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Abstract

The relative orientation and proximity of the pseudo-symmetrical inner transmembrane helical pairs 5/8 and 2/11 of Glut1
were analyzed by chemical cross-linking of di-cysteine mutants. Thirteen functional di-cysteine mutants were created from a
C-less Glut1 reporter construct containing cysteine substitutions in helices 5 and 8 or helices 2 and 11. The mutants were
expressed in Xenopus oocytes and the sensitivity of each mutant to intramolecular cross-linking by two homobifunctional
thiol-specific reagents was ascertained by protease cleavage followed by immunoblot analysis. Five of 9 mutants with
cysteine residues predicted to lie in close proximity to each other were susceptible to cross-linking by one or both reagents.
None of 4 mutants with cysteine substitutions predicted to lie on opposite faces of their respective helices was susceptible
to cross-linking. Additionally, the cross-linking of a di-cysteine pair (A70C/M420C, helices 2/11) predicted to lie near the
exoplasmic face of the membrane was stimulated by ethylidene glucose, a non-transported glucose analog that
preferentially binds to the exofacial substrate-binding site, suggesting that the binding of this ligand stimulates the closure
of helices at the exoplasmic face of the membrane. In contrast, the cross-linking of a second di-cysteine pair (T158C/L325,
helices 5/8), predicted to lie near the cytoplasmic face of the membrane, was stimulated by cytochalasin B, a glucose
transport inhibitor that competitively inhibits substrate efflux, suggesting that this compound recruits the transporter to a
conformational state in which closure of inner helices occurs at the cytoplasmic face of the membrane. This observation
provides a structural explanation for the competitive inhibition of substrate efflux by cytochalasin B. These data indicate
that the binding of competitive inhibitors of glucose efflux or influx induce occluded states in the transporter in which
substrate is excluded from the exofacial or endofacial binding site.
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Introduction

The passive exchange of glucose across the membranes of

animal cells is mediated by members of the GLUT (SLC2a)

protein family (reviewed in [1,2,3]). The GLUT family belongs to

the Major Facilitator Superfamily (MFS), the largest category of

proteins involved in the transport of small molecules across

membranes [4,5]. Glut1, the prototype member of the GLUT

family and the first eukaryotic member of the MFS Superfamily to

be identified and cloned [6,7], is one of the most extensively

studied of all membrane transporters [8]. Kinetic and biophysical

studies of glucose transport in the human red blood cell are mostly

consistent with an alternating conformation mechanism

[9,10,11,12,13] but see [12,14]), a conclusion that is consistent

with high-resolution structural studies of 4 bacterial MFS proteins

[15,16,17,18].

Glut1 was the first transporter predicted to possess 12

transmembrane helices [7], a feature that it appears to share with

the vast majority of MFS transporters [4]. This prediction has

been confirmed by glycosylation-scanning mutagenesis experi-

ments [19] and other biochemical analyses (reviewed in [20]). The

12 transmembrane helix model for Glut1 is also strongly

supported by the deduced structures of the lac permease [15],

the glycerol-3-P antiporter [17], the fucose transporter [16], and

the EmrD multidrug transporter [18], all members of the MFS

expressed in E. coli. These 4 bacterial transporters share a

common folding pattern, despite the fact that they share little if

any sequence identity. Several of the twelve proposed transmem-

brane segments of Glut1 were originally predicted to form

amphipathic alpha-helices, an observation which led to the

hypothesis that these helices form the walls of a water-filled cavity

involved in the binding and subsequent transfer of glucose across

the membrane [7]. It was also suggested that hydroxyl- and amide-

containing amino acid side chains within the transmembrane

helices form the sugar-binding site of Glut1 via hydrogen bonding

with glucose hydroxyl groups.

Considerable experimental support has accumulated for this

basic structural model. Cysteine-scanning mutagenesis and

substituted cysteine accessibility studies implicate transmembrane

segments 1 [21], 2 [22], 5 [23], 7 [22,24], 8 [25], 10 [26], and 11

[27] of Glut1 in the formation of a water-accessible cleft within the

membrane. In contrast, helices 3 [28], 6 [29], 9 [30], and 12 [31]
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appear to have limited access to the external solvent, suggesting

that these segments form the outer stabilizing helices as indicated

by the known bacterial MFS structures [15,16,17,18]. Transmem-

brane segment 4 of Glut1 does not appear to react with pCMBS

added to the external solvent [32]. This transmembrane segment is

predicted to be an inner helix in the outward-facing conformation

of the fucose transporter, indicating that one face should be

accessible to the external solvent [16]. Thus, either the two

structures differ or reaction of helix 4 with pCMBS cannot be

detected in Glut1 for structural reasons that are unclear at present.

Gln161 within helix 5 [33] and Gln282 within helix 7 [34] appear to

participate in forming the exofacial substrate-binding site. Val165,

which is positioned one helical turn distant from Glu161, is

accessible to aqueous sulfhydryl reagents and appears to lie near

the exofacial substrate binding site based on mutagenesis and

inhibitor studies [35]. An aromatic side-chain at position 412

within helix 11 appears to be essential for transport activity [20].

