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Commonly-preserved radial convolution is a prominent characteristic of the mammalian

cerebral cortex. Endeavors from multiple disciplines have been devoted for decades to

explore the causes for this enigmatic structure. However, the underlying mechanisms

that lead to consistent cortical convolution patterns still remain poorly understood. In this

work, inspired by prior studies, we propose and evaluate a plausible theory that radial

convolution during the early development of the brain is sculptured by radial structures

consisting of radial glial cells (RGCs) and maturing axons. Specifically, the regionally

heterogeneous development and distribution of RGCs controlled by Trnp1 regulate the

convex and concave convolution patterns (gyri and sulci) in the radial direction, while

the interplay of RGCs’ effects on convolution and axons regulates the convex (gyral)

convolution patterns. This theory is assessed by observations and measurements in

literature from multiple disciplines such as neurobiology, genetics, biomechanics, etc.,

at multiple scales to date. Particularly, this theory is further validated by multimodal

imaging data analysis and computational simulations in this study. We offer a versatile

and descriptive study model that can provide reasonable explanations of observations,

experiments, and simulations of the characteristic mammalian cortical folding.

Keywords: neuroimaging, radial structure, radial convolution pattern, computational modeling

INTRODUCTION

Elaborate convolution of the cerebral cortex is one of the most unique and prominent
characteristics of the mammalian brain, and is to a certain extent maintained across species.
Generally, correspondence between major gyri and sulci (radial direction convolution pattern,
see Figure 1) is well-preserved across primate species (Li et al., 2016) while the level of shape
complexity and curvature (tangential direction convolution pattern, see Figure 1) is known to vary
(Toro and Burnod, 2005; Zhang et al., 2017). For instance, even though the cortical convolution
complexity increases from the macaque brain, to the chimpanzee brain and the human brain
(Figures 1A–C), convolution patterns in the radial direction, such as in the central gyri and sulci,
can still be consistently identified (Chen et al., 2013). The formation of such convolution patterns
could be induced bymultiple brain development processes, such as neurogenesis and axonogenesis,
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and the coupling of gyrogenesis and these processes have been
reported in many works (Chi et al., 1977; Huang et al., 2009;
White et al., 2010; Takahashi et al., 2012; Dubois et al., 2013).
Numerous promising hypotheses in line with these observations
have been put forward to discover the underlying mechanisms of
cortical convolution.

For example, cranial constraints were suggested to be an
external factor that causes inward convolution (Le Gros Clark,
1945; Chen et al., 2010), such that extending cortices could be
held in a limited space. In the differential growth hypothesis, the
driving mechanism for instability and convolution is differential
growth on cellular bases (Caviness, 1975; Brown et al., 2002;
Cartwright, 2002). Recent experimental and computational
findings suggested that growth rate of the outer layers is higher
compared with the inner layers of the brain (Bayly et al., 2013;
Ronan et al., 2013; Razavi et al., 2015b; Tallinen et al., 2016).

Another school of hypotheses suggested that axon maturation
also play role on the gyrification process (Van Essen, 1997; Sur
and Rubenstein, 2005; Nie et al., 2012; Holland et al., 2015;
Zhang et al., 2016, 2017). Figure 1D illustrates the coupling

FIGURE 1 | (A–C) Illustration of the coordinate system on mature macaque, chimpanzee, and human cortical surface. The white axes indicate the stereoscopic

coordinate system on sagittal planes. The yellow curves are the intersection lines of the cortical surface and the sagittal planes. The red arrows and blue arrows,

respectively indicating gyri and sulci, point along radial directions on the sagittal plane. The green arrows suggest the circumferential directions; (D) Joint time course

of gyrogenesis and axonogenesis of the human brain. The x-axis represents the timeline (see White et al., 2010 for explanations of the time segments). The arrows in

the axon panel indicate the boosting time point of the specific type of axons. A detailed version of the time course chart can be found in Supplemental Figure 1.

of gyrogenesis and axonogenesis across the time course, as
was suggested to be divided into three stages (White et al.
2010). The first stage features the emergence of relatively stable
primary fissures (Toro and Burnod, 2005) and projection fibers
and long-range association fibers together with dominating
radial glial cell fibers (Huang et al., 2009; Takahashi et al.,
2012). In the secondary and tertiary stages, numerous subtle
convolutions are gradually appended to the framework of the
first-stage convolutions, introducing multi-directional (e.g., the
tangential direction) variations (Chi et al., 1977; Toro and
Burnod, 2005), which are accompanied by the emergence of U
shape fibers (the green arrow in Figure 1) and multi-directional
corticocortical connections (black arrow in Figure 1D) (see
detailed explanations in Supplemental Materials).

However, a comprehensive understanding of how these
processes cooperatively interact in order to give rise to
experimentally-observed brain development still remains to be
elucidated (Van Essen, 1997; Monuki and Walsh, 2001; Grove
and Fukuchi-Shimogori, 2003; Sur and Rubenstein, 2005; Rakic,
2006). For example, it still remains elusive as to why the
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primary cortical convolution pattern across subjects within each
species is highly correlated and consistent rather than random,
and what factors account for this consistency as regulators.
Recently, a growing number of genetic studies have reported
the discovery of potential fundamental molecular regulators for
cortical morphology (Beck et al., 1995; Rakic, 1995; Leighton
et al., 2001; Gaudillière et al., 2004; Konishi et al., 2004; Stahl et al.,
2013; Sun andHevner, 2014). However, more studies are required
to explore exactly how those genetic fundamental factors take
effects to play a part in phenotypic characterization.

