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Regression analysis is commonly used in genome-wide association studies (GWAS) to

test genotype-phenotype associations but restricts the phenotype to a single observation

for each individual. There is an increasing need for analytic methods for longitudinally

collected phenotype data. Several methods have been proposed to perform longitudinal

GWAS for family-based studies but fewmethods are described for unrelated populations.

We compared the performance of three statistical approaches for longitudinal GWAS in

unrelated subjectes: (1) principal component-based generalized estimating equations

(PC-GEE); (2) principal component-based linear mixed effects model (PC-LMEM); (3)

kinship coefficient matrix-based linear mixed effects model (KIN-LMEM), in a study of

single-nucleotide polymorphisms (SNPs) on the duration of 4 courses of chemotherapy

in 624 unrelated children with de novo acute myeloid leukemia (AML) genotyped on

the Illumina 2.5M OmniQuad from the COG studies AAML0531 and AAML1031. In this

study we observed an exaggerated type I error with PC-GEE in SNPs with minor allele

frequencies <0.05, wheras KIN-LMEM produces more than expected type II errors.

PC-MEM showed balanced type I and type II errors for the observed vs. expected

P-values in comparison to competing approaches. In general, a strong concordance

was observed between the P-values with the different approaches, in particular among

P < 0.01 where the between-method AUCs exceed 99%. PC-LMEM accounts for

genetic relatedness and correlations among repeated phenotype measures, shows

minimal genome-wide inflation of type I errors, and yields high power. We therefore

recommend PC-LMEM as a robust analytic approach for GWAS of longitudinal data

in unrelated populations.

Keywords: longitudinal analysis, unrelated population, genome wide association analysis, linear mixed effects

model, generalized estimating equations
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INTRODUCTION

The development of high-throughput DNA genotyping has
accelerated the discovery of single nucleotide polymorphisms
(SNPs) associated with common traits and diseases (Welter et al.,
2014). Genome-wide analysis (GWAS) accounts for multiple
testing and underlying genetic structures but does not capture
the natural trajectory of phenotypic traits over time (Nyholt,
2004;Weir et al., 2006). Methodologic challenges for longitudinal
GWAS include correlation among phenotypic measurements
within an individual and missingness of phenotypic measures
over time while accounting for phenomena like genetic
relatedness, population stratification, and the influence of
stationary or time-varying covariates.

The GWAS Catalog has curated over 2000 cross-sectional
studies linked to hundreds of diseases and traits but few
longitudinal modeling strategies have been evaluated to date
(Kerner et al., 2009; Beyene and Hamid, 2014; Welter et al.,
2014). A longitudinal approach to GWAS would be of particular
benefit in studying dynamic quantitative traits related to chronic
diseases, such as bone mineral density, fasting glucose levels,
LDL, and HDL cholesterol, triglycerides, arterial stiffness, and
systolic and diastolic blood pressure. When investigating genetic
variants on a phenotypic outcome type I errors may occur due
to population structure in unrelated populations and/or complex
pedigree structure among participants in family based studies.
The majority of approaches for the analysis of longitudinal
data have emphasized family-based studies in large part in
response to various Genetic Analysis Workshops calls for
analytic approaches to deal with longitudinal phenotypes in
the family-based Framingham Heart Study (FHS). Accounting
for pedigree structure usually involves polygenic models
incorporating between-individual kinship coefficients in the
covariance structure for the random effect in generalized linear
models. However, analytic methods for longitudinal GWAS in
unrelated individuals are relatively sparse. Furlotte et al. proposed
a longitudinal GWAS design that explains phenotypic temporal
trends and population structure simultaneously using a kinship
coefficient matrix-based linear mixed effects model (KIN-
LMEM) (Furlotte et al., 2012). However, it is unconvential to
account for population stratification using kinship information
in unrelated individuals with exception of a few reports (Kang
et al., 2010; Zhang et al., 2010). Typically a GWAS accounts for
population-specific variations in allele distribution of SNPs (e.g.,
population stratification) by including principal components
(PCs) as covariates in a linear or logistic regression model
(Patterson et al., 2006). Recently, Sikorska et al. used a fast
conditional two-step approach based on fitting a linear mixed
effects model (LMEM) followed by linear regression as a
computationally efficient workaround for LMEM with random
intercept and random slope (Sikorska et al., 2015). However,
this model overcomplicates scenarios where random slopes are
unnecessary.