Additionally, hydrogen exchange studies demonstrate that 30% of

peptide hydrogen atoms are exposed to water in purified,

reconstituted Glut1, consistent with their role in the formation of

an aqueous cleft in the membrane [36]. Little is known, however,

about movements of specific helices in Glut1 that occur during the

transport cycle or after the binding of ligands.

In the present study we utilized chemical cross-linking of di-

cysteine (di-C) Glut1 mutants constructed in a reporter molecule

to determine the relative orientation and proximity of transmem-

brane helices 5/8 and 2/11. Both pairs of helices are predicted

to comprise a part of the inner helical bundle that forms the

outward-facing aqueous cavity [30] and appear to lie within ,6 Å

of each other throughout much of their lengths, suggesting that

they lie roughly parallel to each other in at least one

conformational state. Additionally, the binding of a non-

transported exofacial ligand, ethylidene glucose, promoted the

closure of helices 2 and 11 at the exoplasmic face of the

membrane. In contrast, cytochalasin B recruited Glut1 to a

conformation in which helices 5 and 8 close at the cytoplasmic face

of the membrane. This latter observation provides the first data

concerning the relative movement of specific helices and pairs of

amino acid residues of Glut1 induced by cytochalasin B binding,

and provides a possible explanation for the competitive inhibition

of substrate efflux by cytochalasin B.

Results

A reporter Glut1 molecule (C-TEV) was engineered in order to

facilitate the determination of the relative proximity and

orientation of pairs of transmembrane helices using chemical

cross-linking of di-cysteine (di-C) mutants, an experimental

approach that has been successfully used to analyze the structure

of many integral membrane proteins [37]. A TEV protease

recognition site was introduced into the large, central, cytoplasmic

loop of C-less Glut1 (Glut1 whose 6 native cysteine residues were

mutated to threonine or serine residues), permitting the analysis of

pairs of cysteine residues residing in opposite halves of the

molecule after chemical cross-linking. We have previously

demonstrated that C-less Glut1 exhibits close to wild-type

transport activity when expressed in Xenopus oocytes [35]. The

single site of N-linked glycosylation was also eliminated in the

reporter Glut1 construct in order to simplify quantification of the

data by preventing the smearing of the bands on SDS gels due to

heterogeneous glycosylation. The 2-deoxyglucose transport activ-

ity of the resultant C-TEV construct expressed in oocytes was

,40% of the activity of the parental C-less Glut1 protein (0.33

versus 0.82 pMoles/oocyte/30 min/unit protein expression).

The transmembrane helical pairs 2/11 and 5/8 are predicted to

lie adjacent to one another and to form half of the inner bundle of

helices that form the outward-facing aqueous substrate-binding

cavity [30]. In order to further test this model and to detect

movements of inner transmembrane helices during ligand binding,

13 Glut1 mutants were constructed in which cysteine residues

were substituted into each pair of helices (see Table 1). All of the

paired cysteine substitutions were placed at positions predicted to

lie at roughly the same location along the axis perpendicular to the

plane of the membrane according to the original topological

model [7]. However, 9 of the 13 substitutions were chosen so that

the paired cysteine residues were predicted to lie directly across

from one another in their respective helices, whereas the other

four dicysteine mutants were made in paired residues predicted to

be positioned on opposite faces of their helices. We would thus

predict that at least some of the group of 9 dicysteine mutants

should be subjected to intramolecular chemical cross-linking via

their sulfhydryl groups, whereas none of the 4 control mutants

should be cross-linked.

Figure 1 shows an immunoblot demonstrating that all 13 dicysteine

mutants were efficiently expressed in Xenopus oocyte membranes.

The mutant proteins appeared as doublets and the relative intensity

of the two members of the doublet varied in some of the mutants

relative to the parental construct. Whether the doublet is the result of

the existence of distinct conformers of the proteins under the

conditions of SDS-PAGE or the presence of an unknown partial post-

translational modification is not known. However, the existence of the

doublets did not influence the results of the cross-linking experiments

described below, nor did the relative ratio of the doublet members

correlate with transport activity. All of the mutants exhibited 2-

deoxyglucose uptake activities in intact oocytes that were comparable

to the parental C-Tev control, except for A70C/M420C, which

showed a nearly 3-fold increase in transport activity (Figure 2).

Altered transport activity, either enhancement or inhibition, has been

Table 1. Construction of di-cysteine mutants in a C-Less
GLUT 1 reporter molecule.

