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Abstract
Objective To identify textural features on dual-energy CT (DECT)–based bone marrow images in myeloma which correlate with
serum markers of myeloma activity and the degree of medullary involvement.
Methods A total of 110 patients (63.0 ± 11.0 years, 51 female) who underwent unenhancedwhole-body DECT between September
2015 and February 2019 were retrospectively included, which was approved by our institutional ethics committee with a waiver of
the informed consent requirement. All patients had current hematologic laboratory tests. Using DECT post-processing, non-calcium
bonemarrow images were reconstructed. The vertebral bodies T10–L5were segmented for quantification of textural features, which
were compared with serologic parameters and myeloma stages by the Mann-WhitneyU test. In a subgroup of 56/110 patients with
current bone marrow biopsies, textural features were correlated with the degree of bone marrow infiltration.
Results First-order features were higher in patients with advanced stage of myeloma (p < .02), whereas the 2nd-order “gray-level
co-occurrence matrix (GLCM) cluster prominence”was lower (p < .04). In patients with elevated serum-free light chains (SFLC)
or kappa/lambda SFLC ratio above 1.56, the “entropy” and 2nd-order GLCM features were lower (p < .03). The degree of bone
marrow infiltration correlated with 1st-order features (e.g., “uniformity”; rP = 0.49; p < .0001), whereas “entropy” and 2nd-order
GLCM features were negatively correlated (e.g., “difference entropy”; rP = − 0.54; p < .0001).
Conclusions CT textural features applied on non-calcium bone marrow images correlate well with myeloma-related serologic
parameters and histology showing a more uniform tissue structure and higher attenuation with increasing medullary infiltration
and could therefore be used as additional imaging biomarkers for non-invasive assessment of medullary involvement.
Key Points
• Texture analysis applied on dual-energy reconstructed non-calcium bone marrow images provides information about marrow
structure and attenuation.

• Myeloma-related serologic parameters and the degree of myeloma cell infiltration correlate with 1st- and 2nd-order features
which could be useful as additional imaging biomarkers for non-invasive assessment of medullary involvement.
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Abbreviations
CTTA CT texture analysis
DECT Dual-energy CT
DWI Diffusion-weighted imaging
FOV Field of view
GLCM Gray-level co-occurrence matrix
GLDM Gray-level dependence matrix
GLRLM Gray-level run length matrix
GLSZM Gray-level size zone matrix
IgG Immunoglobulin G
MBD Myeloma bone disease
MM Multiple myeloma
NGTDM Neighboring gray-tone difference matrix
SFLC Serum-free light chains

Introduction

Multiple myeloma (MM) is a malignant hematologic disease
of the mature B cells (plasma cells) which primarily involve
the bone marrow [1]. Involvement of the bone marrow is
usually assessed by bone marrow biopsy determining the de-
gree of tumor cell infiltration at the initial diagnosis and much
rarer later in the course of the disease. By comparison with
other hematological diseases, MM is in most cases going
along with secretion of paraproteins (e.g., IgG, IgA, light
chains), which can be quantified in serum and urine known
as the M-gradient and are considered to correlate with the
tumor burden [2]. The presence of these tumor markers in
most myeloma patients makes their monitoring before, during,
and after treatment more reliable compared with other hema-
tologic malignancies. Nevertheless, a minority of MM pa-
tients does not secrete these markers and are therefore difficult
to surveille by means of laboratory parameters alone which
aggravates patient management at primary diagnosis and dur-
ing therapy [3, 4]. Moreover, myeloma may elude hematolog-
ic diagnosis if it expands outside the marrow cavities
(extramedullary) [5, 6]. There are in particular these sub-
groups of MM patients in whom bone marrow imaging is
playing a major role as a surrogate to quantify the tumor bur-
den and to monitor the tumor response to anti-myeloma treat-
ment [7]. The most frequently applied imaging techniques for
diagnosingMM are X-ray, CT, andMRI [8–10]. The first two
imaging modalities have been mainly used for indirect assess-
ment of medullary involvement based on visualization of sec-
ondary bone destruction, so-called myeloma bone disease
(MBD). In this respect, MR imaging is more sensitive. It is
primarily used in most centers and allows for direct assess-
ment of bone marrow changes induced by myeloma cell infil-
tration [11–14]. MR-based assessment of the extent and pat-
tern of MM mainly operates by evaluation of ancillary T1-

