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Abstract

To understand information representation in human brain activity, it is important to investi-

gate its fine spatial patterns at high temporal resolution. One possible approach is to use

source estimation of magnetoencephalography (MEG) signals. Previous studies have

mainly quantified accuracy of this technique according to positional deviations and disper-

sion of estimated sources, but it remains unclear how accurately MEG source estimation

restores information content represented by spatial patterns of brain activity. In this study,

using simulated MEG signals representing artificial experimental conditions, we performed

MEG source estimation and multivariate pattern analysis to examine whether MEG source

estimation can restore information content represented by patterns of cortical current in

source brain areas. Classification analysis revealed that the corresponding artificial experi-

mental conditions were predicted accurately from patterns of cortical current estimated in

the source brain areas. However, accurate predictions were also possible from brain areas

whose original sources were not defined. Searchlight decoding further revealed that this

unexpected prediction was possible across wide brain areas beyond the original source

locations, indicating that information contained in the original sources can spread through

MEG source estimation. This phenomenon of “information spreading” may easily lead to

false-positive interpretations when MEG source estimation and classification analysis are

combined to identify brain areas that represent target information. Real MEG data analyses

also showed that presented stimuli were able to be predicted in the higher visual cortex at

the same latency as in the primary visual cortex, also suggesting that information spreading

took place. These results indicate that careful inspection is necessary to avoid false-positive

interpretations when MEG source estimation and multivariate pattern analysis are

combined.
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Introduction

Close investigation of human brain activity patterns plays a vital role in revealing how infor-

mation is represented in the human brain. However, no method can directly measure fine spa-

tial patterns of human brain activity at a high temporal resolution. Functional magnetic

resonance imaging (fMRI) can capture the spatial patterns of human brain activity, but it lacks

temporal resolution, as it measures metabolic processes reflected by blood-oxygenation-level-

dependent signals. In contrast, magnetoencephalography (MEG) and electroencephalography

(EEG) can capture the fast dynamics of brain activity patterns via electromagnetic signals that

propagate from neurons; however, both of these techniques lack fine spatial resolution because

their signals are measured by a small number of sensors placed around the head.

Given these constraints, researchers have tried to extract necessary information by solving

an inverse problem to estimate cortical current source from measured MEG/EEG signals.

MEG is more suitable than EEG for this purpose because of the homogeneous magnetic per-

meability of brain tissues. The typical approach for MEG source estimation uses an equivalent

current dipole or distributed source model, assuming a few or many (typically 103–4) current

dipoles in the brain. Although additional constraints are necessary to resolve the ill-posed con-

dition, a distributed source model seems preferable to analyze fine spatial patterns of brain

activity because of its descriptive power. However, no method can reconstruct cortical current

source with perfect accuracy because of the ill-posed nature of MEG source estimation. It is

hence important to be aware of limitations of MEG source estimation.

Previous studies have mainly evaluated the performance of MEG source estimation with

regard to the accuracy of source position estimation. Thus, error has typically been quantified

in terms of spatial displacement [1], dispersion [2–5], and overlap/non-overlap of the esti-

mated sources relative to the original ones [6–8]. However, it remains unclear how accurately

the spatial patterns of the original source are restored through MEG source estimation.

Restorability of the spatial patterns of the original sources through MEG source estimation

is crucial for investigating the information content represented by brain activity patterns [9–

17]. Previous fMRI studies have shown that multivariate pattern analysis (MVPA) allows

information of images seen by participants to be extracted from the spatial patterns of their

brain activity [18–20]. Recent MEG studies have also applied MVPA to estimated cortical cur-

rent and evaluated the information represented by them [21–24]. This progress emphasizes

the importance of evaluating whether the original spatial pattern of the source is preserved or

whether a spurious pattern is fabricated through MEG source estimation.

In this study, we examine whether MEG source estimation can restore a pattern of the

original cortical current and the represented information content of the source brain areas

(Fig 1). For this purpose, we assumed patterns of source cortical current in certain areas on

participants’ cortical surface models that would encode differences in artificial experimental

conditions as multidimensional patterns. Given the source cortical current, we calculate the

expected magnetic fields at the MEG sensors and estimate the spatial patterns of the cortical

current from the simulated MEG sensor signals. We use four representative methods of

MEG source estimation based on distributed source models. We quantify the similarity

between the spatial patterns of the original and estimated cortical currents and show signifi-

cant correlation between them. We then demonstrate that the estimated cortical current can

be used to predict the corresponding artificial experimental conditions by pattern classifica-

tion analysis but that significant prediction is possible even in cortical areas where the origi-

nal source is not defined. This unexpected phenomenon makes it appear as if represented

information spreads over a wide cortical area when MEG source estimation is used, which

could lead to misinterpretations about the cortical areas that represent target information.
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Further analyses confirm that this information spreading can be similarly observed in real

MEG data.

Methods

Modeling cortical surfaces

Magnetic resonance imaging (MRI) was used to obtain each participant’s cortical structural

images. Cortical surface models were then extracted from the cortical structural images to sim-

ulate source cortical current. The simulation described in the following sections were con-

ducted for each participant independently using the individual cortical surface models.

Participants. Cortical structural images were obtained from nine participants (eight male

and one female). They participated in our study voluntarily, and the same participants also

took part in the MEG experiments described later. Each participant gave written informed

consent before participating. The procedure was approved by the institutional review board of

The University of Electro-Communications and Advanced Telecommunications Research

Institute International (ATR) Brain Activity Imaging Center.

MRI acquisition. Cortical structural images were obtained using 3.0-Tesla Siemens

MAGNETOM Trio A Tim and Prisma fit scanners located at the ATR Brain Activity Imaging

Center. T1-weighted magnetization-prepared rapid-acquisition gradient-echo (MP-RAGE)

fine structural images of the whole head were acquired for each participant (208 sagittal slices;

Fig 1. Schematic view of multivariate pattern analysis of cortical current estimated by MEG source estimation. Two patterns of source cortical current are

simulated (step 1) and then converted to MEG signals (step 2). Next, cortical current is estimated from the converted MEG signals using MEG source

estimation methods (step 3). To evaluate pattern reproducibility and information restorability, the original and estimated patterns of cortical current are

compared using multivariate pattern analyses (steps 4 and 5).

https://doi.org/10.1371/journal.pone.0198806.g001
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TR, 2250 ms; TE, 3.06 ms; TI, 900 ms; flip angle, 9˚; field of view, 256 × 256 mm; voxel size,

1.0 × 1.0 × 1.0 mm; the same parameters were used on the Trio and Prisma scanners).

Extraction of cortical surfaces. The cortical surface was defined as a polygon model of

the gray matter surface extracted from each participant’s MRI data using the FreeSurfer soft-

ware suite (http://surfer.nmr.mgh.harvard.edu/), with about 300,000 vertices. The polygonized

cortical surface models were then imported into Brainstorm [25], and the number of vertices

was downsampled to 15,002 to reduce computational load.

Simulation of source cortical current

A source cortical current was simulated for each participant’s cortical surface model with a

time course designed to roughly imitate the evoked response caused by visual stimulation

along the visual cortical hierarchy. The time period of the source cortical current was defined

during −100–300 ms, which corresponds to a single trial in the simulation. We assumed two

source areas in different time windows and ROIs: at 25–75 ms in the primary visual cortex

(V1) and at 200–250 ms in the inferotemporal cortex (IT; Fig 2). ROIs were manually defined

on the ICBM152 standard brain [26] and then projected onto each participant’s cortical sur-

face model using FreeSurfer’s spherical morphing procedure (Fig 2A). In addition to V1 and

IT, the parietal cortex (PR) was also defined without any sources for control analyses (Fig 2A).