Helix 2 Helix 11

A70C/M420C GCCRTGC ATGRTGC

V74C/T413C GTTRTGT ACCRTGC

G76C/N411C GGCRTGC AACRTGC

M77C/F409C ATGRTGC TTCRTGC

F81C/A405C TTCRTGC GCCRTGC

L85C/A402C CTTRTGT GCTRTGT

F86C/I404C TTCRTGC ATTRTGT

Helix 5 Helix 8

L156C/V327C CTGRTGC GTGRTGC

T158C/L325C ACCRTGC CTGRTGC

V165C/T321C GTCRTGC ACTRTGC

G172C/G314C CAGRTGT GGTRTGT

F174C/A309C TTCRTGC GCCRTGC

L176C/V307C CTGRTGC GTGRTGC

An aglyco Glut1 reporter molecule was created by mutating the consensus site
of N-linked glycosylation at N45 to a threonine residue and by inserting a Tev
protease cleavage site (ENLYFQG) between residues 247 and 248 in the central
cytoplasmic loop of Glut1. This reporter construct was then used to make the
above 13 dicysteine mutants in helices 2/11 and helices 5/8.
doi:10.1371/journal.pone.0031412.t001

Movement of Inner Transmembrane Helices of Glut1
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observed for many Glut1 point mutants (see [30] and references

therein). The results of preliminary experiments involving time

courses and concentration curves indicated that maximal cross-

linking of dicysteine mutants was achieved when membranes were

incubated for 20 min in the presence of 1.0 mM BMH (bis-

maleimidehexane), a flexible sulfhydryl-specific cross-linker ,16 Å in

length, or 1.0 mM o-PDM (1,4-Phenylenedimaleimide), a relatively

rigid molecule ,6 Å in length [38] (data not shown). After the

20 min incubation period, cross-linking was quenched by the

addition of 5 mM cysteine, the membranes were digested with

TEV protease, and then subjected to immunoblot analysis. If the two

cysteine residues in a dicysteine mutant are in the proper orientation

and close enough to one another in proximity, the mutant transporter

should show pseudo-protease resistance proportional to the efficiency

of the cross-linking reaction. Figure 3 shows a representative series of

immunoblots obtained for all 13 mutants as well as the control

parental C-Tev construct. Cleavage of the full-length ,54 kD control

construct (C-Tev, upper panel), which lacks cysteine residues,

generated an N-terminal fragment of ,32 kDa (green bands) and a

C-terminal fragment of ,26 kDa (red bands). Cleavage was ,90%

efficient. Cross-linking of the mutants is indicated by a reduction in

the disappearance of the full-length ,54 kD bands along with a

corresponding decrease in the appearance of the N- and C-terminal

fragments relative to samples incubated with vehicle alone (lanes

labeled ‘‘DMSO’’) prior to protease cleavage. The DMSO lanes thus

provided an estimate of the maximum protease cleavage efficiency for

each mutant. Samples were also treated with 1.0 mM NEM to

determine whether modification of sulfhydryl groups alone in the

absence of cross-linking affected protease cleavage (lanes labeled

‘‘NEM’’). NEM did not affect the protease cleavage of any of the

dicysteine mutants.

Quantification of the results of 3–8 independent experiments is

presented in Table 2. The data are expressed as the intensity of the

full-length protein bands present in the protease-digested cross-

linked samples (‘‘o-PDM’’, ‘‘BMH’’ lanes in Figure 3) divided by

the intensity of the full-length bands present in the undigested

control samples (‘‘Control’’ lanes in Figure 3). These values are

denoted as the cross-linking efficiencies in Table 2. Notably, none

of the 4 dicysteine mutants with substitutions at residues predicted

to lie on opposite faces of their respective helices exhibited cross-

linking, whereas 5 of the 9 mutants with substitutions at residues

predicted to lie in direct apposition to one another were subject to

statistically significant levels of cross-linking by at least one of the

reagents. The highest levels of cross-linking were observed for

mutants A70C/M420C and F81C/A405C (helices 2/11) and

T158C/L325C (helices 5/8). Much weaker but statistically

significant levels of cross-linking were also observed for L85C/

I404C (helices 2/11) and Q172C/G314/C (helices 5/8). Each of

these 5 mutants was susceptible to cross-linking by o-PDM,

whereas only T158C/L325C and A70C/M420C were cross-

linked by BMH. NEM had no effect on the protease cleavage of

any of the 13 mutants. Control experiments indicated that none of

the dicysteine mutants were subjected to inter-molecular cross-

linking, as noted by the absence of oligomers when samples were

analyzed on non-reducing gels (data not shown). These data

indicate that these 5 sets of paired residues lie within ,6–16 Å of

each other at some point during the transport cycle.

Previous protease sensitivity experiments have suggested that

significant conformational changes accompany the binding of

ligands to Glut1 [39,40]. However, no studies have yet been

reported concerning movements that may occur in specific pairs of

transmembrane helices or paired amino acid residues of a glucose

transporter during the transport cycle or after ligand binding. In

order to determine whether helices 5/8 and 2/11 undergo relative

displacement after ligand binding, two inhibitors of glucose

transport were used. Cytochalasin B competitively inhibits sugar

efflux and non-competitively inhibits sugar uptake [41,42]. This

observation suggests that the binding of glucose at the endofacial

substrate-binding site and of cytochalasin B to its binding site on

Glut1 are mutually exclusive events, although it does not indicate

where on the Glut1 molecule cytochalasin B binds. Ethylidene

glucose is a non transported substrate analog that competitively

inhibits substrate influx, most likely by binding preferentially to the

exofacial binding site of Glut1 [43].