weighted and T2-weighted images combined with diffusion-
weighted imaging (DWI), where the signal intensity in the
bone marrow is compared with the normal marrow of the
adults. DWI and perfusion-weighted imaging, which is
employed in particular in specialized centers, enable a more
accurate assessment of changes occurring at follow-up
[15–17]. However, bonemarrow signal intensity is also affect-
ed by other factors influencing the amount of red and yellow
marrow as patient age, treatment-related shifts, or temporal
variability which may complicate clinical interpretation [17].
FDG-PET/CT has been lately recommended in treated pa-
tients for evaluation of residual myeloma activity [18, 19].

A novel technique called dual-energy CT (DECT) capable
of material decomposition and differentiation of different tissue
components has been tested for bone marrow imaging. This
technique enables to count away the trabecular bone and thus
to quantify the bone marrow alone [20–22]. However, this ap-
proach is exclusively based on quantification of tissue (bone
marrow) attenuation. A novel technique called texture analysis
can be applied additionally on these images in order to get more
information allowing for more accurate characterization of e.g.
tumors focusing on structure, heterogeneity, etc.

Hence, the purpose of this retrospective analysis was to
identify CT textural features in the bone marrow of the spine
of patients with multiple myeloma which correlate well with
established serologic parameters known to reflect tumor activ-
ity and histology (degree of myeloma cell infiltration of the
bone marrow assessed by biopsy).

Materials and methods

Patient characteristics

Our study protocol was approved for retrospective evaluation
of patient data by our institutional ethics committee with a
waiver of the informed consent requirement (registration num-
ber: 019/2019BO2).

All patients with MM who underwent whole-body DECT
for staging (no prior therapy) were retrospectively included in
this study. Exclusion criteria were a history of other bone
disorders and spinal fractures, CT examinations without
dual-energy protocol, and no current in-house hematologic
laboratory surveillance. Patients who had been currently diag-
nosed by bone marrow biopsy were separately analyzed. All
bone marrow biopsies were performed at the posterior iliac
crest. The patients of this subgroup were primarily staged
according to the Durie and Salmon classification system
[23]. The hematologic diagnoses included the M-gradient as
well as serum proteins, serum creatinine, and hemoglobin. All
patients regularly (every 3 months) visited our hematology
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department for follow-up examinations, including laboratory
tests and clinical assessment. None of the patients had a
hyposecretory or non-secretory multiple myeloma.

CT examinational protocol

All CT studies were performed using a second-generation
DECT scanner (Somatom Definition Flash, Siemens
Healthcare). The DECT scanning protocol was standard-
ized dose-reduced and unenhanced as for full-body MM
scanning according to our institutional examinational pro-
tocols. Tube voltages were set to 100 kV and 140 kV using
additional tin filtration for hardening of the high-energy
spectrum. Care Dose 4D (automatic exposure control,
Siemens Healthcare) was applied. Reference tube current-
time products were 230 mAs (100 kV) and 178 mAs
(140 kV). Collimation was 64 × 0.6 mm, with a pitch of
0.6 and rotation time of 0.33 s. Total field of view (FOV)
was 500 mm; reconstruction FOV was 250 mm. We used
an image matrix of 512 × 512. The patient was positioned
supine, and the arms were elevated for scanning, ranging
from the elbows to the knees, including the complete axial
skeleton and the proximal parts of the appendicular skele-
ton (humeral and femoral bones). DECT image data post-
processing was performed on axial and sagittal slices of the
entire axial skeleton using a dedicated medium-soft recon-
struction kernel (D45f) with a slice thickness of 1.5 mm, an
increment of 1.0 mm, and an FOV of 25–30 cm, depending
on the patient’s anatomy.