V1 was defined to encompass the occipital pole, IT was defined to overlap with the inferopos-

terior part of the temporal lobe, and PR was defined as the middle part of lateral parietal lobe.

Each ROI enclosed 120 vertices (60 vertices for each hemisphere). No sources were assumed

on other vertices. The time origin (0 ms) was considered to be the onset of visual stimulation.

Although we used this particular timing setup, it does not affect the presented results qualita-

tively unless the two source activity temporally overlap.

Each of the sources was a combination of multiple current dipoles with the same amplitude

within each hemisphere, but different amplitudes across hemispheres. Current dipoles were

placed at all vertices of the cortical surface whose directions were perpendicular to the cortical

surface (the positive direction was defined as from the inside to the outside of the brain). Note

that current dipoles with non-zero amplitude was placed only in the source ROIs whereas

those placed in other areas had zero amplitude. The amplitude of the source cortical current in

each ROI was temporally modulated as a sinusoidal waveform whose phase started at zero and

ended at π within each time window (Fig 2B). Thus, the amplitude was maximal at the middle

of each time window (50 ms and 225 ms for V1 and IT, respectively). We created two artificial

experimental conditions with differences in maximum amplitude for each hemisphere: for

condition 1, the maximum amplitude of the source cortical current was 1 nA�m for the left

hemisphere and −1 nA�m for the right, while condition 2 was the opposite of condition 1

across hemispheres. Thus, the mean amplitude of the source cortical current across hemi-

spheres was the same in both of the artificial experimental conditions.

Calculation of MEG sensor signals

To simulate MEG sensor signals generated by the original cortical current, we measured head

position relative to the MEG sensors for each participant.

Head position measurement and registration. We first measured each participant’s head

shape and the positions of five electromagnetic marker coils attached to the participant’s head

(three on the forehead and two on the ear tragi) using a three-dimensional digitizer (Fas-

tSCAN, Polhemus Inc., USA). The magnetic field generated by the marker coils was then mea-

sured by an MEG system (PQ1400RM, Yokogawa Electric Co., Japan) with 400 SQUID

sensors (210 axial and 190 planar gradiometers), and each participant’s head position was
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estimated from the measured signals. Each participant’s head position in the MEG system was

then coregistered to the cortical structural image of the same individual’s MRI data. The posi-

tional relationship between the MEG sensors and the cortical surface was determined from

each participant’s coregistration results.

MEG signal synthesis. MEG sensor signals were calculated by a forward model that

describes magnetic propagation processes from the original cortical current to the MEG sen-

sors. The forward model can be described as

b ¼ G � jþ e ð1Þ

where b (RN×1 vector; N, number of MEG sensors) represents measured MEG signals, G

(RN×M matrix; M, number of vertices on the cortical surface) represents a leadfield matrix, j

(RM×1 vector) represents the original cortical current, and e (RN×1 vector) represents sensor

Fig 2. ROIs and patterns of source cortical current. (a) Three bilateral ROIs arranged on the cortical surface of the

standard brain. (b) Source cortical current within each ROI. Line colors correspond to ROI colors shown in (a).

https://doi.org/10.1371/journal.pone.0198806.g002
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noise. Each column of the leadfield matrix indicates the amplitude of the MEG signals generated

by a unit current dipole of the corresponding vertex. G was calculated by the boundary element

method using the OpenMEEG software package [27,28]. Sensor noise was modeled to follow a

Gaussian distribution N(0,σ2). In this simulation, σ was set to twice the largest MEG signal

amplitude across all time points and sensors to represent the low signal-to-noise ratio that

would occur in an actual experiment. The noise was added to each time point and MEG sensor

independently. We constructed five artificial experimental runs by repeating this procedure 50

times for each artificial experimental condition. Each run consisted of 100 trials in total.

Estimation of cortical current from simulated MEG sensor signals

Suppose that ĵ is an estimate value of j (RM×1 vector) given b and G. To estimate ĵ, we need to

solve an inverse problem that is ill-posed because there are fewer MEG sensors than assumed

current dipoles on the cortical surface. To obtain a unique solution, we used the following four

representative frameworks for MEG source estimation, which have been used extensively in

recent studies.

L2-norm regularization. We first tested L2-norm regularization, whose objective func-

tion is written as

Eð̂jÞ ¼ ðb � G � ĵÞT � C� 1 � ðb � G � ĵÞ þ l̂jT � R� 1 � ĵ ð2Þ

where C is the RN×N noise covariance matrix, R is theRM×M source covariance matrix, λ is a

regularization parameter, and T indicates the transpose. The first term on the right-hand side

of Eq (2) indicates the estimation error weighted by noise covariance, and the second term

indicates L2-norm regularization weighted by source covariance. This framework is known as

minimum norm estimation (MNE) [29]. Although classical studies set C and R as identity

matrices, here we used a modified version of MNE, in which C was computed from simulated

MEG signals with a period of −100 to −1 ms, R was weighted by depth from the cortical sur-

face, and the leadfield matrix was spatially whitened. We tested different λ values ranging

from 10−2 to 103 in exponential steps. We used MNE implemented in Brainstorm (http://

neuroimage.usc.edu/brainstorm/).

L1-norm regularization. L2-norm regularization yields a cortical current broadly distrib-

uted over the cortical surface. Such a solution is often considered undesirable, because one of

the purposes of MEG source estimation is to identify the brain areas related to the experimen-

tal conditions under investigation. As an MEG source estimation method that gives preference

to more sparse cortical currents than MNE, we tested L1-norm regularization, also known as

minimum current estimation (MCE; [30,31]) or least absolute shrinkage and selection opera-

tor (LASSO; [32]), whose objective function is written as

Eð̂jÞ ¼
1

2N
jb � G � ĵj2

2
þ lĵjj1 ð3Þ

where λ is a regularization parameter, and |x|p represents the Lp-norm of a vector X. L1-norm reg-

ularization promotes sparse solutions in which only small numbers of elements of ĵ have non-

zero values. In this formulation, λ should be smaller than lmax ¼
maxðjGT �bjÞ

N [33,34]; otherwise ĵ
becomes the zero vector. As λmax was on the order of 10−11 in our simulation, we tested λ values

smaller than the λmax, ranging from 10−16 to 10−11 in exponential steps. We used the L1-norm

minimization implemented in the scikit-learn software package (http://scikit-learn.org/stable/).

Hierarchical Bayesian estimation. The above two methods add a constraint for the mini-

mization of the L2 and L1-norm of ĵ, respectively. The constraint can be further improved if

prior information on the locations of the MEG signal sources is available. Previous studies
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have shown that fMRI activity evoked by experimental conditions similar to those used to

induce MEG signals can serve as prior information about the possible locations of MEG signal

sources [35,36].

In this study, we used a hierarchical Bayesian model to introduce prior information on the

MEG signal sources [36]. In this model, the prior information for ĵ is introduced as a prior

probability that follows a zero-mean Gaussian distribution with inverse variance r:

Pð̂jjrÞ / exp �
1

2
ĵT � R � ĵ

� �

ð4Þ

where R = diag(r) and r is aRM×1 vector whose elements r� 1
i are hyperparameters denoting

source variance. The inverse variance r is also treated as a random variable that follows a

gamma distribution

PðrÞ ¼
YM

i¼1

Gðrij�r0;i; g0;iÞ ð5Þ

where Gðrij�r0;i; g0;iÞ represents a gamma distribution with mean �r0;i and degrees of freedom

γ0,i. The γ0,i is also known as a confidence parameter. The prior distribution combined with

this hyperprior distribution is equivalent to automatic relevance determination (ARD) prior

[36–38]. Information about the fMRI activity is introduced to control �r0;i, with a large source

variance being more likely where larger fMRI activity is observed. The likelihood function is

defined with the assumption that the MEG sensor noise follows a Gaussian distribution as

PðbĵjÞ / exp �
1

2a
kb � G � ĵk2

� �

ð6Þ

where α indicates noise variance. Using Bayes’ theorem, the posterior probability distribution

for the estimated cortical current can be described as

Pð̂j; rjbÞ ¼
PðbĵjÞPð̂jjrÞPðrÞ

PðbÞ
ð7Þ

where P(b) indicates the marginal likelihood defined as

PðbÞ ¼
Z

PðbĵjÞPð̂jÞd̂j: ð8Þ

Using Pð̂j; rjbÞ, the posterior distribution of ĵ can be obtained as

Pð̂jjbÞ ¼
Z

Pð̂j; rjbÞdr: ð9Þ

The cortical current is estimated by taking the expectation of the posterior distribution.