Figure 1. Expression of dicysteine mutants in Xenopus oocyte membranes. Stage 5 Xenopus oocytes were injected with water (Sham) or
with 50 ng of mRNA encoding the parental reporter construct (C-Tev) or the indicated dicysteine mutant. Two days post injection total oocyte
membranes were prepared and subjected to immunoblot analysis using a rabbit polyclonal ab raised against a peptide corresponding to the C-
terminal 15 residues of human Glut1.
doi:10.1371/journal.pone.0031412.g001

Movement of Inner Transmembrane Helices of Glut1
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Because the covalent cross-linking reactions would eventually

reach a plateau regardless of any competitive effect of the

reversible binding of the two transport inhibitors, early time points

were examined using lower concentrations of o-PDM and BMH in

order to observe whether the inhibitors had any effect on the cross-

linking reactions. Concentrations and time points were based on

preliminary experiments for each mutant that maximized the

observed effects.

The effects of cytochalasin B and ethylidene glucose on the

kinetics of cross-linking of 3 of the 5 susceptible dicysteine mutants

are shown in Figure 4 and quantification of the results is presented

in Table 3. The cross-linking of L85C/A402C and Q172C/

G314C could not be accurately assessed by this analysis because of

their low levels of maximal cross-linking (5% and 8%, respectively,

Figure 2. 2-Deoxyglucose uptake activity of Glut1 mutants.
[3H]-2-DOG uptake (50 mM, 30 min. at 22uC) was measured 2 days after
injection of oocytes with 50 ng of mRNA. Activities were normalized to
the value measured for oocytes expressing the control C-Tev construct
(0.1860.03 pMoles/oocyte/30 min/unit band intensity). Unit band
intensity refers to the relative intensity of the protein bands as
measured by immunoblot analysis using a Li-Cor imager and normalizes
for varying levels of protein expression for the different mutants.
Results represent the mean 6 SE of 3–6 independent experiments with
15–20 oocytes per experimental group. Values observed in water-
injected oocytes were subtracted.
doi:10.1371/journal.pone.0031412.g002

Figure 3. Chemical Cross-linking of di-C Mutants. Stage 5
Xenopus oocytes were injected with 50 ng of mRNA encoding the
parental reporter construct (C-Tev) or the indicated dicysteine mutants
(see Table 1). After incubation of oocytes for 2 days, cross-linking
analysis was conducted on purified oocyte membranes as described in
‘‘Materials and Methods’’. The reactions were quenched by the addition
of 2 mM cysteine and oocyte membranes were digested with Tev
protease then subjected to SDS-PAGE followed by immunoblotting
with rabbit polylclonal ab raised against the C-terminal 15 residues of
human Glut1 (red bands) and a mouse monoclonal ab that recognizes
an epitope in the N-terminal half of the central cytoplasmic loop (green
bands). Note that the full-length ,54 kD bands were recognized by
both antibodies and show up as yellow when the intensity of the
detector was increased. ‘‘C-TEV’’ is the control cysteine-less parental
construct. ‘‘Control’’ lanes were loaded with membranes that were not
subjected to either chemical cross-linking or protease cleavage.
‘‘DMSO’’ lanes were loaded with membranes that were not subjected
to chemical cross-linking but were digested with TEV protease. The ‘‘o-
PDM’’ and ‘‘BMH’’ lanes were loaded with membranes that were
subjected to cross-linking by the respective chemical and then were
treated with TEV protease. The ratio of the intensities of the full-length
bands in the DMSO lanes to those in the Control lanes thus provide the
maximum level of protease cleavage for each mutant. The ratio of the
intensities of the full-length bands in the ‘‘o-PDM’’ or ‘BMH’’ lanes to
those in the Control lanes indicate the extent of cross-linking by either
reagent. This ratio is termed the cross-linking efficiency or ‘‘fraction
cross-linked’’ in Table 2.
doi:10.1371/journal.pone.0031412.g003
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see Table 2). Neither cytochalasin B nor ethylidene glucose had

any significant affect on the cross-linking of F81C/A405C

(Figures 4A and B). Interestingly, however, cytochalasin B

stimulated the cross-linking of T158C/L325C by o-PDM by 1.8

fold (P = 0.02) but had no affect on cross-linking by BMH

(Figures 4C and D). Ethylidene glucose had no effect on either

cross-linking reaction. In contrast, ethylidene glucose enhanced

the cross-linking of A70C/M20C by BMH by 10-fold (P = 0.03),

whereas cytochalasin B had no significant affect on cross-linking

(Figure 4E and F). Ethylidene glucose also stimulated the cross-

linking of A70C/M420C by o-PDM by 2-fold, but this effect was

not statistically significant. These data demonstrate that the

binding of a non-transported substrate analog to the exofacial

binding site or the binding of a competitive inhibitor of substrate

efflux induce conformational changes in Glut1 that result in the

relative movements of the inner helical pairs 2/11 or 5/8,

respectively. T158C/L325C has cysteine substitutions at the

cytoplasmic ends of helices 5 and 8, whereas A70C/M20C has

cysteine substitutions at the exoplasmic ends of helices 2 and 11

(see Figures 5 and 6). Thus, these results indicate that cytochalasin

B recruits Glut1 to a conformational state whereby the cytoplasmic

ends of helices 5 and 8 move closer together, and that ethylidene

glucose promotes a conformational state in which the exoplasmic

ends of helices 2 and 11 move closer together.