The field of applied bioinformatics heavily relies on easily
reproducible or ready-to-go methods due to restrictions of
time, resources, and method complexity. Given the current
knowledge gap in longitudinal methods for GWAS in unrelated

populations, we present a brief overview of available literature on
longitudinal GWAS approaches and compare PC and kinship-
based methods to evaluate chemotherapy course length in 2
randomized phase III trials in childhood acute myeloid leukemia
(AML). These include: principal component-based generalized
estimating equations (PC-GEE), principal component-based
linear mixed effects model (PC-LMEM), and kinship coefficient
matrix-based linear mixed effects model (KIN-LMEM).

MATERIALS AND METHODS

Study Design
A total of 624 Caucasian patients were included from two
randomized phase III trials of the Children’s Oncology Group
(COG), AAML0531 (Gamis et al., 2014), and AAML1031
(Meshinchi et al., 2012). These trials enrolled children with newly
diagnosed AML using standard chemotherapy in combination
with investigations agents. DNA was extracted from remission
bone marrow aspirates and genotyped on the Illumina 2.5M
OmniQuad at the Children’s Hospital of Philadelphia, PA. The
National Cancer Institute’s central institutional review board and
institutional review boards at each enrolling center approved
both studies; patients and their families provided informed
consent or assent as appropriate. The trials were conducted in
accordance with the Declaration of Helsinki and registered at
http://www.clinicaltrials.gov as NCT00372593 (AAML0531) and
NCT01371981 (AAML1031).

Mini Review
We aimed to identify all published literature that focused
on longitudinal genome-wide association studies (GWAS).
Existing publications were identified in PubMed through January
of 2016 using the following search terms: “longitudinal,”
“repeated measures,” “linear mixed models,” “GWAS,” “genome-
wide associations,” and/or “SNP.” Publications not related to
longitudinal GWAS were disregarded.

Phenotype
The primary outcome in the current case-study is chemotherapy
course length. Start and end dates of the first 4 courses of
chemotherapy were extracted from the COG web portal. Course
length was defined as the difference in days between start and end
date of each course. The start date was the day the chemotherapy
regimen was initiated, and end date was considered as the day
that absolute neutrophil counts reached 500/mL and platelets
recovered to 20,000/mL in the absence of recurrent or persistent
leukemia. The 5th course of chemotherapy on AAML-0531 was
excluded from analysis to ensure comparability between the two
studies. For quality control purposes course duration was set
to missing if the number of course days was <20 or >100,
or a relapse was observed in the respective course. Covariates
collected include age, gender, and treatment arm.

Three Longitudinal Models
In longitudinal analyses the outcome is a set of repeatedmeasures
of course duration over time. We use Yij (i = 1, . . . , n; j =

1, 2, 3, 4) to denote the log-transformed course duration for
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TABLE 1 | Literature overview of longitudinal GWAS analysis.

References Design Outcome Covariates Familial relatedness Missingness Analysis Software

Sikorska et al., 2015 Family Linear Time-

varying

NA MAR/MCAR Reduced conditional LMEM

+ GWAS on random slopes

R

Choi et al., 2014 Family Binary Stationary Random effects MAR GEE, family-specific

GLMEM

PLINK, SAS,

R

Eu-Ahsunthornwattana

et al., 2014

Family,

unrelated

Linear Stationary Variance-covariance

structure

MAR PHENO LIN REG, GWAS on

residuals

PLINK,

EMMAX,

FaST-LMEM,

GenABEL

Hossain and Beyene, 2014 Family Linear Stationary Variance-covariance

structure

MAR LMEM R

Musolf et al., 2014 Family,

unrelated

Linear Time-

varying

(Q)TDT NA Cluster analysis, GWAS SAS,

TDT-HET

Tan et al., 2014 Family Linear Stationary Kinship matrix NA Two-level hierarchical linear

model with random

coefficients

Vaitsiakhovich et al., 2014 Unrelated Delta Stationary NA MAR, MCAR,

MNAR +

imputation

GWAS on mean change of

imputed data

INTERSNP

Wang et al., 2014 Family Linear Stationary NA MAR +

imputation

LMEM and a two-stage

approach: random intercept

model + GWAS

R, PLINK

Xia and Lin, 2014 Family Binary Stationary Inbreeding coefficient in

Bayesian

MAR Logistic Bayesian LASSO,

B-spline, partial GLMEM

R, Hapassoc

Furlotte et al., 2012 Unrelated Linear NA Variance-covariance

structure

NA Modified LMEM R

Chang et al., 2009 NA Binary Time-

varying

Random effects NA GMM SAS

Fradin and Fallin, 2009 Family Binary Stationary NA NA LOG REG, conditional on

risk set

SAS

Kerner et al., 2009 Family Linear Stationary Random effects NA GMM, QTL analysis Mplus,