We conducted this hierarchical Bayesian estimation using variational Bayesian multimodal

encephalography software (VBMEG; http://vbmeg.atr.jp/). For prior information, we set the

magnitude of the fMRI activity to 1 for all vertices in V1 and IT and to 0 for all other vertices.

Note that cortical current was estimated for all vertices on the whole cortical surface regardless

of the prior information. The width of the time window for estimating source variance were

set to 100 ms and the time window was shifted in 50-ms steps. We used a single value of the

confidence parameter for all vertices (i.e., γ0,i = γ0). Tested values were γ0 = 0 and that in the

range from 10−1 to 103 in exponential steps.
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LCMV beamformer. The fourth representative method for MEG source estimation

that we tested was the linearly constrained minimum variance beamformer (LCMV; [39]),

which is based on a different concept from the regularization methods described above.

LCMV constructs a spatial filter wi for b to estimate the ith cortical current ĵ i under the con-

straint wT
i � gi ¼ 1, where gi is the column vector of the leadfield matrix corresponding to the

ith vertex. Under this constraint, LCMV minimizes the power of ĵi. This minimization effec-

tively suppresses the influence of spurious sources and sensor noise because the lower bound

of the power of ĵ i should match the original cortical current as a result of the constraint. This

procedure yields a spatial filter wi:

wi ¼ B� 1 � gi � ðg
T
i � B

� 1 � giÞ
� 1

ð10Þ

where B indicates the covariance matrix of b. Because the signal-to-noise ratio of b can be low

in an actual experiment, noise can significantly affect wi. Thus, wi is normalized by noise vari-

ance as

ŵ i ¼
wi

gT
i � C � gi

: ð11Þ

Thus, ĵ i can be obtained as

ĵ i ¼ ŵT
i � b: ð12Þ

ĵ can thus be estimated by calculating ŵ i for all vertices. In this study, B was computed using a

100-ms time window shifted with 50-ms steps. Noise covariance matrix C was computed from

simulated MEG signals with a period of −100 to −1 ms. We performed the above procedure

using custom written MATLAB (MathWorks, Natick, MA) programs.

In this study, MEG source estimation was conducted using all trials for each artificial experi-

mental run independently to avoid using the same data twice in the training and test (double dip-

ping) in leave-one-run-out cross-validation (see Time-resolved decoding in each ROI section).

Evaluation of source estimation accuracy

To evaluate source estimation accuracy, we used the two indices of area under the precision-

recall curve and correlation of spatial patterns. Note that because the value of the MEG sensor

noise was set high to resemble actual measurements, these evaluations would have been

strongly influenced by noise if based on the data from a single trial. We therefore averaged the

estimated cortical current across all trials for each artificial experimental condition and used

the averaged data for evaluations.

Area under the precision-recall curve. First, we used the area under the precision-recall

curve (APR) to evaluate the accuracy of localization of source cortical current by the MEG

source estimation methods. As we simulated the source cortical current as a distribution rather

than a current dipole, it is suitable to evaluate the degree of overlap between the source ROIs

and the source positions defined by the estimated cortical current. Representative methods for

such an evaluation are the area under the receiver operating characteristic curve (AUC) [40]

and APR [41,42]. A previous study showed that AUC is less sensitive than APR when the num-

ber of positive samples is significantly different from the number of negative ones [43]. As the

numbers of vertices within (positive samples) and outside (negative samples) a source ROI dif-

fered substantially (120 vs. 14,882) in our simulation, we used APR instead of AUC. The

detailed procedure to calculate APR is shown in Appendix A. The chance level of APR was cal-

culated as 0.008. APR was calculated at the time when the source cortical current was at its
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maximum for each ROI (50 ms and 225 ms for V1 and IT, respectively) in each artificial exper-

imental condition.

Correlation of spatial patterns. Second, we calculated the correlation coefficients

between the original and estimated cortical currents to evaluate how accurately spatial patterns

were restored by MEG source estimation. Spatial correlations were computed between the

original and estimated cortical current patterns over vertices within each source ROI for each

artificial experimental condition at 50 ms and 225 ms for V1 and IT respectively. We assumed

that the spatial patterns of the original cortical current were restored if a significant correlation

(P< 0.05, uncorrected) was observed.

Time-resolved decoding in each ROI

We also used pattern classification analysis to evaluate whether the MEG source estimation

methods restored information represented by differences in the spatial patterns of the original

cortical currents. Pattern classification was performed to predict the artificial experimental

conditions from the estimated cortical current at each time interval in each ROI on a trial-by-

trial basis. We used the linear support vector machine (SVM; [44]) implemented in libsvm

(http://www.csie.ntu.edu.tw/~cjlin/libsvm/) as a pattern classifier or “decoder”. The decoder’s

prediction accuracy was evaluated by time-resolved leave-one-run-out cross-validation analy-

sis [16,45], in which the decoder was trained with four out of five artificial experimental runs

and tested with the remaining one at a particular time interval of 5 ms (see below about pre-

processing of the estimated cortical current). This procedure was repeated until all artificial

experimental runs were tested once at each time interval.

The estimated cortical current was preprocessed before decoding as follows. First, the time

course of estimated cortical current was downsampled at each 5-ms interval with an equally-

weighted smoothing window of 10 ms. Then, the downsampled data underwent z-score nor-

malization across trials at each time interval for each vertex. The parameters for normalization

(i.e., mean and standard deviation) were calculated using only a training data set and were

then applied to both the training and test data sets. A decoder received the preprocessed data

corresponding to each ROI as an input feature (R120×1 vector, for all ROIs). Custom software

programs partially based on the Brain Decoder Toolbox (http://www.cns.atr.jp/dni/download/

brain-decoder-toolbox/) were written to perform the analysis.

Searchlight decoding

MEG source estimation cannot reconstruct the original cortical current with perfect accuracy,

and spurious cortical current may be found beyond the source ROIs. If this spurious cortical

current has systematic differences related to the artificial experimental conditions, a decoder

can capture these differences and predict the artificial experimental conditions, even from

irrelevant brain areas far from the source ROIs.

To test this possibility, we performed searchlight decoding [46] to examine whether and

how far such systematic differences in estimated cortical current spread beyond the source

ROIs. The estimated cortical current at each vertex and its 119 neighborhood vertices were

used as an input feature (R120×1 vector, the same dimensions as for the ROI-based decoding).

Decoding was performed for all vertices using the same procedure as that employed for the

ROI-based decoding, but the time points only of 50 ms and 225 ms were tested in this analysis.