Discussion

A minimum of 30 percent sequence identity is required in order

to accurately model a membrane protein structure based on

homology [44]. Mammalian glucose transporters do not share

more than ,10 percent sequence identity with any of the 4

bacterial transporters of the MFS whose structures have been

deduced by x-ray diffraction, nor do they appear to share the

minimum 30 percent sequence identity with any known

prokaryotic proteins. Thus, other approaches to exploring the

structure of these proteins are required to make progress in this

area in the absence of x-ray diffraction data. Additionally,

alternate biochemical approaches to structure are usually

complementary to, and not precluded by, x-ray data.

The data presented in this study demonstrate that 5 of 13

dicysteine mutant Glut1 transporters were susceptible to intramo-

lecular chemical cross-linking by homobifunctional, thiol-specific

cross-linking reagents. Cross-linking was observed between two

pairs of predicted inner transmembrane helices, 2/11 and 5/8.

The cross-linking data are consistent with a model for the structure

of Glut1 based on a comprehensive series of scanning mutagenesis

studies employing the substituted cysteine accessibility method

[21,22,23,24,26,27,28,29,30,31,32] as well as previous cross-

linking studies [45] and with the overall protein folding pattern

observed for bacterial members of the MFS. All 5 of the

susceptible dicysteine mutants exhibited cross-linking by o-PDM

and 2 of the mutants were cross-linked by both o-PDM and BMH.

o-PDM and BMH have linkers that permit cross-linking distances

of up to ,6 Å and ,16 Å, respectively [38]. However, successful

cross-linking by a specific reagent also depends on the precise

spatial orientation and accessibility of the reactive groups. Cross-

linking of both pairs of helices in the absence of ligand occurred at

residues predicted to lie near the exoplasmic and cytoplasmic faces

of the membrane, indicating that at some point or points during

the transport cycle one or both ends of these pairs of helices lie

within ,6 Å of each other, consistent with the close proximity

predicted by the 2-dimensional model shown in Figure 5. The

fractional cross-linking efficiency of 2 of the mutants (L85C/

A402C, Q172C/G314C) was very low, although still statistically

significant. Whether this low efficiency was due to steric and

geometrical constraints, the accessibility of the homobifunctional

reagents to these sulfhydryl groups, or to some other factor, cannot

be determined at present.

The cross-linking of 3 of the mutants allowed us to evaluate the

effect of non-transported ligands on cross-linking behavior and to

draw inferences concerning the basic conformational states

induced by these inhibitors. Cytochalasin B, a mold metabolite,

is one of the most potent low molecular weight inhibitors of Glut1

activity that has been reported [46]. Several different observations

have led to the assumption that cytochalasin B binds to the

endofacial conformation of the transporter, possibly overlapping

the substrate-binding site, and thus inhibiting activity: First,

cytochalasin B is a competitive inhibitor of substrate efflux and a

non-competitive inhibitor of substrate influx [41]. Second,

homology modeling of Glut1 structure suggested a cytoplasmic

docking site for cytochalasin B [47]. Third, the kinetics of

dissociation of the cytochalasin B/Glut1 complex stimulated by an

exofacial ligand are consistent with cytochalasin B binding to the

endofacial conformation [48]. Fourth, modeling studies suggest

that cytochalasin B may bind to a substrate-binding site of the

transporter via hydrogen bonds and hydrophobic interactions

analogous to those that occur between glucose and Glut1 [49].

These observations strongly support the view that cytochalasin B

binds to Glut1 in its endofacial configuration, but do not provide

direct evidence as to the sidedness or precise location of

cytochalasin B binding on Glut1. Mutagenesis experiments

indicate that W388 and W412 are involved in the Glut1/

cytochalasin B interaction [50,51], and protease digestion

experiments suggest that photolabeling of Glut1 by cytochalasin

Table 2. Cross-linking Efficiency of Glut1 Dicysteine Mutants.