Inspired by prior theories (Rakic, 1995; Nie et al., 2012;
Borrell and Götz, 2014), we propose that radial glial cells (RGCs)
and neuronal axons (defined here as radial structures) are the
determining regulators of radial convolution patterns in the
early stage of gyrogenesis. To this end, we incorporate recent
multidisciplinary discoveries and observations, i.e., genotype-
based experiments and phenotype-based measurements, as
well as computational simulations, into a single theoretical
framework. In this paper, we define the radial direction as the
direction pointing from the core of the brain to the cortex
(Figures 1A–C), and the convolution pattern in this direction
as gyral (convex) or sulcal (concave). Based on these definitions,
our theory puts forward the following two hypotheses: (i) RGCs
regulate radial convolution patterns of the cerebral cortex (Rakic,
1995; Borrell and Götz, 2014) and (ii) the interplay between
maturing axons and RGCs regulates convex folding patterns.

The rest of the paper is organized as follows. In the Materials
and Methods Section, we introduce multi-modal data analysis
techniques and our computational modeling analysis. In Results
Section, the proposed theory is validated by this joint analysis
of multi-modal imaging data and simulation experiments, in
which we test a variety of possible configurations via computation
by tuning experimentally validated parameters. Computational
results are quantitatively compared with those from literature
reports as well as observations and measurements on our MRI
and histology data.

MATERIALS AND METHODS

Brain Imaging and Preprocessing
Diffusion-Weighted MRI and T1-Weighted MRI
A 21pcw ex vivo prenatal brain from the Allen Brain
Institute (http://www.brain-map.org/) is used. Detailed dataset
description can be found in the BrainSpan Developing
Human Brain Imaging whitepaper (http://www.brainspan.org/
docs.html). For convenience, important imaging configuration
and parameters are listed here. Imaging is done on a 3T
MRI scanner (Siemens Medical Solutions, Erlangen, Germany)
using a customized solenoid coil. Diffusion tensor imaging
scans are performed using a 3D diffusion-weighted steady
state free precession (DW-SSFP) sequence. Imaging parameters
are listed as follows: TR = 24.5 ms, TE = 18.76 ms,
isotropic spatial resolution 0.4 mm, bandwidth 150 Hz/px,
8 non-diffusion-weighted volumes and 44 diffusion-weighted
volumes. For the T1-weighted MRI data, optimal imaging
parameters for gray/white contrast-to-noise ratios (CNR) per-
unit-time is obtained based on data within the range of likely

optimal parameters and using Bloch equation-based parameter-
estimation1. T1-weighted MRI data provided has been skull-
stripped (Figure 2a). FSL’s FAST is used to segment white matter,
gray matter and non-brain fluid (gray, dark, and white regions in
Figure 2b). We use the white matters and the gray matters as the
brain mask. The cortical surface (Figure 2c) is reconstructed on
the brain mask using in-house methods based on the marching
cube algorithm (Liu et al., 2008).

Streamline tractography fibers are reconstructed via Trackvis
(http://www.trackvis.org/) in the individual space. The angular
threshold is set to be 40◦ as suggested in Takahashi et al. (2012).
Instead of using a fractional anisotropy (FA) threshold as the
stopping criteria of tractography, the T1-weighted brain mask
linearly registered (FSL’s FLIRT) to the FA map is applied to
terminate tract tracking (Takahashi et al., 2010, 2012; Vishwas
et al., 2010).

Histology
Nissl-stained brain sections are obtained from a 21pcw fetus
(http://www.brainspan.org). The right hemisphere is sectioned
into 20 µm thick sections in the coronal plane. A total of
81 sections are chosen for annotation in the reference atlas.
Figure 2e shows one section for example. Details can be found
in documents for BrainSpan2.

Neuron detection on Nissl-stained sections is implemented
via the automated method listed in Arteta et al. (2012).
Generally, the method works on 128-by-128 pixel Nissl-stained
image blocks (see Figure 2f) within a machine learning scheme.
It requires only a couple of image blocks with simple dot
annotation for training. A dot is placed inside each cell. In
the training stage, models are learned within a structured
SVM framework. The method uses a maximally stable extremal
region detector (MSER) (Matas et al., 2004) to find a number
of candidate regions, the non-overlapping subset with high
similarity to the annotated regions can then be selected. The
learned model is applied to testing image blocks and returns
the predicted neuronal cell centers and extremal boundaries (see
Figures 2h–j).