To assess how far the systematic differences had spread, we analyzed the relationship

between the distance from the source ROI to a particular vertex and the prediction accuracy at

that vertex. Distance was calculated from the center of mass of the source ROI. This calculation

was performed separately for each hemisphere.
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Statistical significance of decoding analysis

We defined the statistical significance level of these decoding analyses (ROI-based and search-

light) with reference to the prediction accuracy obtained from the whole cortical area at 0 ms

using searchlight decoding for each participant. As the MEG signals at 0 ms consisted of noise,

prediction accuracy at this time served as a null distribution. We used the 99th percentile of

the null distribution as the statistical significance level. We also used binomial distribution and

permutation tests to define the significance level and examined whether the significance of

decoding accuracy depends on the definition of the significance level. The significance levels

of the permutation tests were defined as 99th percentile of 200 random permutations at each

time point.

Real data analysis

We also applied pattern classification analysis to real data. In this analysis, we used VBMEG as

a source estimation method because it showed the most accurate source localization and pat-

tern reconstruction in the simulations (see Results).

Participants. Four male participated in this experiment voluntarily. Each participant gave

written informed consent before participating in the experiment, which was approved by the

institutional review board of The University of Electro-Communications and ATR Brain

Activity Imaging Center.

Visual stimuli. Pairs of wedges with white and black checkerboard patterns were used as

stimuli. The center angle of the wedges was 30˚, and the wedges rotated clockwise in 30˚ steps

(S11(A) Fig). The stimuli were projected onto a translucent screen, subtending 18˚ × 18˚ of

visual angle, with a gray background. Each trial consisted of the fixation period and the stimu-

lus presentation period. In the fixation period, a fixation point consisting of black and white

concentric circles was presented for 1,500 ms at the center of the screen. The white part of the

fixation point changed to red 700–1,200 ms before the stimulus presentation period began.

Participants were instructed to suppress eye blinks while the color of the fixation point was

red. After the fixation period, the stimulus presentation period began and each stimulus was

presented for 300 ms and was followed by a 300 ms inter-stimulus interval. The red part of the

fixation point changed back to white when the stimulus presentation period ended. One run

consisted of 20 trials, and a total of 12 runs were conducted for each participant.

MEG acquisition and preprocessing. We acquired MEG signals during the experiment

using the same MEG system used to estimate head position for the simulation. MEG signals

were acquired at 1000 Hz and a band-pass filter with 0.05 to 200 Hz was applied online.

Electrooculography (EOG) was simultaneously obtained to allow rejection of trials corrupted

by eye blinks and eye movement. Each participant’s head position in the MEG system was

acquired before each run. We applied time-shifted principal component analysis [47] and a

low-pass filter with a 100 Hz cutoff frequency to the measured MEG signals to reduce environ-

mental and high-frequency noise. MEG signals corresponding to each stimulus presentation

were epoched from −100 to 400 ms (0 ms was defined as stimulus onset) to constitute a trial.

Channels whose MEG signal amplitude exceeded the range between −1 and 1 pT in more than

5% of all trials were discarded, as they were considered to be contaminated by noise. Trials

were discarded from the following analysis if the EOG fell outside the range between −1 and 1

mV, or at least one MEG channel fell outside the range between −1 and 1 pT, as they were con-

sidered to be contaminated by eye blinks, eye movement, or noise.

Source estimation. Forward model

We used a cortical structural image of each participant’s whole head acquired using the

Trio and Prisma scanners at the ATR Brain Activity Imaging Center with the acquisition
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parameters mentioned in simulations. The cortical surface of each participant’s structural

image was polygonized with 15,002 vertices using FreeSurfer and VBMEG software such that

the number of vertices matched to that used in the simulations. Head positions were acquired

in the MEG system for each run and they were coregistered to the cortical surface. A leadfield

matrix was then computed for each participant and each run using the boundary element

method.

Source estimation

As prior information, we set the magnitude of fMRI activity to 1 for all vertices in the pri-

mary visual cortex (V1) and the higher visual cortex (HVC), leaving it as 0 for all other vertices.

We chose these two ROIs to investigate whether spurious cortical current produced by MEG

source estimation has systematic differences related to the experimental condition (see the sec-

tion below). HVC was defined as a combination of the lateral occipital complex (LOC), fusi-

form face gyrus (FFA), and parahippocampal place area (PPA). V1, LOC, FFA, and PPA were

identified for each participant using standard experimental procedures used in previous stud-

ies [48–51]. The width of the time window for estimating source variance was set to 10 ms,

and the time window was shifted in 5-ms steps. We used γ0,i = 102 for all vertices because it

showed the most accurate correlation between the estimated and original cortical current in

the simulation. Source estimation was conducted using VBMEG for each participant and each

run.

Time-resolved decoding in each ROI. To investigate whether the spurious cortical cur-

rent contained systematic differences related to the experimental conditions in the real data,

we conducted time-resolved decoding in each ROI. Pattern classification was performed to

predict the experimental conditions from the estimated cortical current at each time point in

V1 and HVC. Three pairs of wedges presented in the upper right and the lower left areas were

labeled as condition 1, and the other three pairs of wedges presented in the upper left and the

lower right areas were labeled as condition 2 (S1B Fig). As the latency of neural activity in V1

is expected to be shorter than that in HVC [52], the experimental condition is expected to be

decoded from the estimated cortical current in V1 earlier than it can be decoded from that in

HVC. Thus, if significant prediction accuracy is obtained in HVC at the same latency as in V1,

we can assume that the spurious cortical current estimated in HVC has information about the

experimental condition. In this analysis, we used a SVM as a classifier and its prediction accu-

racy was evaluated by leave-one-run-out cross-validation for each time point. Before decoding,

the mean amplitude of the estimated cortical current during the baseline period, in which the

stimulus-evoked neural activity did not appear in V1 (−100 to 40 ms), was subtracted from

each trial and each vertex. The end of the baseline period was determined according to previ-

ous studies [52,53]. Z-score normalization was also applied, as in the simulation. As in the

simulation, we defined the statistical significance level as the 99th percentile of prediction

accuracy obtained from searchlight decoding at 0 ms (see Searchlight decoding section

described below). We defined the onset latency of significant prediction accuracy in each ROI

as the earliest time point from which the classifier showed significant prediction accuracy on

at least 40 consecutive points (40 ms).

Time lag between changes in prediction accuracy and estimated cortical current. The

time course of the estimated cortical current was also compared with that for the prediction

accuracy of each ROI. To quantify the time course of the magnitude of the estimated cortical

current for each ROI, we used F-statistics calculated by comparing the variance of the estimated

cortical current across all vertices within the ROI at each time point with that during the base-

line period. Before calculating the F-statistics, the estimated cortical current underwent subtrac-

tion of the mean amplitude of the baseline period followed by trial averaging for each vertex.

Next, we calculated the cross-correlation between the time courses of the F-statistics and
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prediction accuracy. In this calculation, all the time points after the baseline period were used,

and the lag in the maximum of the cross-correlation was acquired. Positive lag means that the

time course of the prediction accuracy precedes that of the estimated cortical current.

Searchlight decoding

We performed searchlight decoding to examine whether and how far systematic differences

about experimental conditions spread in the estimated cortical current also for the real data.

The estimated cortical current at each vertex and its 119 neighborhood vertices were used as

an input feature (R120×1 vector, the same dimensions as the simulation). Decoding was per-

formed for all vertices using the same procedure as for the ROI-based decoding at the onset

latency of prediction accuracy for time-resolved decoding in V1 for each participant because it

is highly likely that V1 could be a major source that represents information corresponding to

visual stimuli but few areas are active at that time. As in the simulation, we defined the signifi-

cance level as the 99th percentile of prediction accuracy of searchlight decoding at 0 ms

obtained from the whole cortical area for each participant. This significance level was also used

for time-resolved decoding in each ROI.