Goldenhelix

Luan et al., 2009 Family Linear Stationary Random effects NA LMEM Stata, SAS

Park et al., 2009 Family Binary Stationary Pedigree membership

as covariate

NA GEE SAS

Roslin et al., 2009 Unrelated Linear Stationary NA NA MLGM, LIN REG Mplus, PLINK

Yan et al., 2009 Unrelated Binary Stationary NA NA PAF SAS

Zhu et al., 2009 Family Linear Time-

varying

Sibship group

membership

NA MASAL MASAL

Aulchenko et al., 2007 Family Linear NA Random effects NA GWAS on LMEM phenotype

residuals

GRAMMAR

GEE, generalized estimating equation; GLMEM, generalized linear mixed model; GRAMMAR, genome-wide rapid association using mixed model and regression; GWAS, genome-wide

association studies; HWE, Hardy-Weinberg equilibrium; LASSO, least absolute shrinkage and selection operator; LMEM, linear mixed model; MAF, minor allele frequency; MCAR, missing

completely at random; MGR, missing genotype rate; MNAR, missing not at random; PH, proportional hazard; SNP, single-nucleotide polymorphism; GMM, growth mixture modeling;

QTL, quantitative trait locus; LMEM, linear mixed modeling; GEE, generalized estimating equations; MLGM, multivariate linear growth modeling; PAF, population attributable risk fraction;

MASAL, multivariate adaptive splines for the analysis of longitudinal data.

subject i at course j. The first model we used is the KIN-LMEM,
which is one type of linear mixed effects model (LMEM) and
accounts for the individual relatedness by introducing a random
effect for each subject that has a covariancematrix estimated from
the kinship coefficient (Furlotte et al., 2012). The model assumes
that:

Yij = α + β × Xi + ui + vij + εij (1)

Here Xi represents the state of a particular SNP for subject i and
is a fixed effect. ui is the random effect that captures genetic

relatedness, and assumed to follow a normal distribution with

mean 0, variance σ
2
u, and a correlation of Kil between subject i

and l (Kil is the kinship coefficient). vij is the random effect for

subject i and course j, which follows a normal distribution with
mean 0 and variance σ

2
v . Note that vij for the same subject but

different courses are correlated, i.e., cov (vij, vik)= σ
2
v Djk, but vij

for different subjects are independent, i.e., cov (vij, vlk) = 0. εij
is the independent error term and follows a normal distribution

with mean 0 and variance σ
2. The three types of random effects

ui vij and εij are assumed to be independent. This model implies
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FIGURE 1 | Intra- and inter-individual variability in chemotherapy course length. Each line represents a patient’s median and interquartile range (IQR), sorted

from the lowest to the highest median value. The overall median chemotherapy course length is 36 days (IQR 32–42 days). Course length observations less than

−1.5*IQR below 25th percentile or more than 1.5*IQR above the 75th percentile are considered to be outliers and are shown as isolated points.

that the outcomes for the same subject at different courses have a
correlation:

Corr
(

Yij,Yik

)

= (σ2vDjk + σ
2
u) / (σ2 + σ

2
v + σ

2
u);

and the outcomes for two different subjects at any course are also
correlated due to their genetic relatedness:

Corr
(

Yij,Ylk

)

= σ
2
uKil / (σ

2
+ σ

2
v + σ

2
u)

The second model we used is PC-LMEM, a LMEM that
accounts for individual relatedness through the use of principal
components (PCs) as covariates in the model to adjust
for population structure, a common practice in unrelated
populations.

The model assumes that:

Yij = α + β × Xi + γ × Zij + δ1 × P1i + δ2 × P2i

+ δ3 × P3i + vi + εij (2)

Again Xi is the SNP for subject i as a fixed effect. Zij is the fixed
effect for course. Rather than using a random effect ui to account
for genetic relatedness as in the KIN-LMEM, the PC-LMEM uses
the principle components as covariates (three PCs here: P1i, P2i,
and P3i). vi is the random effect to reflect the correlation among
the repeated measures within a subject, but takes a simple form
of a random intercept, and is assumed to be independent (i.e.,
cov (vi, vl) = 0) and normally distributed (mean 0, variance σ

2
v).