DECT image evaluation and visualization

Post-processing was performed using approved software
for dual-energy data called “dual energy bone marrow”
on Syngo.via VB 30A (Siemens Healthineers). The post-
processing software is based on a three-material decompo-
sition algorithm. In principle, it is assumed that voxels
within the BM can contain three material fractions with
different X-ray absorption characteristics (fat, soft tissue,
and calcium), which contribute to the total attenuation
within the voxel. The total attenuation within the voxel
can be separated into a fat and soft tissue partition and a
calcium partition which has been already described by
Thomas et al [22]. As input data, the prototype uses the
low-energy (A series) and high-energy (B series) source
data. As an output, two stacks of DICOM images are cre-
ated: an arithmetic average image of both input series, re-
sembling regular CT images with attenuation (HU) com-
parable to an image with 120 kV, and a series of virtual
non-calcium BM images. Thresholds for the three-material

decomposition were set as follows: soft tissue, 57/55 HU
(low/high kV); fat, − 103/87 HU; calcium slope, 1.45.

CT texture analysis of bone marrow images

CTTA was performed using radiomics software (Siemens
Healthineers) that is based on the pyradiomics package, a
python package for the extraction of radiomics features
from medical imaging [24]. A total of 92 original features
were analyzed including 1st-order features (n = 18), 2nd-
order gray-level co-occurrence matrix (GLCM) features
(n = 23), and the higher order features gray-level depen-
dence matrix (GLDM) (n = 14), gray-level run length ma-
trix (GLRLM) (n = 16), gray-level size zone matrix
(GLSZM) (n = 16), and neighboring gray-tone difference
matrix (NGTDM) (n = 5). Definitions of textural features
are listed in Supplementary Table 1.

The vertebral bodies T10–L5 were manually segmented
using three-dimensional volumes of interest (VOIs) on axial,
sagittal, and coronal reconstructed bone marrow CT images.
Areas next to the cortical bone, larger bone marrow vessels
(e.g., the basivertebral vein and its bony canal) as well as focal
lytic lesions, and areas of bony sclerosis were carefully ex-
cluded (Fig. 1). Focal lesions which had to be excluded from
segmentation are summarized in Table 1. The segmentations
were performed by three readers in consensus in a blinded
fashion. Two of the readers were radiologists with 30 years
and 4 years of experience in diagnostic imaging. For assess-
ment of reliability, segmentations were additionally per-
formed by two readers independently following feature
extraction.

Image filtration was performed for electively extracting
features of different sizes and intensity variations followed
by quantification of tissue radiomics using series of derived
images displaying features at a fine spatial scale (2 mm in
radius) within a volume of interest. We performed computa-
tion on the current voxels and their neighbors and the results
were stored as the texture value of the current voxel. This was
repeated for every voxel in the volume of interest.

Standard of reference

The reference standard was the hematological laboratory in-
cluding paraproteinemia and paraproteinuria. Due to different
thresholds for the serum paraproteins of the myeloma sub-
types (e.g., IgA, IgG, IgM), we decided to reduce statistical
analysis taking only the serum-free light chain values and their
ratios into consideration which are important indicators of
myeloma activity [2]. In patients who underwent current bi-
opsy of the bone, the degree of bone marrow infiltration was
assessed by our in-house pathologists. Therefore, all
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specimens are routinely analyzed by two pathologists includ-
ing a senior pathologist with 30 years of experience to ensure
high inter-observer reliability. The mean time interval be-
tween DECT and bone marrow biopsy was 5.9 ± 10.9 days
(median: 3.0 days, range: 0–48 days).

Statistical analysis

Statistical analysis was performed using SPSS version 22
(IBMCorporation). We tested all parameters for the normality
by the Kolmogorov-Smirnov test. A Mann-Whitney U test
was used to test the difference in textural features between
the different myeloma stages, serologic parameters, and pres-
ence or absence of osteolyses. To address the multiple com-
parisons, a Benjamini-Hochberg correction was applied. The
adjusted p values were considered significant at a level of

0.05. According to the Guidelines for Reporting Reliability
and Agreement Studies (GRRAS) [25], we assessed both the
intra- and inter-reader agreement calculating intraclass corre-
lation coefficients (ICCs) from Bland-Altman plots and 95%
limits of agreement to determine the reproducibility of our
results.

To assess the inter-reader agreement, bone segmenta-
tions were performed independently by two readers fol-
lowing feature extraction, whereas the intra-reader agree-
ment was assessed by calculating all textural features twice
by the same reader. Reliability coefficients were
interpreted as follows: less than 0.50: poor; between 0.50
and 0.75: moderate; between 0.76 and 0.90: good; and over
0.90: excellent [26]. To ensure internal consistency of our
data, we performed the split-half reliability test. After split-
ting all texture data into two equal halves, a Pearson’s
r correlation was applied. The Pearson’s coefficients were
then entered into the Spearman-Brown formula to yield the
split-half reliability coefficient.

