. These were

transduced with TsinCrePuro. 24 hours post transduction the cells

were placed in puromycin 3 ug/ml selection. Control cells died

after 48 hours. On day 6, cells were washed and a fraction

removed for PCR and western blotting (see below). Total DNA

was obtained using a DNeasy kit (Invitrogen) and PCR across

exon 2 performed as described. Cells were then plated for HIV-1

challenge. 100,000 or 200,000 trypan blue excluding cells were

plated per well of a 24 well and infected 6 hours later. 24 hours

after challenge trypan blue excluding cells were counted and

luciferase activity was assayed according to the manufacturers

protocol. Assay of HIV integrants in murine cells was performed

as described, using the BBL-1 PCR assay [79].

Immunoblotting
Western blot for full length mouse Nup358 was performed as

described [58] using a rabbit antibody directed at the CypA

epitope, or the mab414 from Covance which detects FG repeat

containing nucleoporins. GFP fusion proteins were detected using

Living Colors Aequorea victoria green fluorescent protein monoclonal

antibody JL-8. Mouse anti-a-tubulin mAb (clone B-5-1-2; Sigma)

was used as a loading control of whole cell lysates. TNPO3

antibody: Epitomics cat no. 3824-1. RanGap1 antibody: N19

Santa Cruz.

RNAi
For Nup358 siRNAs, 30,000 Hela cells were plated per well of 24

well the day before transfection. Control siRNA (Dharmacon D-

001810-01-05, ON-TARGETplus Non-targeting siRNA #1) or

Nup358 siRNA(Dharmacon J-004746-09-0005, ON-TARGET-

plus siRNA, Human RANBP2 (5903)) were resuspended in 1X

siRNA buffer as per manufacturers recommendations. Cells were

transfected overnight with 50 nM of each siRNA using Dharmafect

1 in Accell serum free media. siRNA mix was removed next day and

regular media added. Cells were harvested for western blots

using antibodies indicated above and HIV infection as noted

72 hours after transfection. For Nup358 shRNAs, a lentiviral

vector co-encoding mCherry and an shRNA was used [80]. The

shRNA targets Nup358 sequence GCGAAGTGATGA-

TATGTTT was used. The same shRNA was used by Schaller

et al. in HeLa cells [29]. Vector was produced at large scale in

Cell Factories (Nunc, Nalperville, IL) as described [81,82] and

banked in single aliquots for repeated use. Knockdown correlat-

ed with mCherry-positivity and equivalently fluorescent cells

were taken into viral challenge experiments. SupT1 cells were

transduced with the vector and protein expression analyzed at

different time points. Cells were challenged with lentiviral

reporter viruses as described [83].

TNPO3
25,000 MEFs were plated per well of 24 well. Cells were

treated with 1 mM Accell siRNA control (Dharmacon D-001910-

01-05, Accell Non-targeting siRNA #1) or an Accell mouse

TNPO3 smartpool (Dharmacon E-066710-00-0010, Accell

SMARTpool, Mouse Tnpo3 (320938)) according to the manu-

facturers recommendations. 72 hours after adding siRNA, cells

were washed and processed for western blotting or challenge with

HIV as described.

Owl monkey TRIMcyp fusion proteins (OMThNC and
OMTmNC)