εij is the independent error term following normal distribution
with mean 0 and variance σ

2, and the two types of random effects
vi and εij are assumed to be independent. This model implies
that the outcomes for the same subject at different courses have a
correlation:

Corr (Yij, Yik) = σ
2
v / (σ2 + σ

2
v);

but the outcomes for two different subjects at any course
are independent since we already adjusted for population
substructure through PCs:

Corr (Yij,Ylk) = 0.

PC-GEE is the third model, an alternative longitudinal model to
LMEM. Thismodel adjusts for individual relatedness through the
use of PCs and accounts for correlations of repeated measures
within a subject through the use of robust covariance structure.
Specifically the model assumes that:

Yij = α+β × Xi + γ × Zij + δ1 × P1i + δ2 × P2i + δ3 × P3i + εij
(3)

Var
(

Yij

)

= σ
2, Corr

(

Yij,Yik

)

= ρ,Corr
(

Yij,Ylk

)

= 0

The notations here are the same as in Equation (2), except that
we no longer have the random effect vi and rather explicitly
specify an “exchangeable” correlation structure ρ for the repeated
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FIGURE 2 | Pairwise PC plots within 624 Caucasian patients with AML.

measures within a subject. We note that LMEMs (KIN-LMEM
and PC-LMEM) are likelihood-based and valid under themissing
at random (MAR) assumption, but PC-GEE is valid only under
the missing completely at random (MCAR) assumption.

Statistical Methods
Extensive genotyping quality control checks were performed
using PLINK, and SNPs were excluded from analysis in case of (1)
call rates < 95%; (2) monomorphic SNPs (MAF < 0.01); and (3)
deviation fromHardy-Weinberg Equilibrium (P< 10−5) (Purcell
et al., 2007). GCTA software was used to identify duplicates
among genotyped samples, calculate the kinship coefficients
matrix, and ancestral groups were constructed via Principal
Components Analysis (PCA), and patients showing familial
structure and/or cryptic relatedness were excluded (Yang et al.,
2011). The genotype data of the subset of unrelated patients
in our cohort was then merged with data from Caucasian
participants from HapMap3. Naive Bayes classification was

performed using HapMap3 as the training set. Remaining
heterogeneity between individuals of European descent are
illustrated with scatterplots between principal components.
Longitudinal analyses were performed with R packages gee
and lme4, and the R script provided by Furlotte et al. (2012).
Covariates in PC-GEE and PC-LMEM include course number
and seven principal components as indicators of ancestry.

We used several metrics to evaluate the performance of
the three analytics methods. First, quantile-quantile (Q-Q)
plots were estimated with the R package qq-man to ensure
that the observed P-value distribution follows a Chi-Square
null distribution with exception of the extreme tail. Second,
Manhattan plots were generated to evaluate the differences in the
global pattern of the significance across three methods. Third,
correlation coefficients between the observed P-values from
different methods were calculated to examine their concordance.
Finally, we test the interchangeability of the results by evaluating
to what extent the different methods produce similar P-values,
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FIGURE 3 | Results of longitudinal GWAS analyses on three different methods. (A) PC-LMEM: MAF > 0.01; (B) PC-GEE: MAF > 0.01; (C) KIN-LMEM: MAF >

0.01.

FIGURE 4 | Q-Q plots of P-values from three longitudinal GWAS analyses. (A) PC-LMEM: MAF > 0.01; (B) PC-GEE: MAF > 0.01; (C) KIN-LMEM: MAF > 0.01.

taken at decreasing thresholds of 0.5, 0.1, 0.01, 0.001, and 0.0001.
We then summarized the predictive accuracy for each method
by their competing alternatives by calculating true positive and
false positive rates using the ROCR package in R. We plotted
all receiver operating characteristic (ROC) curves considering
the area under the curve (AUC) as a measure of predictive
performance.

RESULTS

Our search for studies related to longitudinal GWAS yielded
19 results. Table 1 summarizes longitudinal GWAS evaluation

studies to date. The majority of the study focused on methods
accounting for complex pedigree structure structures. Nine
studies performed a single-step longitudinal analysis where
LMEM and GEE were mostly used (Chang et al., 2009; Kerner
et al., 2009; Park et al., 2009; Zhu et al., 2009; Furlotte et al.,
2012; Choi et al., 2014; Hossain and Beyene, 2014; Tan et al.,
2014). A two-step approach was utilized by others where a first a
summary measure for the longitudinal phenotype was extracted
and subsequently single observational analysis was performed
(Aulchenko et al., 2007; Fradin and Fallin, 2009; Roslin et al.,
2009; Yan et al., 2009; Eu-Ahsunthornwattana et al., 2014; Musolf
et al., 2014; Vaitsiakhovich et al., 2014; Wang et al., 2014;
Xia and Lin, 2014). Incidental reports include cluster analysis,
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FIGURE 5 | Between method accuracy and rare variant distribution across P-values. The 6 off-diagonal ROC curves represent the accuracy of each method