Fraction Cross-Linked

Double
Mutant

1.0 mM
o-PDM 1.0 mM BMH

Average SE n p value Average SE n p value

Helices 2/11

A70C/M420C 0.266 0.098 5 0.001 0.056 0.032 5 0.169

V74C/T413C 20.070 0.029 3 0.071 20.054 0.025 3 0.096

G76C/N411C 20.109 0.072 3 0.204 20.221 0.130 3 0.163

M77C/F409C 20.047 0.048 3 0.387 20.060 0.040 3 0.208

F81C/A405C 0.307 0.100 5 0.001 20.004 0.037 5 0.488

L85C/A402C 0.080 0.029 5 0.002 0.094 0.035 5 0.005

F86C/I404C 0.006 0.050 3 0.911 0.029 0.081 3 0.741

Helices 5/8

L156C/V327C 20.036 0.016 4 0.039 20.071 0.028 5 0.033

T158C/L325C 0.750 0.112 6 0.001 0.464 0.065 7 0.001

V165C/T321C 20.025 0.014 7 0.073 20.013 0.017 8 0.445

G172C/G314C 0.050 0.019 6 0.019 0.019 0.045 7 0.703

F174C/A309C 0.011 0.025 4 0.670 20.057 0.023 5 0.065

L176C/V307C 20.018 0.040 4 0.669 20.027 0.029 5 0.433

Oocyte membranes expressing dicysteine mutants were subjected to chemical
cross-linking as described in Materials and Methods. Cross-linking efficiency is
expressed as the intensity of the full-length transporter bands in the cross-
linked lanes (o-PDM and BMH lanes, see Figure 3) divided by the intensity of the
full-length transporter bands in the control lanes, after subtraction of
background intensities. See Figure 3 for a representative set of immunoblots.
The results of 3–8 independent experiments are presented.
doi:10.1371/journal.pone.0031412.t002

Movement of Inner Transmembrane Helices of Glut1
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Figure 4. Effect of non-transported ligands on chemical cross-linking. Oocyte membranes were incubated in presence of either vehicle
alone (water or ethanol) or 50 mM cytochalasin B or 50 mM ethylidene glucose for 5 min prior to the addition of the indicated concentration of either
o-PDM or BMH. Cross-linking efficiency was measured by protease cleavage followed by immunoblot analysis as described in ‘‘Materials and
Methods’’. The water lanes represent the controls for the addition of ethylidene glucose and the ethanol lanes controlled for the addition of

Movement of Inner Transmembrane Helices of Glut1
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B involves a ,3 kD region encompassing these two tryptophan

residues [52].

In the present study cytochalasin B stimulated the cross-linking

of residues T158C and L325C. These residues are predicted to lie

near the cytoplasmic ends of helices 5 and 8, respectively (see

Figure 6). This indicates that cytochalasin B binding decreases the

distance between these two residues and suggests that cytochalasin

B binding promotes closure of the helical bundle near the

cytoplasmic face of the membrane. Recent evidence suggests that

Glut1 may possess distinct high and low affinity binding sites for

cytochalasin B [42]. When the higher affinity site is occupied,

transport activity is stimulated, but the occupation of the lower

affinity site at higher ligand concentrations results in transport

inhibition. Cytochalasin B was present at saturating inhibitory

concentrations during the cross-linking reactions. We speculate

that cytochalasin B-induced closure of helices near the cytoplasmic

face of the membrane prevents access of glucose to the endofacial

substrate-binding site, which would be observed as competitive

inhibition of substrate efflux [41,53,54]. Cytochalasin B might

induce closure of the helices by binding to the endofacial substrate-

binding site or to an allosteric binding site on the Glut1 molecule.

The only requirement is that the binding promotes a structural

change in Glut1 that induces sufficient closure of the endofacial

cavity to prevent access to the substrate-binding site, and binding

must occur to Glut1 in the endofacial conformation. The present

data do not have any implications as to whether cytochalasin B

binds to an exofacial region, endofacial region, or intramembra-

nous domain of Glut1.

4,6-O-ethylidene glucose is a Glut1 substrate analog that

appears to bind to the exofacial substrate binding site with ,10-

fold greater apparent affinity compared to the endofacial site

[41,43,54]. The presence of high concentrations of this modified

Figure 5. Cross-sectional model of the inner transmembrane helices of Glut1 in the exoplasmic conformation as viewed from the
exoplasmic face of the membrane based on experimental results. Amino acid residues subjected to cysteine substitution in the dicysteine
mutants are given by the single letter code. Red lines connect residues that were cross-linked by o-PDM or BMH within the helical pairs 2/11 and 5/8.
doi:10.1371/journal.pone.0031412.g005

cytochalasin B. The DMSO lanes represent samples to which DMSO was added but no cross-linker. These lanes indicate the maximum cleavage
observed for each mutant with TEV protease.
doi:10.1371/journal.pone.0031412.g004
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sugar should thus initially recruit Glut1 to the exofacial