Results

Simulation data analysis

Localization accuracy of source ROIs. First, we evaluated how accurately the MEG

source estimation methods localized source cortical current using APR (Fig 3A; the results for

V1 at 50 ms and IT at 225 ms in condition 1 are shown. The results of condition 2 are shown

in S2 Fig). MNE, MCE, and VBMEG had at least one hyperparameter whose mean APR

exceeded its baseline value in both ROIs. The mean APR of LCMV also exceeded its baseline

value in both ROIs. VBMEG showed the highest APR, whereas MCE showed the lowest. We

further illustrated the time course of the estimated cortical current within source ROIs for a

single participant (Fig 3B) and the estimated cortical current maps by rendering them on the

cortical surface of the same participant (Fig 3C). The time course of the estimated cortical cur-

rent showed that the major sources were successfully estimated in the ROIs at the correct

times, although they were missed in some cases (e.g., sources in IT at 200–250 ms by MCE)

and small amplitudes were also found at the incorrect times (e.g., V1 at 200–250 ms and IT at

25–75 ms for LCMV). According to the results of the estimated cortical current maps, MNE,

MCE, and VBMEG at 50 ms typically showed larger localized amplitudes around V1 than in

other areas, whereas LCMV tended to produce a broad estimation (Fig 3C). At 225 ms,

VBMEG showed better localization of a large amplitude around IT than other methods (Fig

3C). These results demonstrate that MEG source estimation can localize the major cortical

current in the correct ROIs at the correct times, although some exceptions were found.

Spatial correlation between original and estimated cortical currents. We then evaluated

the accuracy of restoration of the spatial patterns in the original cortical current. Correlation

coefficients were calculated for spatial patterns between the original and estimated cortical cur-

rents within the source ROIs (Fig 4; only results for V1 and IT in condition 1 are shown, with

the rest shown in S3 Fig). MNE showed the highest mean correlation at around λ = 10−1 to 100

in both ROIs. MCE showed the highest correlation in V1 at λ = 10−12, but the mean correla-

tions for IT did not exceed significance level. VBMEG generally showed higher correlations

than the other source estimation methods and achieved the highest value around γ0 = 102 in

both ROIs. LCMV showed correlations comparable to those of MNE. These results indicate

that all of the investigated MEG source estimation methods, except for MCE, can restore spa-

tial patterns of the source cortical current that significantly correlate with the original ones.
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Time-resolved decoding in each ROI. We further used pattern classification analysis to

examine whether the MEG source estimation methods preserved the information represented

by differences in the spatial patterns of the original cortical current. Because the difference was
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Fig 3. Accuracy of source localization. (a) Area under the precision-recall (APR) curves for V1 at 50 ms and IT at 225 ms in artificial experimental condition 1 (averaged

across participants; error bars, s.d.; gray dashed lines, baseline value of APR). 0� indicates γ0 = 0. Results for artificial experimental condition 2 are shown in S2 Fig. (b)

Time course of the mean estimated cortical current within V1 and IT with the hyperparameters that achieved the highest APR. The results for artificial experimental

condition 1 for a single participant are shown as examples. (c) Absolute values of estimated cortical current with amplitude normalized to 0–1 for visibility. Vertices

showing zero amplitude are set as transparent, and sulci (dark gray) and gyri (light gray) are visible on the maps. Results are shown for the same hyperparameters and

participant as in (b).

https://doi.org/10.1371/journal.pone.0198806.g003
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exclusively represented in V1 at 25–75 ms and in IT at 200–250 ms, only those particular com-

binations of ROI and time window were expected to show significant performance in predic-

tion of the artificial experimental conditions (for ideal results, see Fig 5A).

The results showed that all MEG source estimation methods achieved significant prediction

for these combinations of ROI and time window (in Fig 5B–5E, only results for the hyperpara-

meter that achieved the highest correlation in V1 are shown [see Fig 4]; the full results are

shown in S4 Fig). Thus, the represented information was preserved through the MEG source

estimation.

However, significant prediction was also possible from the ROIs at non-informative time

windows (i.e., V1 at 200–250 ms and IT at 25–75 ms), during which no differences were

defined in the spatial patterns of the source cortical current, particularly for MNE, VBMEG,

and LCMV. Furthermore, even in PR, where no source cortical current was provided at any

time, significant prediction was possible for both time windows. MCE showed only a small

increase in prediction accuracy for the non-informative combinations of ROI and time win-

dow, but it also achieved less accurate prediction than the other MEG source estimation meth-

ods with the informative combinations. We also performed the same analysis with addition of

Gaussian noise N (0,1) to PR as source cortical current and examined whether such irrelevant

activity influences decoding. The results showed that prediction accuracy was decreased but

still remained above significance even in the case of non-informative combinations of ROI

and time window (S5 Fig). These results demonstrate that information about artificial experi-

mental conditions originally contained within a particular brain area can spatially spread to

other brain areas through MEG source estimation. We call this phenomenon “information

spreading.” Preliminary analyses also confirmed that these results were qualitatively similar if

low-noise MEG signals or more complicated spatial patterns of source cortical current were

used.

There was no qualitative difference between the significance levels calculated from the

searchlight decoding at 0 ms (55.6±1.0%, presented in the figures), a binomial distribution

(54.4%), and the permutation tests (56.1±0.8%, mean±s.d. across all time points in the trial).

We also confirmed that no significant difference was observed in the number of significant

Fig 4. Correlation coefficient between patterns of original and estimated cortical current. Results for V1 at 50 ms and IT at 225 ms in artificial experimental

condition 1 are shown (averaged across participants; error bars, s.d.; gray dashed lines, significance level [uncorrected P< 0.05]). 0� indicates γ0 = 0. Results for

artificial experimental condition 2 are shown in S3 Fig.

https://doi.org/10.1371/journal.pone.0198806.g004
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time points across the three significance levels (P< 0.05, Kruskal-Wallis test) (S6 Fig). Because

the statistical difference was not found to depend on the tested significance levels, we adopted

the significance level calculated from the searchlight decoding at 0 ms in this paper.

Searchlight decoding and the spatial extent of information spreading. We conducted

searchlight decoding to investigate the spatial extent of information spreading produced by

Fig 5. Time-resolved decoding in each ROI. (a) Ideal time courses of prediction accuracy. (b–e) Time courses of prediction accuracy for MNE, MCE, VBMEG,

and LCMV, respectively. Results for the hyperparameters that achieved the highest correlation coefficient in V1 (see Fig 4) are shown. Solid lines indicate the mean

prediction accuracy across participants. Shading indicates the 1st–99th percentiles of the prediction accuracy across participants. Red dashed lines indicate the

mean significance level across participants. Results for other hyperparameters are shown in S4 Fig.

https://doi.org/10.1371/journal.pone.0198806.g005
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MEG source estimation. Fig 6A shows maps of prediction accuracy for a single participant

(the same participant shown in Fig 3B and 3C). Broad cortical areas showed near-perfect pre-

diction accuracy for all MEG source estimation methods except MCE, whose prediction accu-

racy was much lower than that of the other methods, even within source ROIs (Fig 5). We

quantified the spatial profile of prediction accuracy on the cortical surface (Fig 6B; results for

the left hemisphere are shown. Full results are shown in S7 Fig). High prediction accuracy was

observed in cortical areas distant from the source ROIs, particularly MNE, VBMEG, and

LCMV, indicating that information spreading extended over wide cortical areas. MCE showed

the narrowest information spreading, but its prediction accuracy was also the lowest. These

results indicate that information spreading can potentially lead to false-positive identification

of brain areas representing target information content, as significant decoding performance

was found in irrelevant brain areas.