Furthermore, we applied a z-transformation on all tex-
tural features to enable comparability of textural feature
values [27, 28]. To measure the strength of the linear rela-
tionship between two variables, the Pearson correlation
coefficient was calculated and denoted by rP. A multiple
linear regression was calculated to predict the degree of
bone marrow infiltration based on textural features.
Furthermore, we applied a multivariable logistic regression
analysis (forward LR stepwise method) using the most

Fig. 1 Unenhanced DECT for
post-processing and generation of
non-calcium “bone marrow im-
age data” which were used for
manual segmentation of the ver-
tebral bodies T10–L5. Areas next
to the cortical bone, larger bone
marrow vessels (e.g., the
basivertebral vein and its canal),
and focal lytic lesions were
excluded

Table 1 Focal bone
lesions excluded from
evaluation

Focal lesions n

Sclerotic bone lesions

Hemangioma 8

Osteochondrosis 45

Enostosis 3

Lytic bone lesions

Bone cyst 11

Schmorl’s nodes 23
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significant textural features to construct multi-indicator
models for prediction of myeloma bone disease and
pathological/non-pathological serologic markers. To test
the significance of the logistic regression model, a χ2 test
was applied, and the Cox and Snell R2 was calculated.

Results

Patient cohort

A total of 155 patients with MM were referred by the hospital
hematology service at our institution to whole-body reduced
MDCT in our department. Of these, 20 patients had to be ex-
cluded because of a history of cancer with bone metastases,
spinal fractures and surgery including osteosynthesis and
vertebroplasty, history of radiotherapy, or metabolic disease with
bone involvement. Another 25 patients had to be excluded be-
cause the CT examination was performed with single-energy
and/or no current in-house hematologic laboratory surveillance.
Consequently, 110 patients (63.0 ± 11.0 years, 51 female) with
MMwho underwent whole-body DECT for staging before ther-
apy were included. The clinical characteristics are shown in
Table 2. Of this patient cohort, a subgroup of 56/110 patients
(63.9 ± 11.8 years, 24 female) who had been currently diagnosed

by bone marrow biopsy was separately analyzed (Fig. 2). These
patients were primarily staged as stage I (n = 16, 28.6%), II (n=
10, 17.9%), and III (n= 30, 53.6%) MM.

Correlation between the degree of bone marrow
infiltration and bone marrow textural features

Absolute values of textural features were correlated with the
degree of bone marrow infiltration by bivariate correlation.
We observed a significantly positive correlation between the
degree of bone marrow infiltration (%) and the 1st-order fea-
ture “10th percentile” (p < .001) as well as the 1st-order fea-
ture “uniformity” (p < .0001) (Fig. 3). A significantly negative
correlation could be observed between the degree of bone
marrow infiltration and the 1st-order feature “entropy”
(p < .001) (Fig. 4) as well as the 2nd-order GLCM features
“contrast” (p < .0001), “difference average” (p < .0001)
(Fig. 5), and “difference entropy” (p < .0001).

A significant multiple linear regression equation was found:F
(6.46) = 4.26, (p = 0.002), with R2 of 0.36. The degree of bone
marrow infiltration increased 6.8% for each unit of the 1st-order
“10th percentile,” 1.6% for each unit of the 1st-order “uniformi-
ty,” and 9.5% for each unit of the 2nd-order GLCM feature
“contrast” and decreased 15.7% for each unit of the 2nd-order
GLCM feature “difference average,” 4.4% for each unit of the
GLCM feature “difference entropy,” and 1.8% for each unit of
the 1st order “entropy” (Table 3).

Correlation betweenmyeloma bone disease and bone
marrow textural features

The 1st-order features “mean” (p < .004), “minimum” (p < .004),
and “10th percentile” (p< .003) as well as the higher order fea-
ture gray-level run length matrix (GLRLM) “run variance”
(p< .007) proved all significantly higher in patients presenting
with lytic bone lesions compared with patients presenting with
no lytic bone lesions.