conformation. An interesting question is what happens after this

non-transported ligand binds to the exofacial site? Crystal

structures of MFS proteins in the endofacial [15,17] and exofacial

[16] conformations reveal that inner transmembrane helices splay

open to allow access to a substrate binding site at one side of the

membrane and pinch together at the opposite side of the

membrane to seal off the aqueous cavity. From these diffraction

data it might be predicted that ethylidene glucose would, at least

initially, recruit Glut1 molecules to the outward configuration with

the inner transmembrane helices spread apart at the exoplasmic

side of the membrane. In apparent contradiction to this

prediction, our data indicate that the presence of ethylidene

glucose dramatically enhanced the cross-linking of residues A70C

and M420C in a dicysteine mutant by up to ,20-fold (see

Figure 4), suggesting that binding of the sugar analog to the

exofacial site causes helices 2 and 11 to pinch together. The

simplest interpretation of these data is that after the initial binding

of ethylidene glucose to the exofacial site, the transporter

undergoes a conformational change in which the exoplasmic ends

of the inner helices close around the bound ligand, thus decreasing

the average distance between residues A70C and M420C and

increasing the degree of cross-linking. The bulky ethylidene group

between C-4 and C-6 may prevent the full conversation of the

transporter to the endofacial configuration, so that the transporter

is transiently present in an intermediate conformation before the

complex relaxes back to the exofacial configuration followed by

release of the bound ligand. Alternatively, the transporter may

fully convert to the exofacial conformation but fail to release the

ligand because of the ethylidene moiety.

An alternative interpretation for the closure of helices 5 and 8 or

helices 2 and 11 after cytochalasin B or ethylidene glucose binding,

respectively, is that the pinching together of these helices is

required for the opening of other inner transmembrane helices

that is in turn required to allow access to the cytoplasmic or

exoplasmic substrate binding site.

The results of the cross-linking experiments reported herein are

completely consistent with the low resolution 2-dimensional model

of the relative orientation of the inner transmembrane helices in

the Glut1 exofacial conformation deduced from a comprehensive

series of mutagenesis and solvent accessibility experiments

(summarized in [30], see Figure 5). Thus, all of the observed

cross-linking may in theory have occurred with Glut1 in the open

exofacial conformation or in an alternative conformation where

the relative positions of the cross-linked residues do not differ

significantly from that in the exofacial conformation. In an attempt

to assess the possibility that one or more cross-linking events may

have occurred with Glut1 in the endofacial conformation, we

examined the orientation and distance between cross-linked

residues in a homology-based model of Glut1 [47] (see Figure 6).

The distance between the cross-linked residues in the model varies

from ,9 to ,21 Å. Given that all five cross-linking events were

observed with o-PDM, which allows a maximum distance of

6–8 Å between residues [38], it appears that either none of the

cross-links occurred in the endofacial configuration of the

transporter, or alternatively, the model is not accurate. The ability

of cytochalasin B to enhance the cross-linking of T158C and

L325C strongly suggests that this event occurred with the

transporter in the endofacial configuration (see the above

discussion). This implies that the homology-based model is not

accurate with respect to the orientation of helices 5 and 8. It

should be mentioned that the glycerol-3-P antiporter used as the

template in the homology modeling shares little if any sequence

identity with Glut1, and that a minimum of ,30% identity is

required between two proteins for accurate homology-based

modeling [44].

The data presented in the study provide evidence that the

binding of non-transported ligands to Glut1 promotes movements

of inner transmembrane helices and support an alternating

conformation-type transport mechanism [55], consistent with the

comparative structures of bacterial MFS proteins. However,

elucidation of the glucose transport mechanism ultimately is

Figure 6. Side-view of the orientation of helices 2/11 and 5/8 of
Glut1 in the endofacial conformation based on homology
modeling. The orientation of the helices is derived from an homology-
based model of Glut1 that used the structure of the E. coli Glycerol-3-P
Antiporter as the template molecule [17]. Side chains of residues that
were mutated to cysteines and subjected to chemical cross-linking
analysis are identified by their single letter amino acid codes. Residues
that exhibited cross-linking are shown in green in ball and stick form
and are connected by dotted lines. Distances between cross-linked
residues are given in angstroms (Å). Residues that did not exhibit cross-
linking are shown in red.
doi:10.1371/journal.pone.0031412.g006

Movement of Inner Transmembrane Helices of Glut1

PLoS ONE | www.plosone.org 8 February 2012 | Volume 7 | Issue 2 | e31412



dependent on the crystallization of the transporter in multiple

configurations in the presence and absence of substrate.

Materials and Methods

Ethics Statement
All experiments involving Xenopus frogs were conducted with

the approval of the Washington University Animal Studies

Committee (Protocol #200110049).

Materials
Xenopus laevis –Imported African frogs were purchased from

Xenopus Express (Homosassa, FL), 3H-2-deoxyglucose and

Diguanosine triphosphate (mRNA cap) were purchased from

Amersham Pharmacia Biotech (Arlington Heights, IL), Mega-

scriptTM RNA synthesis kit was purchased from Ambion Inc

(Austin, TX), TransformerTM Site-Directed mutagenesis kit was

obtained from Clontech (Palo Alto, CA). SuperSignal TM West

Pico Chemiluminiscent Substrate and Bismaleimidehexane (BMH)

were obtained from Pierce (Rockford, IL), 1,4-Phenylenedimalei-

mide (o-PDM) was purchased from Aldrich Chemical Co.

(Milwaukee, WI), and Decylmaltoside (DM) was obtained from

Anatrace Inc. (Maumee, OH).