We further examined whether such wide information spreading was observed only in mul-

tivariate analysis or could also occur with univariate analysis. First, we calculated t-values for

difference in amplitude of the estimated cortical current between artificial experimental condi-

tions. Significant t-values were observed in cortical areas distant from the source ROIs (S8

Fig). Next, we conducted univariate searchlight decoding by using the mean value of estimated

cortical current within each searchlight consisting of a target vertex and its 119 neighborhood

vertices as an input feature. High prediction accuracy was observed in cortical areas distant

from the source ROIs, but the prediction accuracy was lower than that of searchlight decoding

using multivariate patterns as input features (S7 Fig and S9 Fig). For example, prediction accu-

racy for multivariate searchlight decoding stayed at 100% within at least 0.04 m from the

source ROI for VBMEG irrespective of the hyperparameters whereas that for univariate

searchlight decoding dropped rapidly as the distance from the source ROI. Other cases were

also similar. These results indicate that information spreading can be observed if MEG source

estimation is combined with univariate analysis (t-test and univariate decoding), but its effect

is larger if combined with multivariate pattern analysis.

Real data analysis

To investigate whether information spreading also occurs in real data, we conducted pattern

classification analysis of the estimated cortical current in each ROI to predict the visual stimuli

presented to participants. Both ROIs showed a similar time course for prediction accuracy (Fig

7A), with almost the same onset latency for significant prediction accuracy between the ROIs

(Fig 7B). These results are incompatible with electrophysiological knowledge suggesting that

the latency of neural activity in HVC is longer than in V1 [52,53]. In contrast to the time

course of prediction accuracy, the time course of the F-statistics in HVC was delayed from that

in V1 (Fig 7C). Accordingly, the lag between prediction accuracy and F-statistics was smaller

in V1 than in HVC, and prediction accuracy tended to precede F-statistics in HVC (Fig 7D).

Thus, significant prediction accuracy was obtained before HVC was activated. In addition,

although searchlight decoding was performed at a very short latency, at which V1 could be the

truly informative ROI, significant prediction accuracy was obtained in other brain areas out-

side of V1 (Fig 7E). These results suggest that the significant prediction accuracy in HVC at

this short latency was caused by spurious cortical current that might be originated from V1,

indicating that information spreading also occurs in real data.

Discussion

In this study, we evaluated whether MEG source estimation can restore information repre-

sented in original cortical current patterns. We found information spreading, which allowed
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decoders to achieve high prediction accuracy in irrelevant brain areas where no source was

originally defined (Fig 5), even with accurate source localization (Figs 3 and 4). Searchlight
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decoding analysis further revealed that the effects of information spreading extended to wide-

spread brain areas (Fig 6), especially for multivariate pattern analysis (S7 Fig and S9 Fig). In

real data, significant prediction accuracy was obtained from V1 and HVC at the same latency,

and other brain areas also showed significant prediction accuracy at a very short latency after

the onset of the visual stimulation (Fig 7). These results indicate that MEG source estimation

can restore information represented in patterns of original cortical current, but that this infor-

mation spreads from informative brain areas to non-informative brain areas, demonstrating

the possibility of false-positive interpretations when identifying brain areas that represent tar-

get information content based on the results of the decoding of estimated cortical current.

Previous studies have typically evaluated MEG source estimation methods in terms of the

localization error and spatial dispersion of estimated cortical current (e.g. [2,4,5,7]). As the

main focus of their source estimation was to minimize localization error and spatial disper-

sion, they did not pay much attention to the patterns of estimated cortical current within par-

ticular brain areas. This study has extended the evaluation of MEG source estimation methods

and is the first to evaluate patterns of estimated cortical current. Our analyses suggest that the

representative MEG source estimation methods tested here are imperfect with respect to their

accuracy of localization of represented information content, even if they appear to provide

highly accurate estimations of major activity in expected brain areas.

The origin of such imperfect localization of represented information (i.e., the cause for

information spreading) probably lies in the underdetermined nature of MEG source estima-

tion. MEG source estimation using a linear inverse method estimates the cortical current ĵ
from the observed magnetic field b using a linear inverse filter L as

ĵ ¼ L � b ð13Þ

and here, b can be rewritten using a noiseless linear observation model as

ĵ ¼ L � b ¼ L � G � j ¼ A � j ð14Þ

where A (RM×M matrix) is called a resolution matrix [2]. A should be the identity matrix for

perfect source reconstruction, but such reconstruction is impossible because the influence of

different cortical sources on MEG channels can be very similar when the sources are located

close to one another. Such a situation may be possible for all cortical locations, leading to non-

zero off-diagonal elements of A. Accordingly, the original cortical current j is spatially spread

by application of A, and spurious activity is estimated in irrelevant cortical areas. If such spuri-

ous activity shows a systematic difference between experimental conditions, even though its

amplitude is very small, it can be informative enough for a pattern classifier to predict the cor-

responding experimental conditions because pattern classification analysis is more sensitive to

slight differences in brain activity than conventional univariate analysis [20], resulting in infor-

mation spreading (Figs 3B, 6 and 7).

In our simulation, we tested representative MEG source estimation methods based on

L2- and L1-norm minimization to suppress such spurious cortical current. Both methods

effectively diminished spurious cortical current in terms of its amplitude (Fig 3) but were

insufficient to suppress information spreading (Fig 6). We also tested a model based on a hier-

archical Bayesian framework using ARD prior. Even though its source localization accuracy

accuracy precedes the F-statistics. (e) Searchlight decoding. Cortical areas that showed significant prediction accuracy

are colored. White and black enclosed areas are V1 and HVC, respectively. Results of a single participant (participant

1) are shown as an example. Results of other participants for (a), (c), and (e) are shown in S10A, S10B and S10C Fig,

respectively.

https://doi.org/10.1371/journal.pone.0198806.g007
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was the highest among the methods tested (Fig 3A), the information spreading was qualitatively

similar to that produced by the L2- and L1-norm minimization methods (Fig 6). Our results

also indicate that the LCMV, another representative method for MEG source estimation, failed

to diminish information spreading (Fig 6). Thus, none of the tested MEG source estimation

methods provided a critical solution to suppress information spreading. Small but systematic

differences in estimated cortical current patterns can yield confusing decoding performances.

Although we tested representative methods of MEG source estimation, other untested

methods could possibly achieve accurate pattern estimation of original cortical current while

suppressing information spreading. For example, a model combining L2- and L1-norm mini-

mization, known as the elastic net [54], could work better than either model used individually

because L1 and L2 often prefer solutions that are sparse and smooth, respectively (Fig 3B). A

combination of these two methods could balance out these characteristics. VBMEG can also

be updated by explicitly introducing similarity and group structures between parameters as

their covariance. Similarity and group structure information could be inferred from actual

neuroscientific knowledge about cortical parcellation [55] and structural/functional connectiv-

ity [8]. However, these updates increase the number of hyperparameters, and such model com-

plications would present further difficulties in hyperparameter tuning.

As a potential method to reduce effects of information spreading, we attempted a signal

leakage reduction based on orthogonalization, which has been proposed as a useful method to

diminish artifactual zero-lag correlation in functional connectivity (Appendix B). The method

reduced the correlation between estimated cortical current in two different ROIs but also

decreased prediction accuracy even in an ROI containing informative source cortical current.

Therefore, signal leakage reduction could be insufficient to identify truly informative ROIs

while reducing information spreading.

However, this fact does not deny a possibility that signal leakage reduction based on

another signal processing methods works efficiently to mitigate information spreading. In fact,

a recent study showed that a method based on independent component analysis (ICA) can

reduce signal leakage through MEG source estimation while preserving significant decoding

performance to predict categories of presented visual stimuli [56]. Although the study evalu-

ated effects of signal leakage reduction only in nearby ROIs, the results suggest that the ICA-

based method might possess a potential to reduce signal leakage and information spreading

over wide brain areas.