A logistic regression analysis including these significantly
different textural features resulted in a significant model: χ2

(4) = 31.4; p < .001 with r2Cox&Snell = 0.25, a Nagelkerke’s
r2 = 0.33, and a Cohen’s effect size of f = √(0.33/(1–0.33)) =
0.70. In total, 75.5% of patients had been classified correctly
as patients with or without myeloma bone disease by the lo-
gistic model. The higher order feature GLRLM “run variance”
proved to be the variable with the most impact on the odds
ratio (Table 4).

Correlations between the myeloma stage, the
serologic parameters kappa/lambda ratio and SFLC,
and the bone marrow textural features

Comparing the myeloma stages I–III, we found significant
differences for the 1st-order features “10th percentile”

Table 2 Patient
characteristics Characteristics n

Age (years)

Mean ± SD 63.0 ± 11.0

Sex

Males 59 (53.6%)

Females 51 (46.4%)

Myeloma subtypes

IgG 56 (50.9%)

IgA 29 (26.4%)

Light chain 25 (22.7%)

Stages

I 29 (26.4%)

II 21 (19.1%)

III 60 (54.5%)

Kappa/lambda ratio

Not elevated 53 (48.2%)

Elevated 57 (51.8%)

SFLC

Not elevated 56 (50.9%)

Elevated 54 (49.1%)

Osteolytic bone lesions

Yes 39 (35.5%)

No 71 (64.5%)
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(p < .01), “90th percentile” (p < .01), and “median” (p < .02)
and the 2nd-order GLCM feature “cluster prominence”
(p < .04) (Fig. 6).

In patients with pathological kappa/lambda ratio values,
the 1st-order feature “minimum” (p < .03) and the higher
order GLRLM feature “run variance” (p < .03) proved sig-
nificantly higher compared to patients with no pathological
kappa/lambda ratio values, whereas the 2nd-order GLCM
feature “sum entropy” (p < .02) and the higher order
GLRLM feature “high gray-level run emphasis” were sig-
nificantly lower (p < .03). The corresponding logistic re-
gression model including these features was χ2 (4) = 14.6
(p = .006) with r2Cox&Snell = 0.14, a Nagelkerke’s r2 = 0.18,
and a Cohen’s effect size of 0.48. According to this logistic
model, 71.0% of patients had been classified correctly as
patients with pathological kappa/lambda ratio. The

variable with the strongest impact on the odds ratio was
the GLCM feature “sum entropy” (Table 4).

Patients presenting with pathologically elevated SFLC
showed a significantly lower 1st order “entropy” (p< .02), 2nd-
order GLCM “difference average” (p < .03), and GLCM “sum
entropy” (p < .02) and a higher GLCM “inverse difference”
(p< .02) compared with patients in whom the SFLC were not
elevated. A logistic regression analysis including these features
proved to be significant (χ2 (4) = 14.4; p = .006) with a
r2Cox&Snell of 0.13 and a Nagelkerke’s r2 of 0.18. The corre-
sponding Cohen’s effect size was 0.48, however, with a lower
predictive classification power of this model (66.0% of patients
had been classified correctly). The 1st order “entropy” had the
most impact on the odds ratio (Table 4).

Regarding the reliability of textural analysis, ICCs ranged
from 0.88 (95% CI 0.78–0.96) to 0.95 (0.89–0.98) for intra-

Fig. 2 Flow chart of patient
selection

Fig. 3 Bivariate correlation curve between bone marrow infiltration (%)
and the 1st-order feature “uniformity.” The Pearson’s r yielded 0.49 with
a p value of < 0.0001

Fig. 4 Bivariate correlation curve between bone marrow infiltration (%)
and the 1st-order feature “entropy.” The Pearson’s r yielded − 0.47 with a
p value of < 0.001
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reader reliability (Fig. 7a). Results for inter-reader reliability
ranged from 0.85 (0.72–0.95) to 0.87 (0.65–0.94) (Fig. 7b).
Using the split-half method, the measured textural features
had a high internal consistency with calculated Spearman-
Brown coefficients above 0.9.