Neuron number counting is performed based on the neuronal
cell identification results. In-plane columns (width: 40 µm;
length: the cortical plate depth. See Figures 2f,g) are used as
counting boxes (similar to the methods in Hilgetag and Barbas,
2005). To produce the columns, we manually extract the cortical
plate boundaries (white curves in Figure 2f). The columns are
rooted on the superior boundary with equal spacing (around
120 µm) between any two adjacent columns. In flat regions, the
columns are set to be perpendicular to the boundaries. In U-turn
regions, such as the sulcal fundus in Figure 2g, the perpendicular
constraint is relaxed. If a center of a neuron is within a distance
r of the column, it will be considered as being covered by the
column. In this paper r is set to be 3 pixels (around 3 µm) such
that even the smallest neurons are counted.

1See “Developing Human Brain Imaging” document in http://help.brain-map.org//

display/devhumanbrain/Documentation
2See “Reference Atlases” document in http://help.brain-map.org//display/

devhumanbrain/Documentation.
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FIGURE 2 | (a) A slice of T1-weighted MRI data; (b) the slice in (a) has been segmented into three types of tissues, i.e., white matter (dark), gray matter (gray), and

non-brain fluid (white); (c) FA map of the same slice; (d) cortical triangular mesh surface reconstructed on the boundary between brain tissue (white matter and gray

matter) and non-brain fluid in (b). Arrows indicate the radial directions; (e) a slice from a 21 pcw fetal brain sectioned in the coronal plane and stained for Nissl; (f) An

enlarged view of the regions highlighted by the blue frame in (e). The slice is cut into 128-by-128 pixel image blocks (black chessboard), on which methods in Arteta

et al. (2012) are adopted to identify neurons. White curves are manually depicted cortical plate boundaries. Columns within the cortical plate and perpendicular to the

boundaries are illustrated by dense red bars. The yellow bars illustrate some example columns; (g) an enlarged illustration of columns in the region highlighted by the

red frame in (f); (h) one image block in (f). Purple blobs are neuronal cells; (i) Neuron identification results of the image block in (h). Green/red curves indicate extremal

neuron boundaries. Yellow dots indicate neuron centers; (j) an enlarged view of neuron identification results in the orange color frame in (i).

Computational Model
Recently, computational modeling is used widely to unravel
mechanism of the brain convolution from mechanical view
(Bayly et al., 2013; Budday et al., 2014; Tallinen et al., 2014, 2016;
Razavi et al., 2015a). The prominent advantage of computational
modeling is in its strong ability to fine-tune the configuration of
models such that we can effectively screen through a variety of
scenarios to validate or repudiate various theoretical hypotheses.
Therefore, a computational modeling approach bridges the
gap between “dynamic” theoretical hypotheses and “static”
observations and analyses, which is another major interest of
this study. To do so, a two-dimensional (2D) circular model
consisting of a bilayer soft tissue (Figure 3) is constructed in
this study in order to investigate the radial structure effects and

potential mechanisms of cortical convolution in the first stage
of brain development. The shell of the model represents the
developing cortical plate and the core is a simple organization
of the subplate, intermediate zone, and sub-ventricular zone.
The developing radial structure (RGCs and axons) are modeled
by tubes radially distributed and connecting the core and shell
(Bayly et al., 2013; Tallinen et al., 2014).

In our model, the variable parameters of interest are the
growth speed of the shell (gs), core (gc), and radial tubes (gf) as
well as their stiffness (µs, µc, and µf). In some cases, different
growth speeds are assigned to different shell regions s1 and s2 (the
variation of parameters and reasons are discussed in the Results
Section). In order to focus on in-plane brain bifurcation and
eliminate longitudinal effects, we assume that the deformation

Frontiers in Computational Neuroscience | www.frontiersin.org 4 August 2017 | Volume 11 | Article 76

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Razavi et al. Radial Structure Scaffolds Brain Convolution

FIGURE 3 | An idealized 2D computational model of the brain. CP, cortical

plate; SP, subplate, intermediate zone; SVZ, sub-ventricular zone.

field after growth is only a function of the radius in this circular
bilayer model. Given the structural symmetry of the model, only
the first quadrant is shown in later figures. In general, the elastic
deformation of a living soft tissue yields little volume change;
therefore, a nonlinear response of the material can be described
by an incompressible hyperelastic material (Jin et al., 2011; Li
et al., 2011; Cao et al., 2012; Razavi andWang, 2015; Razavi et al.,
2016). Here a simple and common model based on an isotropic
nonlinear neo-Hookean material is implemented (Tallinen et al.,
2014; Razavi et al., 2015a,b).

W =
µ

2
(λr

2
+ λθ

2
+ λz

2
− 3) (1)

where W is the energy density, µ is the shear modulus and λr ,
λO , and λz are the radial, circumferential and axial principal
stretches, respectively. All simulations are carried out in the
commercial finite element software ABAQUS. The outer shell
of the brain model is allowed to self-contact. More information
about the model can be found in the Supplemental Materials.

RESULTS AND DISCUSSIONS

Based on the experimental observations and also validation by
the computational simulations, we present our findings in three
parts. In Section Regional Growth Heterogeneity on Cortex
Drives Convex and Concave Patterns Convolution, it is showed
that regional growth heterogeneity on cortex drives convex
and concave convolution patterns. In Section Axons Serve as
Regulators of Convex Radial Convolution , we show that axons
serve as regulators of convex radial convolution. In section
Interplay of Neurogenesis and Axonogenesis Acts as a Convex
(Gyral) Convolution Pattern Regulator, we show that interplay
of the former two factors acts as a convex convolution pattern
regulator.