predicting different P-value percentiles of competing methods (P < 0.5, P < 0.1, P < 0.01, P < 0.001, and P < 0.0001). The diagonals show the relative distribution

of rare SNPs (MAF < 0.05) for various P-value cut-offs of each method (e.g., P > 0.1, 0.01 < P < 0.1, 0.001 < P < 0.01, 0.0001 < P < 0.001, and P < 0.0001).

hierarchical multi-level linear modeling, Bayesian LASSO with
B-splines, MLGM, and MASAL using various software packages.
Model selection, missing data and small sample size were the two
most common challenges. There were no loci consistently found
the across studies. Linear mixed models were most accurate at
confirming known SNPs.

Figure 1 shows the intra- and inter-individual variability in
chemotherapy course length for the cohort of 624 pediatric AML
patients. Each line represents a patient’s median and interquartile
range (IQR), sorted from the lowest to the highest median
value. The overall median chemotherapy course length is 36 days
(IQR 32–42 days). The ancestry plot depicting the relationship
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FIGURE 6 | Results of longitudinal GWAS analyses on three different methods where MAF > 0.05. SNPs with MAF < 0.05 have been excluded. (A)

PC-LMEM: MAF > 0.05; (B) PC-GEE: MAF > 0.05; (C) KIN-LMEM: MAF > 0.05.

between principal components (Figure 2) illustrates the within-
population heterogeneity for all patients of European descent.

Figures 3, 4 show the Manhattan and QQ-plots for PC-GEE,
PC-LMEM, and KIN-LMEM. The QQ-plot from PC-GEE shows
an increased rate of false positives indicating the necessity for
an additional round of genomic control. The KIN-LMEMmodel
suffers of a substantial type II error rate under the null Chi Square
distribution. With KIN-LMEM a small cluster of SNPs of below
genome-wide threshold P-values was observed on chromosome
5, which was not captured with PC-GEE and PC-LMEM. Finally,
PC-LMEM shows an expected pattern of significance with low
type I and type II error rates.

Even though the overall P-values show distinct global patterns
as evident from the QQ-plot and Manhattan plot, the three
methods show a strong underlying comparability as measured by
correlation coefficients. The correlation coefficient between PC-
LMEM and PC-GEE P-values exceeds > 0.99. The correlation
between PC-LMEM and KIN-LMEM is relatively high (r2 =

0.605), and the same accounts for PC-GEE andKIN-LMEM (r2 =
0.603). Further exploration of between-method similarities and
differences are shown in Figure 5. The diagonals in this figure
show the relative distribution of rare SNPs (MAF < 0.05) for
various P-value cut-offs of each method (e.g., P > 0.1, 0.01 < P
< 0.1, 0.001 < P < 0.01, 0.0001 < P < 0.001, and P < 0.0001).
In PC-GEE the lowest P-values (p < 0.001) are enriched for
rare SNPs. In contrast, PC-LMEM and KIN-LMEM analyses are
less affected by SNP prevalance. Off-diagonal plots show ROC
curves with AUCs for the prediction of P-value thresholds of
the respective method by its competing approaches. The results
from PC-LMEM can be predicted with very high accuracy by

PC-GEE across the P-value spectrum (AUC > 0.99 for each
P-value threshold), which is in line of expectation due to their
extremely high correlation. KIN-LMEM P-values show a more
heterogeneous range of predictive performances by both PC-
LMEMand PC-GEE, where improvements in predictive accuracy
are observed with decreasing P-values. For example, the AUC
exceeds 0.99 for the lower range of KIN-LMEM P-values (e.g.,
p < 0.01). In summary, any observed P-value < 0.001 from each
method shows to be very accurately predicted by it’s competing
methods (AUC > 0.99).

To confirm whether the inflated type I error in PC-GEE is
attributable to rare variants, we recreated the Manhattan and
QQ-plots excluding SNPs with MAF < 0.05 (Figures 6, 7).
The QQ-plots for PC-LMEM and KIN-LMM were not affected,
however the inflated false positive rate in PC-GEE has normalized
and observed P-values follow a Chi-Square null distribution.
These results indicate that longitudinal GWAS using GEE
is not an appropriate method for investigating rare variant
associations. In the longitudinal GWAS analyses restricted to
MAF > 0.05, PC-GEE, and PC-LMM show almost perfect
concordance.