Discussion

Our results show that there is a strong correlation between
textural features quantified on virtual non-contrast
unenhanced dual-energy CT images and the degree of myelo-
ma cell infiltration of the bonemarrow.We found a significant
correlation of medullary involvement with 1st-order features
and 2nd-order features with GLCM “difference average”
showing the most impact on the multivariate linear regression
equation. These parameters reflect an increase in bonemarrow
attenuation and textural uniformity paralleling the increase in
medullary infiltration.

Furthermore, we found that the magnitude of 1st, 2nd,
and higher order bonemarrow textural features significantly
differs in multiple myeloma patients depending on the

disease stage as assigned according to the Salmon and
Durie classification [23]. Accordingly, the 1st-order fea-
tures “median,” “10th percentile,” and “90th percentile”
significantly increased from stage I to stage III in our patient
cohort. These three features are all indicative of increasing
bone marrow attenuation accompanying increasing myelo-
ma cell infiltration, proving significantly throughout all
stages, but in particular impressively higher in stage III
MM. Concomitantly, the 2nd-order feature “cluster promi-
nence” which is a measure of the skewness and asymmetry
of the gray-level co-occurrence matrix (GLCM) radically
diminished from stage I to stage III MM indicating a more
homogeneous bone marrow texture in higher disease stages.
Correspondingly, in myeloma patients presenting with lytic
bone lesions (myeloma bone disease, MBD), the medullary
textural features also significantly differed from those of
myeloma patients presenting without MBD. Here again,
there were in particular 1st-order features like “mean,”
“minimum,” and “10th percentile” that showed higher
values in patients with lytic bone lesions compared with
patients without MBD. In logistic regression, the 1st order
“entropy” had the most impact on the odds ratio. These
findings are presumed to reflect higher levels of diffuse
myeloma cell infiltration of the bone marrow in patients
with MBD. Consequently, the presence and number of lytic
bone lesions seem to correlate with the total tumor burden as
originally assumed by Salmon and Durie [23]. Moreover,
correlation between the degree of myeloma activity based
on the levels of serum-free light chains and the textural
features of the bone marrow resulted in significant differ-
ences. We accordingly observed a lower value of the 1st-
order feature “entropy” in patients with elevated SFLC
which indirectly indicates a more uniform bone marrow
architecture in patients with diffuse myeloma cell infiltra-
tion compared to such experiencing reconversion to yellow
marrow (e.g., following specific anti-myeloma treatment
experiencing tumor resolution) or such who are diagnosed
in early stages of the disease. Logistic regression analysis
resulted in a significant model showing that the GLCM fea-
ture “sum entropy” had the most impact on the odds ratio. In
these settings, more structural heterogeneity is expected due

Fig. 5 Bivariate correlation curve between bone marrow infiltration (%)
and the 2nd-order GLCM feature “difference average.” The Pearson’s r
yielded − 0.55 with a p value of < 0.0001

Table 3 Multivariate linear
regression analysis Degree of bone marrow infiltration Pearson’s r p value 95% CI β

10th percentile 0.41 < 0.001 − 0.43 to 14.04 6.81

Uniformity 0.49 < 0.0001 − 9.32 to 12.61 1.65

Entropy − 0.23 < 0.001 − 9.30 to 5.64 − 1.83
GLCM contrast − 0.50 < 0.0001 − 22.50 to 41.54 9.52

GLCM difference average − 0.52 < 0.0001 − 56.45 to 25.10 − 15.67
GLCM difference entropy − 0.52 < 0.0001 − 41.80 to 32.99 − 4.41

ß, beta coefficient; CI, confidence interval; GLCM, gray-level co-occurrence matrix
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to the mixture of hematopoietic cells, marrow adipose tis-
sue, and supportive stromal cells. In patients with inactive
disease, conversion to yellow marrow starts early after tu-
mor resolution inducing negative HU values. Myeloma
cells have a larger nucleus and a higher nuclear-
cytoplasmic ratio and are densely packed, so a more uni-
form tissue ultrastructure is expected [29]. Nonetheless, this
finding is not specific and would be also expected in other
disorders going along with increased cell population in the
bone marrow. The same trend was also true for the 2nd-
order feature “inverse difference” which reflects the local
homogeneity of an image on the gray-level co-occurrence
matrix. Hence, for more uniform gray levels, the