Regional Growth Heterogeneity on Cortex
Drives Convex and Concave Convolution
Patterns
In this section, we study how neurogenesis takes effects on
gyrogenesis from imaging and histology data and computational
modeling results. Generally, RGCs with lower levels of
Trnp1 could generate basal progenitors (BPs), also known
as intermediate progenitor cells (IPCs), and basal radial glial cells
(bRGCs). BPs produce neurons while bRGCs provide additional
guiding structures to induce faster neuron migration; this finally
results in considerable radial and lateral cortical expansion,
i.e., the convex folding pattern suggested in Götz and Huttner
(2005) and Stahl et al. (2013). Therefore, at the cellular level, a
distribution difference of RGCs regulates the radial expansion
of the cortical plate by controlling the amount of migrating
neurons. Our multi-modal data analysis and computational
modeling in this section are conducted based on this model.

We firstly use imaging and histology data to quantify the
relationship between neuron numbers and radial cortical folding
patterns, and the relationship between features of short radial
structures (or RGCs, a combination of aRGCs and bRGCs)
such as their orientations and radial cortical folding patterns.
Notably, when reporting our results, we use the term radial
structures (sometimes we use “all” radial structures) to represent
the mixture of RGCs and maturing axons in the radial direction,
and short radial structures to represent RGCs.

Imaging Data Evidence

Short Radial structures vs. Radial Convolution Patterns

The aforementioned assumption is illustrated in Figure 4 based
on analysis and observation of DTI data of ex vivo 21 pcw fetal
brains from the BrainSpan: Atlas of the Developing Human Brain
(http://developinghumanbrain.org). By applying a threshold to
the tractography streamline fibers tracts (where the length is
less than 5 mm), we observe in the tractography fiber maps
from Figures 4a,b and Supplemental Figure 2 that the short
radial structures between the subplate (SP) and the cortical plate
(CP) are distributed across the entire cortical regions. Short
radial structures have been suggested to be a mixture of RGC
bundles (Takahashi et al., 2012). In V1 maps (Figures 4a,b and
Supplemental Figure 2), a similar observation is reproduced
based on the primary tensor eigenvector direction.

The difference between the lateral sulcus (LS) and other
convex regions can be noticed in those DTI based measurements.
In Figure 4a, clear boundaries of the SP and CP are identified
in the FA map and V1 maps while they are ambiguous in the
LS region from the same section as shown in Figure 4b. We
quantitatively map the length of the short radial structures to
the cortical plate surface (Figure 4f shows an enlarged view
of LS region), and also measure and map the angle between
the average normal direction from the surface patch and the
average short radial structure orientations from the patch (the
LS region in Figure 4e). An angle of zero degrees indicates that
the short radial structure radially contacts the surface while
an angle of 90◦ indicates that the structure is parallel to the
surface. The maximum principal curvatures of the surface in
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FIGURE 4 | A transverse section is extracted from FA, V1, and tractography fiber maps of the 21 pcw fetus diffusion tensor imaging (DTI) data. An enlarged view of

the occipital part of the brain is shown in (a) and LS part is in (b); white and green arrows in pairs indicate the thickness of subplate (SP) and cortical plate (CP); (c)

The brain surface with maximum principal curvatures is reconstructed; (d) An enlarged view of the LS region with surface maximum principal curvatures; (e) The

angles between average orientation of the short radial structures and the normal directions of the local surface regions on the LS regions; (f) The lengths of short radial

structures are mapped to the LS regions. Short subcortical structures are defined as the streamline fibers shorter than 5 mm; (g–h) The measurements [angles in (e)

and length in (f)] of sampled vertices in the LS regions are shown against the maximum principal curvatures in the scatter plots. A 1st order linear trend is estimated

and illustrated by red dashed lines.

Figures 4c,d are used as a reference, in which convex regions
have positive values while concave ones have negative values.
The relationships between maximum principal curvatures and
the angel/length measured based on a couple of sample vertices
in this region are shown in Figures 4b,g. Short radial structures
in convex regions perpendicularly connect the cortical surface
while those beneath the concave regions are more likely to be
parallel to the surface. The length of the short radial structures

of a surface is directly proportional to the convexity of that
surface, while an inversely proportional relationship is found for
their orientations. In summary, the concave LS region has fewer
radially oriented fibers and the length of those radial structures
are shorter, suggesting that the cortical plate in concave regions
is not only thinner, but also that fewer RGCs are generated in
this region. These observations are consistent with what had been
reported in literature (Stahl et al., 2013).
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Neuron Number vs. Radial Convolution Patterns.