Although we tested only classification analysis in this study, it would be interesting to exam-

ine whether similar phenomena are observed for other MVPA methods. For example, repre-

sentational similarity analysis (RSA; [57]) has been one of the most popular MVPA methods

used in fMRI studies (e.g. [58,59]), and recent studies have successfully applied it to MEG sig-

nal analysis [60,61]. Those studies applied RSA to measured MEG signals in the sensor space,

but it seems worthwhile to examine whether the same analysis can be performed for estimated

cortical current because the relationship between brain areas and information representation

can be discussed more straightforwardly. To this end, it is necessary to reveal whether the simi-

larities between the original cortical current obtained in experimental conditions (i.e., the rep-

resentational geometry) hold after application of source estimation. It is also important to

clarify whether the representational geometry propagates between brain areas as information

spreading. Preliminary analyses have been conducted in our recent study [62]. These analyses

will further clarify the limitations and characteristics of MEG source estimation from a multi-

variate perspective, helping us to extract and closely investigate the information content repre-

sented in the spatiotemporal dynamics of human brain activity.

In summary, this study showed that spurious cortical current is inevitably generated

through MEG source estimation and that even though its amplitude is negligibly small, it
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contains systematic differences related to experimental conditions. These differences can be

easily detected by a pattern classifier, and the unexpected prediction accuracy may lead to

false-positive interpretations of brain areas that represent information on the experimental

conditions. Therefore, our results may assist to define the reliability of scientific findings based

on MEG source estimation and multivariate pattern analysis.

Appendix A. Calculation of APR

To calculate APR, we first converted ĵ to an absolute normalized value ĵnorm as

ĵnorm;i ¼
ĵjij

maxðĵjjÞ
ðA1Þ

We shifted the threshold β in the interval [0 1], and if the ith vertex showed ĵnorm;i > b, we

judged the ith vertex as one of the source positions in ĵnorm. In this analysis, we defined a set of

vertices of source ROIs as Θ (i.e., vertices of V1 or IT) and defined a set of other vertices as �Y

(i.e., vertices other than V1 or IT). The ith vertex was judged as

� a true positive ðTPÞ if ĵnorm;i � b and i 2 Y:

� a false positive ðFPÞ if ĵnorm;i � b and i 2 �Y:

We defined a set of TP vertices at β as TP(β) and the same for FP as FP(β). A precision–recall

curve can be created by plotting recall (REC(β)) against precision (PREC(β)). REC(β) and

PREC(β) were computed as

RECðbÞ ¼
sizeðTPðbÞÞ

sizeðYÞ
; ðA2Þ

PRECðbÞ ¼
sizeðTPðbÞÞ

sizeðTPðbÞÞ þ sizeðFPðbÞÞ
ðA3Þ

where size( ) indicates the number of elements in the set. The baseline value of APR [43] can

be defined as

Baseline value ¼
sizeðYÞ

sizeðYÞ þ sizeð �YÞ
: ðA4Þ

Appendix B. Testing signal leakage reduction

When functional connectivity is analyzed using MEG signals, it is known that signal leakage of

estimated cortical current by MEG source estimation causes zero-lag correlation between cor-

tical areas. This is an unexpected artifact because neural signal conduction should yield non-

zero time lag between functionally connected areas (except areas sharing common inputs). To

solve this problem, several studies have proposed methods for signal leakage reduction [63–

65]. Here, we investigated whether a similar method can also help to reduce information

spreading.

The basic idea common to the signal leakage reduction methods [63–65] is orthogonaliza-

tion of a time series of estimated cortical current in one source location relative to another. In

the case of orthogonalization of ROIs containing multiple sources, principal component analy-

sis (PCA) was applied to multiple time series of estimated cortical current in each ROI, and the

orthogonalization was applied to one-dimensional time series constructed with coefficients of
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principal components corresponding to the majority of the variance of the estimated cortical

current [65]. Thus, previous studies performed the orthogonalization in a one-to-one, univari-

ate manner. However, such orthogonalization cannot be applied straightforwardly to our case

because multivariate pattern analysis needs to account for distributed patterns of estimated

cortical current.

To deal with this condition, we tested sequential orthogonalization, which was an extension

of the previous orthogonalization method proposed in [63]. Suppose that we have ROI X and

ROI Y, which consist of M and N vertices, respectively. Our objective is to orthogonalize the

estimated cortical current in ROI Y relative to that in ROI X. Let xm and yn be time series of

the mth vertex in ROI X and the nth vertex in ROI Y, respectively. xm and yn have the same

length (RT×1 vector, where T is length of the time series). The sequential orthogonalization was

conducted as follows:

Step 0 : yn;0 ¼ yn

Step 1 : yn;1 ¼ yn;0 � x1x1
þyn;0

yn;1 ¼ yn;0 � x1x1
þyn;0

..

.

Step m : yn;m ¼ yn;m� 1 � xmxm
þyn;m� 1

..

.

Step M : yn;M ¼ yn;M� 1
� xMxM

þyn;M� 1

ðB1Þ

where xm
+ indicates the pseudo-inverse of xm.

If components parallel to each of x1. . .xM are subtracted simultaneously as yn,M = yn−
x1x1

+yn−x2x2
+yn� � �–xMxM

+yn, components correlated between x1. . .xM are subtracted from yn

redundantly because x1. . .xM are not orthogonal to each other. Sequential orthogonalization

can circumvent this problem because, at step m, a component parallel to xm−1 has already been

subtracted one step before, and thus, a component correlated between xm and xm−1 cannot be

subtracted anymore. Following this principle, a component parallel to each of x1. . .xM is sub-

tracted from yn only once. By repeating this procedure for all vertices in ROI X, the signal com-

ponents contained in ROI X will be subtracted from yn.

However, the orthogonalization method has ambiguity in its directionality. Because we can-

not specify which cortical areas are truly or falsely informative before analysis, the directional-

ity of orthogonalization cannot be determined. To deal with this situation, we can apply the

orthogonalization bidirectionally (e.g., orthogonalize IT relative to V1 and vice versa) and

compare which ROI better preserves information regarding the experimental conditions after

orthogonalization.

We adopted this approach and first applied it to the simulation data. Specifically, we

orthogonalized the estimated cortical current in IT relative to V1 and vice versa at 25–75 ms.

The effects of orthogonalization were evaluated according to the correlation between the time

series of estimated cortical current in V1 and the orthogonalized one in IT and vice versa. The

estimated cortical current was averaged across trials for each artificial experimental condition,

and correlations were calculated for all pairs of vertices between the two ROIs.

S11(A) Fig shows that the correlation between estimated cortical current in V1 and IT was

significantly reduced after the orthogonalization for all tested MEG source estimation meth-

ods, irrespective of the directionality of the orthogonalization. These results suggest that
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orthogonalization of the time series of estimated cortical current removed contamination of

the cortical current from other ROIs.

Then, we applied classification analysis to the orthogonalized estimated cortical current in

V1 and IT at 50 ms, the middle of the corresponding time period. S11(B) Fig shows that pre-

diction accuracy for both V1 and IT significantly dropped after the orthogonalization. These

results suggest that orthogonalization can reduce the effects of information spreading but also

ruins the information represented by patterns of estimated cortical current in truly informative

ROIs.

Such information loss may come from inaccuracy of MEG source estimation. Because

MEG source estimation is imperfect, estimated cortical current in IT may contain certain com-

ponents that are correlated with source cortical current in both V1 and IT. Therefore, if V1 is

orthogonalized relative to IT, estimated cortical current in V1 is recursively subtracted from

itself. Such recursive subtraction may lead to the loss of informative components of source cor-

tical current in V1, resulting in a significant drop in prediction accuracy.

To examine whether similar phenomena are observed in real data, we applied the same

sequential orthogonalization procedure to the real data shown in Fig 7 and S10 Fig. We

orthogonalized the estimated cortical current in HVC relative to that in V1 and vice versa. The

orthogonalization was performed using a 50-ms time window, which was shifted with 50-ms

steps to cover the whole time series.