General Procedures
Procedures for the site-directed mutagenesis and sequencing of

human Glut1 cDNA and the in vitro transcription and purification

of Glut1 mRNAs (25), isolation, microinjection, and incubation of

Xenopus oocytes (26), preparation of oocyte membranes (23), SDS

polyacrylamide gel electrophoresis and immunoblotting with

Glut1 C-terminal antibody (20), and 2-deoxyglucose uptake

measurements (27), have been described in detail previously.

Construction of di-Cysteine Glut1 Mutants
C-less Glut1 cDNA [23,56] subcloned into the oocyte

expression vector pSP64T was subjected to site-directed muta-

genesis to produce an aglyco C-less Glut1 containing the amino

acid motif for a Tev protease cleavage site(Glu-Asn-Leu-Tyr-Phe-

Gln-Gly) within the large, central cytoplasmic loop between

residues Gly247 and S248. The site of N-linked glycosylation was

mutated (Asn45 to Ser) in order to simplify quantification of the

protein bands (see Table 1). This construct, designated C-Tev, was

then used as a template to create 13 di-cysteine mutants in the

helical pairs 5/8 and 2/11 (see Table 1). The cysteine substitutions

were generated extending from the inner face to the outer face of

the membrane in each of the helices.

Treatment with homobifunctional maleimide cross-
linking reagents and effect of transport inhibitors

Stage 5 Xenopus oocytes were injected with 50 ng of each mutant

Glut1 mRNA. Two days after injection, total membranes were

prepared from groups of 15–20 oocytes. Three micrograms of

freshly isolated total membranes from injected oocytes were

incubated with the indicated concentrations of o-PDM, BMH, or

NEM in 50 mM Tris-HCl pH 7.4, 0.5 mM EDTA, 1 mM

dithiothreitol for various time periods at 22uC. In the inhibitor

experiments either cytochalasin B (50 mM) or ethylidene glucose

(50 mM) were added to the samples 5 min prior to the addition of

the cross-linking reagents. Control experiments demonstrated that

up to 50 mM L-glucose had no effect on the cross-linking reactions

(data not shown). The reaction was quenched by the addition of

2 mM cysteine and the membranes were then treated with 10

units of TEV protease (In Vitrogen) for 1 h at 22uC. The digested

membranes were then analyzed by SDS PAGE and immunoblot

analysis using a rabbit polyclonal ab raised against a peptide

Table 3. Effect of Ligands on the Cross-Linking of Glut1 Di-cysteine Mutants.

Double Mutant 0.1 mM o-PDM 0.1 mM BMH

Average SE n p value Average SE n p value

F81C/A405C

ETOH 0.347 0.104 4 0.099 0.090 4

CB 0.440 0.143 4 0.620 20.002 0.050 4 0.336

Water 0.334 0.102 4 20.027 0.037 4

EG 0.320 0.085 4 0.917 0.002 0.054 4 0.674

T158C/L325C 0.3 mM o-PDM 0.3 mM BMH

ETOH 0.273 0.041 5 0.609 0.175 4

CB 0.489 0.062 5 0.019 0.804 0.230 4 0.556

Water 0.448 0.081 5 0.697 0.114 4

EG 0.437 0.100 5 0.938 0.632 0.106 4 0.784

A70C/M420C 0.1 mM o-PDM 0.1 mM BMH

ETOH 0.048 0.059 4 0.001 0.069 4

CB 0.037 0.070 4 0.916 20.076 0.040 4 0.373

Water 0.118 0.044 4 0.017 0.038 4

EG 0.270 0.079 4 0.143 0.199 0.048 4 0.026

Oocyte membranes expressing dicysteine mutants were subjected to chemical cross-linking as described in Materials and Methods in the presence or absence of
cytochalasin B (CB) or ethylidene glucose (EG). Cross-linking efficiency is expressed as the intensity of the full-length transporter bands in the cross-linked lanes (o-PDM
and BMH lanes, see Figure 4) divided by the intensity of the full-length transporter bands in the control lanes, after subtraction of background intensities. See Figure 4
for a representative set of immunoblots. The results of 4–5 independent experiments are presented. Ethanol (ETOH) is the control for the addition of cytochalasin B (CB),
and Water is the control for the addition of ethylidene glucose (EG).
doi:10.1371/journal.pone.0031412.t003
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corresponding to the C-terminal 15 residues of human Glut1

(1:10,000 dilution) and a mouse monoclonal ab that recognizes a

motif within the N-terminal half of the central cytoplasmic loop

(1:10,000 dilution of ascites fluid). The secondary abs used were

LiCor donkey anti-mouse IRDye 800 CW and donkey anti-rabbit

IRDye 680 (both at 1:10,000 dilution) in conjunction with

LiCor blocking buffer. Imaging of the blots was conducted using

a LiCor Odyssey infrared imaging system model 9120 and system

version 3.0.

Statistical Analysis
Data were analyzed for statistical significance using the two-

tailed, unpaired, Student’s T-test.
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