To conduct neuron number counting, columns are produced
in the cortical plate according to the methods in Section Brain
Imaging and Preprocessing (see Figure 5C). The accuracy of
neuron detection on this dataset is evaluated in Supplemental
Materials. The reference atlas (Figure 5B) from http://atlas.
brain-map.org/ is used to segment the cortical plate into different
anatomical regions. Using this basis, the cortical plate columns
inside the red dashed frame in Figure 5B are separated into
the concave cortex (insular) group and convex cortex (non-
insular) group. Statistically, a right tail t-test is used to test
the alternative hypothesis that the neuron number in convex
columns on average is greater than that of the one in concave
columns, with a significance level (α) being set to 0.05. The
P-value of the test is 5.05 × 10−6, suggesting that there truly
are more neurons in convex regions than in concave regions.
Figures 5C,D show neuron numbers in insular regions (blue
frames in Figures 5A,B). It can be observed that, moving
from the parietal to the insular lobe, neuron numbers decrease
until reaching a minimum value (#ii column) at the lower
limiting sulcus (csr-l). Then, the number of neurons rapidly
increases quickly moving to the columns of the temporal lobe.
Another example using the calcarine fissure can be found in the
Supplemental Figure 5. These results are in line with those of
Hilgetag and Barbas (2005), that gyral regions have a significantly
larger number of neurons and thicker laminar than non-gyral
regions.

In summary, these observations and measurements on
imaging and histology data provide direct support for the model
that the distribution of RGCs in the human fetal brain is
regionally heterogeneous. Those regions with fewer RGCs (short
radial structures in DTI data) have fewer neurons migrating
to the cortical plate, which may produce a thin cortical plate

and concave convolution patterns in the radial direction. These
observation and measurements are thus extremely useful clues
for evaluating the following computational models.

Computational Models
In accordance with the observations from brain imaging and
histology data, we conduct computational experiments using
the morphological model introduced in Section Computational
Model. Here we set the growth speed of the shell (gs), identified
by the red mesh in Figure 3, to be faster than that of the core (gc),
the gray colored regions beneath the shell. Heterogeneous growth
speeds amongst laminae had been reported to be a possible
critical factor in generating convolution (Caviness, 1975; Brown
et al., 2002; Cartwright, 2002). From an energetic viewpoint, the
increase of the growth ratio creates a rise in the residual stress
up to the critical value in the circumferential direction of the
model, thereby triggering instability and creasing in the model
in order to release the energy. Residual stress has been observed
in growing soft biological tissues and is believed to play a crucial
role in morphogenesis and regulation of the material properties
of biological systems (Ben Amar and Goriely, 2005; Li et al., 2012;
Bayly et al., 2014).

However, the effect of heterogeneous growth speeds between

laminae does not regulate the patterns of radial cortical folding
by itself. The upper row of Figure 6 shows the results with
a variety of growth ratios (gs/gc) between the shell and core
of the model after the same simulation time. It is observed
that, while convolution becomes more elaborate with increasing
growth ratios (gs/gc), the laminar growth speed difference does
not regulate the convolution patterns. To better clarify this point,

we highlight 10 corresponding locations using numbered arrows

on the shells in sub-figures of the first row. The positions on

the shell are of blue color if they are located near sulcal fundi

FIGURE 5 | (A) A slice from a 21 pcw fetal brain sectioned in the coronal plane and stained for Nissl; (B) The plane atlas of the 21 pcw fetal cerebrum; the blue frame

highlights insular regions; (C) An enlarged view of insular regions highlighted by the blue frame in (A,B). The boundaries of the cortical plane (color and white curves)

are manually depicted. Columns, i.e., the red and yellow colored bars between boundaries of the cortical plate, are used as neuron number counting boxes. These

columns are perpendicular to the white boundary. The width of each column is 40 µm. Arabic numberals indicate the column IDs; (D) Neuron numbers of the columns

in (C). Lower-case Roman numberals indicate local maxima (i, iii) and minima (ii). csr, circular sulcus of Reil; csr-u, upper limiting sulcus; csr-l, lower limiting sulcus.
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FIGURE 6 | Simulation of cortex growth with different growth speed ratios (gs/gc) for the 2D core-shell model. Red color mesh depicts the shell of the model while the

solid gray part is the core. Numbered arrows indicate corresponding locations on the shell for each image. In the first row (A–D), the growth speeds in shell regions

are the same. Different growth speed ratios between shell and core are used in each sub-figure. In the second row (E–H), the shell regions highlighted by the odd

numbered arrows grow faster than those highlighted by the even numbered arrows (gs1 > gs2 = gc). In the third row (I–L), the shell regions highlighted by the odd

numbered arrows grow faster than those highlighted by the even numbered arrows. The latter ones also have faster growth speed than the core (gs1 > gs2 = 2gc).

We use blue arrows and numbers to indicate sulci and black arrows and numbers to indicate gyri. The simulation results shown in each sub-figure are snapshots of

the model after growing for the same amount of time.

and of black color otherwise. It can be observed that consistent
radial folding patterns are not always reproduced at the same
location when different growth ratios are employed. For example,
no sulcus is identified between arrows #1 and #2 in Figure 6C,
but a sulcus can be found between them in Figure 6D. Another
example is the location of arrow #8, which appeared on a gyrus in
Figure 6B, on the gyral wall in Figure 6C, and on the lower part
of the gyral wall in Figure 6D.