The results were similar to those observed for the simulation. S11(C) Fig shows that the cor-

relation between estimated cortical current in V1 and HVC significantly dropped after the

orthogonalization. Prediction accuracy for the presented visual stimuli also significantly

dropped to chance level at almost all times across both ROIs (S11(D) Fig). These results sug-

gest that the method worked similarly: information loss caused by recursive subtraction also

occurred in the real data. In addition, we confirmed that no significant difference was observed

in the results presented in S11(D) Fig when the order of xm in Eq (B1) was randomly shuffled

10 times, indicating that the order of orthogonalization does not matter.

In summary, these results imply that although the orthogonalization methods can reduce

the similarity of estimated cortical current in two ROIs, it could be difficult to reduce the

effects of information spreading while preserving the information contents represented in the

truly informative ROIs.

Supporting information

S1 Fig. Visual stimuli used for the MEG experiment. (a) Pairs of wedges rotating clockwise

in 30˚ steps. Black frames around the background are drawn for visibility (not shown in the

actual experiment). (b) Correspondence between experimental conditions and labels. Three

pairs of wedges presented in the upper right and lower left areas were labeled as condition 1,

while the other three pairs of wedges presented in the upper left and lower right areas were

labeled as condition 2.

(PDF)

S2 Fig. Accuracy of source localization. APRs for V1 at 50 ms and IT at 225 ms in experimen-

tal condition 2 (averaged across participants; error bars, s.d.; gray dashed lines, baseline value

of APR) are shown. 0� indicates γ0 = 0.

(PDF)

S3 Fig. Correlation coefficient between patterns of original and estimated cortical current.

Results for V1 at 50 ms and IT at 225 ms for artificial experimental condition 2 are shown

(averaged across participants; error bars, s.d.; gray dashed lines, significance level [uncorrected
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P< 0.05]). 0� indicates γ0 = 0.

(PDF)

S4 Fig. Time-resolved decoding in each ROI. (a–d) Time courses of the prediction accuracy

for MNE, MCE, VBMEG, and LCMV, respectively. Solid lines indicate the mean predic-

tion accuracy across participants. Shading indicates the 1st–99th percentiles of prediction

accuracy across participants. Red dashed lines indicate the mean significance levels across par-

ticipants.

(PDF)

S5 Fig. Time-resolved decoding in each ROI with random noise source in PR. (a–d) Time

courses of prediction accuracy for MNE, MCE, VBMEG, and LCMV, respectively. Solid lines

indicate the mean prediction accuracy across participants. Shading indicates the 1st–99th per-

centiles of the prediction accuracy across participants. Results with random source in PR are

shown in blue. Results corresponding to those shown in Fig 5B–5E are shown in black. Red

dashed lines indicate the mean significance levels across participants.

(PDF)

S6 Fig. Comparisons of difference in definition of statistical significance levels. The num-

ber of time points that showed significant prediction accuracy via time-resolved decoding in

each ROI (averaged across participants; error bars, s.d.). Results for the hyperparameters that

achieved (a) the highest and (b) second-highest correlation coefficients in V1 (see Fig 4) are

shown. No significant difference was observed among the definition of statistical significance

levels (P> 0.05, Kruskal-Wallis test).

(PDF)

S7 Fig. Spatial extent of information spreading. (a, b) Results for V1 left and V1 right at 50

ms. (c, d) Results for IT left and IT right at 225 ms. The horizontal axes represent distance

from the center of mass of each ROI. Solid lines indicate the mean prediction accuracy across

participants. For an illustration purpose, prediction accuracy was averaged for each 5-mm dis-

tance bin. Shading indicates the 1st–99th percentiles of the prediction accuracy across partici-

pants. Each dashed line indicates the mean significance level across participants for each MEG

source estimation method (they mostly overlap).

(PDF)

S8 Fig. Spatial extent of t-value. (a, b) Results for V1 left and V1 right at 50 ms. (c, d) Results

for IT left and IT right at 225 ms. The horizontal axes represent distance from the center of

mass of each ROI. Solid lines indicate the mean t-value across participants. For an illustration

purpose, t-value was averaged for each 5-mm distance bin. Shading indicates the 1st–99th per-

centiles of the t-value across participants. Each dashed line indicates a significance level (t-test,

uncorrected P< 0.05; degrees of freedom, 499).

(PDF)

S9 Fig. Spatial extent of information spreading (univariate). (a, b) Results for V1 left and V1

right at 50 ms. (c, d) Results for IT left and IT right at 225 ms. The horizontal axes represent

distance from the center of mass of each ROI. Solid lines indicate the mean prediction accu-

racy across participants. For an illustration purpose, prediction accuracy was averaged for each

5-mm distance bin. Shading indicates the 1st–99th percentiles of the prediction accuracy

across participants. Each dashed line indicates the mean significance level averaged across par-

ticipants for each MEG source estimation method (they mostly overlap).

(PDF)
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S10 Fig. Information spreading in real data analysis. (a) Time courses of prediction accuracy

for each participant. Solid lines indicate the prediction accuracy for V1 (red) and HVC (blue),

respectively. Gray dashed lines indicate significance levels. (b) Time courses of F-statistics for

each participant, normalized between 0 and 1 for visibility. Vertical dashed lines indicate the

onset latency of significant prediction accuracy for each ROI (red, V1; blue, HVC). (c) Maps of

prediction accuracy obtained by searchlight decoding for each participant. Brain areas that

showed significant prediction accuracy were colored. White and black enclosed areas are V1

and HVC, respectively.

(PDF)

S11 Fig. Test of signal leakage reduction. (a) Change of correlation by orthogonalization in

simulation data (averaged across participants; error bars, s.d.). (b) Change of prediction accu-

racy by orthogonalization in simulation data (averaged across participants; error bars, s.d.;).

(c) Change of correlation by orthogonalization in real data (averaged across participants; error

bars, s.d.). Results of 51–100 ms and 101–150 ms are shown as representative examples. (d)

Time courses of prediction accuracy after orthogonalization. Solid lines indicate the prediction

accuracy for V1 (red) and HVC (blue) of each participant. Gray dashed lines indicate signifi-

cance levels.

(PDF)

S1 File. Individual data points from APR analysis (Fig 3 and S2 Fig).

(XLSX)

S2 File. Individual data points from correlation analysis (Fig 4 and S3 Fig).

(XLSX)

S3 File. Individual data points from time-resolved decoding in each ROI (Fig 5 and S4

Fig).

(XLSX)

S4 File. Individual data points from searchlight decoding (Fig 6 and S7 Fig).

(XLSX)

S5 File. Individual data points from real data analysis (Fig 7 and S9 Fig).

(XLSX)
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1. Sharon D, Hämäläinen MS, Tootell RBH, Halgren E, Belliveau JW. The advantage of combining MEG

and EEG: Comparison to fMRI in focally stimulated visual cortex. Neuroimage. 2007; 36: 1225–1235.

https://doi.org/10.1016/j.neuroimage.2007.03.066 PMID: 17532230

2. de Peralta-Menendez RG, Gonzalez-Andino SL, Lutkenhoner B. Figures of merit to compare distributed

linear inverse solutions. Brain Topogr. 1996; 9: 117–124. https://doi.org/10.1007/BF01200711

3. de Peralta-Menendez RG, Gonzalez-Andino SL, Grave de Peralta-Menendez R. A critical analysis of

linear inverse solutions to the neuroelectromagnetic inverse problem. IEEE Trans Biomed Eng. 1998;

45: 440–448. https://doi.org/10.1109/10.664200 PMID: 9556961
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