The Cyp domain of mouse and human Nup358 was PCR

amplified from MEF cDNA and a human Nup358 full length

plasmid respectively using the primers OMTRIMhNupCypS

PshAI atatGACAGAAGTCcaacgctactgggacgccgccgcctgggaccttg-

tagcatcagc catgaatcctgtggtgttttttgatgtttgtgcggac, OMTRIMhNup-

CypAS NotI atatGCGGCCGCctatctgtccacattctgtgatagttattcttc,

OMTRIMmNupCypS PshAI atatGACAGAAGTCcaacgctactgg-

gacgccgccgcctgggaccttgtagcatcagccatgaatcctgtggtgttttttgatgtttgtgcg-

gatgg and OMTRIMmNupCypAS NotI atatGCGGCCGCc-

tagctgtccacattctgtgatacaaattcttc. The 553 base pair product was

cloned into the PshA I and Not I sites of an owl monkey

TRIMCyp (OMTC) encoding plasmid to create pOMTh-

Nup358Cyp (OM TRIM+human Nup358 Cyp) and pOMTm-

Nup358Cyp (OM TRIM+mouse Nup358 Cyp). Dual promoter

vectors expressing GFP and either HA-tagged OMTC, OMTh-

Nup358Cyp (abbreviated as OMThNC), or OMTmNup358Cyp

(OMTmNC)were used to introduce the proteins into permissive

Crandell feline kidney cells (CrFK). Cells were confirmed 100%

GFP expressing by FACS using a BD Biosciences FACScan

machine. Specific expression of fusion proteins as well as GFP

was verified by western blot probed with rat anti-HA (3F10,

Roche) at 1:1000 and mAb against GFP (JL-8, Clontech) at

1:8000 respectively. Tubulin was used as a loading control and

detected with anti-alpha tubulin mAb (Sigma) at 1:8000. Anti-rat

secondary (Santa Cruz Biotechnology) at 1:5000 and anti-mouse

secondary (CalBiochem) at 1:5000 were used correspondingly.

Parental and engineered cells were challenged with HIV-1luc, HIV-

1luc with the N74D capsid mutation, FIVluc, and NB-MLVluc at two

vector inputs. Luciferase activity was measured at 2 days post

transduction and normalized to cell number.

Mouse CypA was amplified from MEF cDNA using primers

ataggatccgccgccatggtcaaccccaccgtgttc and atatctcgagttagagctgtc-

cacagtcggaaatggtgatc. This was inserted into a lentiviral vector

where CypA expression was driven by an Ef1a promoter, and

mCherry was expressed from an IRES. Human CypA was

amplified from human cDNA, using the same 59 primer and

primer atatctcgagttaagcgtagtctgggacgtcgtatgggtattcgagttgtccacagt-

cagcaatggtgatc. JurkatPPIA2/2 cells [44] were transduced with

either human or mouse cyclophilin A lentiviral vectors, and FACS

sorted for mCherry expression. WB using rabbit CypA antibody

(Santa Cruz-133494) confirmed cyclophilin A expression.

HIV-1 and Nup358/RanBP2

PLOS Pathogens | www.plospathogens.org 14 February 2014 | Volume 10 | Issue 2 | e1003969



PCR for gene deletion
DNA was isolated from cells using DNeasy kit (Invitrogen)

according to the manufacturers instructions. Primers and condi-

tions for PCR were as described [58].

Reporter virus and vector infections of stable 2/2 MEFs
20,000 cells were plated per well of a 24 well plate. For HIV-1

cells were challenged with HVI-1luc. HIV-1luc is an HIV-1 NL4-3

reporter virus in which the viral accessory gene nef was replaced

with the firefly luciferase (luc) cDNA; it also has a 426 nt deletion

in env [80]. The lowest input used for MEFs was 0.35 Reverse

Transcriptase (RT) units per cell. Cells were washed the next day

and harvested at 4–7 days post infection for luciferase activity

using Bright Glo (Promega) as directed. Luciferase counts were

normalized either to protein content or cell number. FIV luc,

EIAV luc and MLV luc challenges were performed similarly.

Growth arrest
Cells were cultured in aphidicolin 1 ug/ml for twenty four hours.

Cells were then counted and plated for HIV-1 challenge as

described (while maintained in aphidicolin), or processed for cell

cycle analysis in the following manner. Cells were fixed in ice –cold

70% ethanol for 1 hour and then washed in PBS. Valkelovs

Propidium iodide solution with RNAse A was added and incubated

at 4uovernight. Cells were analyzed by FACS the next day.

Cyclosporine assay
Five mM cyclosporine was added to indicated wells with challenge

virus. The drug was washed off the next day and luciferase activity

was analyzed as described above. Knockout Jurkat cells [44] were

used as a negative control for cyclophilin western blotting.