In contrast to the model with homogeneous growth speed
within the shell, we introduce amodel with regional growth speed
differences in the shell region (the second row and third row
of Figure 6). Under the assumption that more neurons migrate
to and accumulate in the regions with more RGCs, we initialize
the shell by assigning higher growth speeds to certain periodic
shell regions (s1, highlighted by black arrows) than the others
(s2, blue arrows highlighted), i.e., gs1 > gs2. In order to simplify
the analysis, for Figures 6E–H) we set the growth speed of s2
region as the same as core, i.e., gs1 > gs2 = gc. It is interesting
to see that the convex and concave patterns are consistently
formed within the s1 and s2 regions, respectively. Moreover,
we explore the relationship between convolution patterns and
the shell thickness (Supplemental Figure 4d) on the model

in Figure 6H and find that shell thickness decreases with the
increase of concavity and the decrease of convexity. This result is
consistent with the one based on imaging data shown in Figure 4f
and is also in agreement with the results in Figure 5 that convex
cortical regions have more neurons, which may elicit a thicker
cortex (Hilgetag and Barbas, 2005). Finally, in order to test the
robustness of the results, we use another set of configurations,
i.e., gs1 > gs2 = 2gc, so that all of the shell regions grow faster than
the core (Figures 6I–L). Again, convex and concave patterns are
consistently produced in s1 regions and s2 regions, respectively,
demonstrating the robustness of these results.

In summary, consistent and reproducible radially convex and
concave convolution patterns of the cerebral cortex are regulated
by regional growth heterogeneity.

Axons Serve as Regulators of Convex
Radial Convolution
In this section, we report the interaction between axonogenesis
and gyrogenesis. Two mechanical factors of axons, their
mechanical forces and their density, are separately studied and
compared with computational models.
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Imaging Data Evidence
In the later phase of the first stage of mammalian brain
development, maturing neuronal axons might be another factor
in the generation of radial convolution (Takahashi et al., 2012).
During this period, the RGCs begin to diminish in number
within the deep sulcal fundi. However, they still persist in gyral
regions with the emergence of abundant projection fibers such
as neurons in the primary sensory cortical areas projecting
back toward the primary sensory thalamic nuclei and long
range association fibers, which radiate from one cortical region
to another (Takahashi et al., 2012). It has been suggested by
a growing number of reports that in either the developing
brain (Takahashi et al., 2012) or the adult brain (Budde and
Annese, 2013), the terminal ends of those structures are radially
concentrated on gyral crests and walls more than sulcal fundi.
These observations are reproduced in the 21pcw fetal DTI data
(Figure 7). To explore the developing brain, tractography fibers
are extracted from the calcarine sulcus and parieto-occipital
sulcus of 21 pcw fetal brain DTI data (http://www.brainspan.org).
Abundant structures are radially oriented in their neighboring
gyral walls (white arrows #1, #2, and #3) and contact with the
cortical plate. But they are tangentially oriented in the nadir of
the sulcus (white arrow #4), suggesting that very few structures
emanate from such cortical plate regions. These radially oriented
structures are suggested to be a mixture of both diminishing
RGCs and maturing long-range projection neuronal axons (we
will use the term “axons” to represent them.) in Takahashi et al.
(2012). Similar observation can also be found in amatured canine
brain (Supplemental Figure 8). Therefore, in the radial direction,
we assume that convex regions could have a positive relationship
with density of axonal termini.

Computational Analyses of Axon’s Role in Convex

Radial Convolution
It is still controversial in the literature whether the grown axons
are in tension or compression (Van Essen, 1997; Xu et al., 2010;
Nie et al., 2012; Wedeen et al., 2012; Budde and Annese, 2013),
that is whether gyri are formed by either a “pulling force” or
“pushing force” on the axons. Therefore, we set shell, core and
fibers in the computational model with different growth speeds
so as to mimic axons with different mechanical properties. When

fibers grow faster than the shell, they are in compression and
provide a “pushing force.” Otherwise, they are in tension and
provide a “pulling force” to the location where they connect the
shell.

Disregarding all other factors such as the growth speed
difference between the shell and core, it is straightforward that
when axon is in compression it “pushes” the cortical plate
outward to form a “gyrus” and it “pulls” the cortical plate inward
to form a “sulcus” when it is in tension (see Supplemental Figure
6 for more details).

In addition, we choose different stiffness values for the core
and fibers so as to mimic axon bundles with different density
values. The results are summarized in Figures 8A,B. The stiffness
of the axons (highlighted by black line segments) µf is equal
to or greater than that of the core regions (the stiffness of the
shell is set to be the same as that of the core, Xu et al., 2010)
µc, suggesting that denser axons emanate from the shell regions
they attach to. We set a homogeneous growth speed within the
shell in order to eliminate regional differences, but set the growth
speed of the shell (gs) faster than that of the core (gc). As axons
emanate from the cortical plate, the growth speed of axons in
Figure 8A is the same as that in the shell. It can be observed
that convex patterns are consistently generated in the locations
where denser axons emanate. For comparison, the growth speed
of axons is set to be the same as that of the core and the results are
shown in Figure 8B. No consistent relationship between radial
convolution patterns and axons’ stiffness are found, especially
when growth speed ratio gs/gc is greater than 2. The radial
convolution patterns in the locations where the axons attach to
can be either convex/gyral regions (highlighted by yellow bars)
or concave/sulcal regions (highlighted by blue bars) or even the
intermediate regions/gyral walls (highlighted by green bars). This
observation suggests that the radial convolution in Figure 8B

is controlled by the growth speed difference between the core
and the shell but not axons because their growth speed is the
same as the core. In contrast, the stiffness of the axons shows
its effect in Figure 8A, suggesting that it plays an active role in
the production of gyral patterns, although these axons grow as
fast as the shell and provide no active mechanical force. Finally,
we measure the shell thickness and curvature on the model in
the right-bottom corner of Figure 8A. The concave regions are