DISCUSSION

We compared the performance between three models for GWAS
data with a longitudinal, repeatedly measured outcome with
missing data from two Phase III clinical trials. The three
methods show remarkably different rates of false positives and
false negatives under the Chi-Square null distribution. Our
results indicate that the PC-LMEM approach shows the better
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FIGURE 7 | Q-Q plots of P-values from three longitudinal GWA analyses where MAF > 0.05. SNPs with MAF < 0.05 have been excluded. (A) PC-LMEM:

MAF > 0.05; (B) PC-GEE: MAF > 0.05; (C) KIN-LMEM: MAF > 0.05.

performance to KIN-LMEM and PC-GEE in this scenario
of unbalanced longitudinal data in an unrelated population.
Modeling longitudinal data differs from single observations
because it needs to account for correlation structures arising
from repeated measurements of a trait within an individual,
and potential differential missingness of repeated phenotype
measures over time.

Two methods to account for genetic relatedness between
study individuals are adjustment of PC as covariates (as the PC-
LMEM) and the use of a kinship matrix (as the KIN-LMEM).
PC-LMEM accounts for population substructure by restriction
and genomic control, e.g., first identifying close relatives to
remove them from analysis, then correcting for broad sample
structure using principal components or spatial information
and finally correcting for the residual inflation with genomic
control.

The KIN-LMEM method is used in complex pedigrees
encompassing both hidden relatedness and population
stratification. Recently, linear mixed models based approaches
have been proposed as an alternative to PC-based approaches
when adjusting for population stratification in studies of
unrelated individuals (Kang et al., 2010; Zhang et al., 2010).
The covariance structure for the random effect is generally
assumed to correspond to that implied by a polygenic model,
incorporating the genetic relationship (kinship) between each
pair of individuals. The rationale for this approach is that
apparently unrelated individuals may nevertheless display
distant levels of common ancestry. In our study it seems the
KIN-LMEM inflates the type II error rates which may lead to a
loss a power and the inability to detect true positives. However,
for longitudinal GWAS in family studies, PC-based methods may
be insufficient to account for more complex genetic relatedness
structures, and KIN-LMEM or other family-based approaches
should be considered.

Our observations indicate that GEE is unable to produce
a reliable association in SNPs with a low MAF. Even though
GEE does not require assumptions on the joint distribution of
observed data and random effects it does depend on a correct

specification of covariate-specific means of the outcome. In rare
variants the minor allele group contains to few observations to
produce reliable marginal population means (Diggle, 2002).

In our study we used chemotherapy course as a categorical
covariate and therefor did not use Sikorska method. Sikorska’s
fast two-step estimation method is recommended in a scenario
of continuous time elements and both random intercepts and
random slopes are needed. If time (e.g., chemotherapy course)
should be considered as categorical and thus random slope is not
applicable, using our method is more appropriate. A limitation
of our study is the lack of a true genetic association with course
duration that inhibits the generation of false negative rates and
operational characteristics for comparing the detection of SNPs
truly associated with the outcome.

In pediatric AML, chemotherapy course length is a primary
determinant of infection risk and shows a substantial intra-
individual correlation and inter-individual variability. We
previously showed that MTHFR polymorphisms were not
associated with a significantly altered risk of chemotherapy
course length (Aplenc et al., 2005). However, Murphy et al.
showed that in the MTHFR C677CT wiltypes, folic acid was
significantly associated with more than two-fold increased
neutrophil recovery compared to the CT and TT genotypes
(Murphy et al., 2012). Unraveling genetic components for
chemotherapy course length has the clinical potential for
personalized toxicity monitoring. We anticipate on reanalyzing
the data with a larger sample size in future using PC-LMEM.

In conclusion, the false positive rates of the three methods
were remarkably different and the PC-LMEM model seems to
provide a reliable approximation of the P-value for the effect
of SNP on a temporal phenotype. PC-LMEM loses no power
compared to the KIN-LEMM and shows no inflation of the type
II error rate compared to PC-GEE in SNPs with low MAFs.
PC-LMEM hold perhaps the greatest promise for longitudinal
GWAS because of its flexibility in accounting for correlation
structures and its validity for rare variant association studies. We
recommend a practical framework based on PC-LMEM for high-
throughput genetic analysis of longitudinal data implemented
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in a PLINK/R framework in a high-performance computing
environment.
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