denominator will remain low, resulting in a higher overall
value. The 2nd-order feature “difference average” measur-
ing the occurrences of pairs with differing intensity values
in the gray-level co-occurrence matrix proved also signifi-
cantly lower if the SFLC were elevated. Again, the 2nd-
order GLCM feature “sum entropy” which is the sum of
neighborhood intensity value differences proved signifi-
cantly lower in patients with elevated SFLC. We obtained
similar results while using the kappa/lambda ratios. Here
again, the 1st-order feature “minimum” which reflects the
lowest attenuation values proved significantly higher in pa-
tients with elevated ratios presumed to represent higher and
more denser cell populations compared with the yellow
bone marrow. The normal kappa/lambda ratio for SFLC is
0.26–1.65 [2]. In multiple myeloma, excessive production
of one SFLC type (the clonal component referred to as the
involved light chain) often results in an abnormal SFLC
ratio [30]. More than 90% of patients with multiple myelo-
ma have altered SFLC ratios that indicate excess production
of a clonal FLC by the proliferating plasma cell population
[31]. Thus, the SFLC have also an established prognostic
value.

Texture analysis has already been applied on spine MRI
data of oncologic patients showing potential for discrimina-
tion between involved and non-involved bone marrow [32].
Similar to our results, the authors described differences in the
1st-order feature “minimum gray level” on T1w images as
well as of 2nd-order GLCM feature “joint variance” which
is a measure of heterogeneity highlighting the gray-level var-
iability in tissues [32]. Kawashima et al found that specific
textural features derived from regions of interest placed within
multiple sites within the skull base and maxillofacial bones
can distinguish between patients with normal bone mineral
density compared to those with osteoporosis [33]. However,
this later approach addressed the bony structures and not the
bone marrow.

Our study has some limitations. First, due to the retro-
spective design, a selection bias cannot be excluded.
Several exclusion criteria had to be considered resulting in
a limited number of patients. Furthermore, we did not split
our study cohort into a training set and a testing set. Second,
correlation with histology was possible only for the pelvic
bones, but this reflects the usual daily practice in diagnosing
bone marrow involvement. Third, as conventional CT is
less sensitive for detecting non-lytic diffuse infiltration
compared with VNC bone marrow images [22], the obtain-
ed HU values should be carefully evaluated as they may
differ from the results of the three-dimensional segmenta-
tion performed in the VNC images. Therefore, our results
should encourage larger studies on this issue to be carried
out to establish the real benefit of DE-based CT bone mar-
row imaging in comparison with conventional CT HU using
identical segmentation masks and to identify the most

Fig. 6 Comparison of the three myeloma stages according to Durie and
Salmon classification. The 1st-order features “10th percentile,” “90th
percentile,” and “median” were significantly lower in stage I compared
with stage 2 or 3 myeloma, whereas the 2nd-order GLCM feature “cluster
prominence” was significantly higher (p < .05)

Table 4 Multivariate logistic regression analysis

p value Wald Exp β

Myeloma bone disease

Mean < 0.004 1.45 1.00

Minimum < 0.004 2.55 1.02

10th percentile < 0.003 0.0001 1.00

GLRLM run variance < 0.007 16.25 1.00

Kappa/lambda ratio

Minimum < 0.03 0.61 1.0

GLRLM run variance < 0.03 2.71 1.0

GLCM sum entropy < 0.02 6.57 1.0

GLRLM high gray-level run emphasis < 0.03 3.00 1.0

SFLC

Entropy < 0.02 1.71 1.0

GLCM difference average < 0.03 1.25 < 0.01

GLCM sum entropy < 0.02 1.92 1.0

GLCM inverse difference < 0.02 1.15 < 0.01

Exp ß, exponentiated beta value; GLCM, gray-level co-occurrence ma-
trix;GLRLM, gray-level run length matrix; SFLC, serum-free light chains

2364 Eur Radiol (2021) 31:2357–2367



reliable textural features to be implemented for such an ap-
proach in a clinical setting. In conclusion, CT textural fea-
tures applied on non-calcium bone marrow images correlate
well with myeloma-related serologic parameters and histol-
ogy showing a more uniform tissue structure and higher
attenuation with increasing medullary infiltration and could
therefore be used as additional imaging biomarkers for non-
invasive assessment of medullary involvement.
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