FIGURE 7 | (a) A coronal T1-weighted MRI section of the 21 pcw fetal brain. The blue frame highlights the location of the calcarine sulcus; (b) Tractography fibers

extracted from the calcarine sulcus. Arrow #1 indicates radial structure composed of RGCs and neuronal axons, coursing along the sulcal regions; (c) A transverse

T1-weighted MRI section of the 21 pcw fetal brain. The green frame highlights the location of the parieto-occipital sulcus; (d) Tractography fibers extracted in the

parieto-occipital sulcal regions. The green arrow highlights the sulcal fundus location on the cortical surface. Arrow #2 highlights RGCs. Arrow #3 indicates the radial

structure, a mixture of RGC and neuronal axon. Arrow #4 highlights the parallel fibers beneath the sulcal fundus. White curves indicate the cortical plate boundaries.
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FIGURE 8 | Effect of axon density on the convolution patterns. Black and colored bars indicate regions where axons are denser than elsewhere in the core. The axon

density is modeled by fiber stiffness in the computation model. The fibers growth speed is the same as the shell (gs) in (A) and the fiber growth speed is the same as

the core (gc) in (B). A variety of growth speed ratios gs/gc (x-axis) and stiffness ratios between axons and the core µf/µc (y-axis) are considered. The stiffness values

of the shell and core are the same for all cases. Yellow bars highlight convex convolution patterns, blue bars highlight concave convolution patterns and green bars

highlight intermediate patterns.

thinner than the convex regions (Supplemental Figure 4e), which
is consistent with the relationship from our imaging data shown
in Figure 4f.

In summary, based on imaging data observation, we find
that axons have a close relationship with the formation of
convex radial convolution. By using computational models, we
separately study the effects ofmechanical forces due to the growth
speed difference and due to axonal density on the convolution
patterns, as well as investigate their relationship with convex
radial convolution. Compression in axons and large axonal
density may each play a positive role in producing convex/gyral
convolution patterns.

Interplay of Neurogenesis and
Axonogenesis Acts as a Convex (Gyral)
Convolution Pattern Regulator
In the previous two sections, we separately study the possible
roles of neurogenesis and axonogenesis in regulating radial
cortical convolution. However, a few problems still remain
unclear when only one factor is considered. For example, it
is still contentious in the literature whether the axons are
in tension or compression, and it is widely reported that
denser axons emanate from more convex regions (Nie et al.,
2012; Wedeen et al., 2012; Budde and Annese, 2013). If we
consider the mechanical force in axons as the single factor, it
is difficult to generate convex cortical regions with the axons
being under tension (“pulling force”). Therefore, in this section,
we extend our study to investigate the joint effect of these two
factors.

From Figure 6, it can be seen that a faster growth speed
of the cortical plate due to more migrating neurons can lead
to the formation of a convex pattern. We assume that more

axons will also radially emanate from those convex regions
because more neurons will create more axons, and they will
have higher possibility to connect to other convex regions that
have more neurons than to the relatively neuron-poor concave
regions. Based on this assumption, we design the computational
models shown in Figure 9 to study the joint effects of these two
factors (neurogenesis and axonogenesis) which are controlled
by parameters such as the growth speed ratio between the
axon and the core and the growth speed ratio of the shell
to the core. The black arrows highlight shell regions which
have a higher growth speed and thus where denser axons are
attached.

To simplify the model configuration, we set the growth speed
in the slow-growing shell regions to be the same as that of
the core. In this way, the growth ratio gs/gc represents both
the regional growth speed difference across the shell sections
and the radial difference between the fast-growing shell and
the core. Also, we utilize the growth ratio between the fiber
and the core gf/gc to control whether axon is in tension
(gf/gc <= 1, axon is in tension when gf/gc = 1 because gs/gc > 1)
or compression (gf/gc > 1). The black arrows in Figure 9

represent denser axons, the stiffness of which is here the same
as that of the core (µf/µc = 1) in Figure 9. Other results based
on stiffness ratios like µf/µc = 10 are shown in Supplemental
Figure 7.