2-LTR circles and viral integration
PCR for 2-LTR circles, total Gag and Alu-PCR was performed

as described [83]. For 2-LTR circles cells were challenged with

HIV-1 and harvested at 22 hours post transduction or at indicated

time points. For integration, cells were transduced and passaged

for 10 days before DNA was harvested and analyzed for total Gag

copies. Both 2-LTR circles and Gag copies are normalized to

GAPDH copies. Assay of HIV integrants in murine cells was

performed as described, using the BBL-1 PCR assay [79].

Supporting Information

Figure S1 Susceptibility of wild type and G89V HIV-1
to Trim-Cyp protein inhibition. OMTC: owl monkey

TRIMCyp. OMhNC: protein in which the OMTC Cyp domain

is replaced by the human Nup358 CHD.

(TIF)

Figure S2 Nup358 knockout cell line analyses. (A) PCR

analysis of DNA isolated from Nup358FF or Nup3582/2[GFP1-1340]

MEFS using primers spanning exon 2. The numbers below the

lanes indicate individual F/F cell lines used. Expected bands are

650 bp for the Nup358 F locus and 120 bp for the Nup358 –

locus. (B) Western blot analysis of same cell lines shown in A with

rabbit Nup358 antibody. GFP-Nup358 is shown as a size control,

it is bigger than Nup358 as expected. Tubulin is shown as loading

control. (C) Flow cytometry for GFP fluorescence in control

Nup358F/F cells (red curves) and Nup3582/2[GFP1-1340] cells (gray

curves). Note the small shift to the right from the GFP1-1340

protein. For comparison, and as a positive control, the lower plot

shows the GFP signal (green curve) after infection of Nup3582/

2[GFP1-1340] cells with a GFP-encoding HIV-1 vector. Consistent

with these results and with the observations of Hamada et al. [58],

GFP1-1340 is not visible by standard epifluorescence microscopy

in Nup3582/2[GFP1-1340] cells (data not shown).

(TIF)

Figure S3 Growth curves of indicated cell lines. 17 and

18 refer to independently derived MEF cell lines.

(TIF)

Figure S4 2-LTR circle analysis in indicated cell lines,
normalized to GAPDH copies.

(TIF)

Figure S5 Representative propidium iodide FACS anal-
ysis of MEF cells either cycling (top graph) or after
growth arrest with aphidicolin 1 mg/ml for 24 hours
(lower graph). The 18FF cells are shown here.

(TIF)

Figure S6 Alignment of human and murine Nup358Cyp
domains.

(TIF)

Figure S7 PCR analysis of genomic DNA isolated from
indicated cell lines, using primers that span exon 2.
Expected bands are 650 bp for the Nup358 F locus and 120 bp for

the Nup358 – locus.

(TIF)

Figure S8 Analysis of effects of GFP1-3224 complemen-
tation of 2/2 cells. (A) Indicated cell lines were challenged

with a range of HIV-1luc dilutions. (B) Immunoblotting. Equal

numbers of cells from 182/2[GFP1-3224] and 18F/F MEF lines were

harvested and used for western blots using antibodies to Nup358

and tubulin. Two different volumes of the same cell lysates were

electrophoresed. GFP1-3224 (lane 1) is relatively over-expressed

compared to the endogenous levels of Nup358 (lane 2).

(TIF)

Figure S9 Comparison of WT and G89A HIV-1 vectors
in SupT1 cells, with or without acute Nup358 knockdown
with shRNA-encoding vectors. HIV infections were carried

out 96 hours after shRNA transduction as in Figure 8. WT and

G89A vectors were prepared in parallel and inputs were RT

activity unit-normalized. Intracellular luciferase activities were

measured 72 hours after infection. Two independent experiments

are shown. The reason for the flatter dose-response slope in

Nup358-depleted cells in the second experiment is unknown.

(TIF)

Figure S10 Challenge of SupT1 cells with luciferase
encoding retroviral vectors. Infections labeled acute were

done six days after knockdown with lentiviral vector encoding

shRNA and mCherry and cells were uniformly mCherry-positive.

The stable cells are described in text and legend for Figure 8D.

(TIF)
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