It is not surprising that gyri are formed at locations
highlighted by black arrows when axons are in compression
(sub-figures marked with “C”) because these shell regions grow
faster and the axons also grow faster so as to “push” the shell
outwards and both factors play a positive role in the formation
of gyri. It is intriguing to note that gyri are also generated
at the location of denser axons even when the axons are in
tension (sub-figures marked with “T”), if the growth speed in
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FIGURE 9 | Combined effects of neurogenesis and axonogenesis on the

convex convolution patterns of cerebral cortex. Black arrows highlight regions

where denser axons are connected; these regions are thus endowed with

higher stiffness. The shell growth speed in intermittent sections (near the black

arrows) is faster than the other shell regions and core. The growth speed ratio

gf/gc between axons and the core generally controls the scenarios under

which the axons are in tension (T) or compression (C). Black dashed circles

and gray ones highlight the typical convex convolution patterns when axons

are in compression and tension, respectively. For these experiments the

stiffness of the axons is considered to be the same as that of the core.

arrow-highlighted shell regions is fast enough to compensate the
displacement where the axons have “pulled” the shell inward.
Although, convex region can be produced when axons are in
either tension or compression, different patterns can still be
observed. For example, the gyral crest is relatively sharp if
the axon is in compression (black dashed circles) and it is
flat when the axon is in tension (gray dashed circles). The
shell thickness and curvature are measured on the models
in the right-top corner and right-bottom corner of Figure 9.
No matter which gyral pattern the model produces, sharp top
(Supplemental Figure 4f) or flat top (Supplemental Figure 4g),
thicker shells can always be found in gyral regions while thinner
ones are seen in sulcal regions, similar to the relationship
gathered from the imaging data shown in Figures 4g,h. In
summary, the joint effects of neurogenesis and axonogenesis
regulate the folding patterns of convex regions. Different convex
region patterns might be created by different combinations of
effects.

CONCLUSION

This paper suggests that the commonly preserved radial
convolution seen in the mammalian cortex is regulated by radial
structures during the early development stage of the brain. The
regionally heterogeneous distribution of RGCs may regulate
the locations of gyri and sulci patterns, where the interplay of
axonogenesis and neurogenesis may regulate the folding patterns
of gyri. These suggestions are supported by a variety of evidence
from multiple disciplines, e.g., genetic studies (Stahl et al., 2013;
Borrell and Götz, 2014), imaging data analyses in literature
(Wedeen et al., 2012; Budde and Annese, 2013) as well as the
computational simulations conducted in this work. A joint study
of data analysis and computational modeling offers valuable
insights to evaluate specific hypotheses of cortical morphogenesis
and is helpful for exploring the possible mechanisms of cortical
folding.

Undoubtedly, brain development is a series of complicated
processes. We only discussed the formation of convolution in the
early stage (Figure 1D) of the brain development, during which
the relatively less variant primary convolutions are formed in
the radial direction. Two processes, i.e., neurogenesis regulated
by RGCs and axonogenesis of the long-range projection axons
which occur almost concurrently, are assumed to be the critical
causes of gyrogenesis. Many other processes like the maturation
of short range axons, axon pruning, and axon myelination may
also play a critical part in gyrogenesis in the secondary and
tertiary stages. For example, short-range axons (U shape axons)
were reported (Zhang et al., 2014) to have a close relationship
with convolution variations in the tangential direction referring
to the circumferential cortical landscape based on a comparison
study among mammalian species. However, how and when these
processes interactively and dynamically contribute to cortical
convolution still remains largely unknown (Van Essen, 1997;
Monuki and Walsh, 2001; Grove and Fukuchi-Shimogori, 2003;
Sur and Rubenstein, 2005; Rakic, 2006).

Fundamentally, the formation of cortical convolution is
regulated by genetic factors. For example, cortical convolution
patterns, though varying across subjects, show great correlation
between twins (Biondi et al., 1998; White et al., 2002) and
even close relatives (Baare et al., 2001; Thompson et al., 2001).
However, as a physical identity, the brain is also assumed to
develop under the constraints of a series of mechanical forces and
physical properties. The genetic factors can only take effect by
regulating those processes at the base level. Thus, interpretation
of developmental mechanics provides an opportunity for us
to bridge the gap between genetic influence and mechanical
forces induced phenotypic characterization, and eventually offers
insight into both developmental mechanisms as well as possible
brain malformation triggers (Dobyns et al., 1993; Raybaud and
Di Rocco, 2007).

It is worthwhile to mention that in the computational models

proposed in this paper, there are some simplifications and
assumptions which impose limitations to the results. First, the

gyrification index in the 2D models is smaller than that of a
real brain, where it can be up to 3 dimensions (Geng et al.,

2009; Tallinen et al., 2014). Second, in our model, the shell
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and core are assumed to exhibit isotropic behavior whereas in
the real brain both gray and white matter show anisotropic
behavior (Arbogast and Margulies, 1998). In some studies the
anisotropy of the core (white matter) has been modeled by a
stretch driven property to mimic the axons’ contribution to the
deformation of the developing brain (Bayly et al., 2013; Budday
et al., 2014), although the assumptions cannot exactly cover the
roles of axons and glial cells on the regulation of convolution
patterns in the developing cerebral cortex (Takahashi et al.,
2012; Borrell and Götz, 2014). It entails a significant amount of
research in order to bring proper glial and axonal contribution
to mechanical models. Third, in this paper, smooth circular
or elliptical initial shapes have been considered as the initial
geometry of the developing brain (Bayly et al., 2013; Budday
et al., 2014), while the developing brain at early stage is not
such a regular shape (Prayer et al., 2006). Therefore, presenting
the proper initial geometry may lead to the better depiction of
convolution patterns.
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