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ABSTRACT: The ability to accurately develop subject-specific, input causation models, for blood glucose concentration (BGC)
for large input sets can have a significant impact on tightening control for insulin dependent diabetes. More specifically, for Type
1 diabetics (T1Ds), it can lead to an effective artificial pancreas (i.e., an automatic control system that delivers exogenous insulin)
under extreme changes in critical disturbances. These disturbances include food consumption, activity variations, and
physiological stress changes. Thus, this paper presents a free-living, outpatient, multiple-input, modeling method for BGC with
strong causation attributes that is stable and guards against overfitting to provide an effective modeling approach for feedforward
control (FFC). This approach is a Wiener block-oriented methodology, which has unique attributes for meeting critical
requirements for effective, long-term, FFC.

■ INTRODUCTION

Diabetes is characterized by an inability to synthesize, secrete,
and/or, in some cases, respond to insulin. Without this vital
hormone, cells and tissues cannot absorb glucose, and the
patients’ cells can starve to death, despite high levels of glucose
in the bloodstream. Among the two major types of diabetes,
Type 1 diabetes is characterized by the inability to produce
insulin. Type 1 diabetics often experience extreme variations in
blood glucose concentration (BGC), which can have adverse
long- and short-term effects such as severe hypoglycemia,
hyperglycemia, and organ destruction. Studies have established
that there is a need to maintain glucose levels within a normal
range (e.g., 80−150 mg/dL) to avoid complications caused by
diabetes.1−4 Therefore, Type 1 diabetics require daily
exogenous insulin infusion for survival. Current injection
treatment usually involves an insulin pump with manually
controlled bolus infusion and preprogrammed basal infusion.
However, oftentimes the patient is still not able to mimic a
normally occurring insulin profile using insulin pumps or/and
insulin injections, which leads to inadequate regulation of blood
glucose concentration (BGC), possibly causing hyperglycemia,
hypoglycemia, or various complications.5,6

Consequently, what is needed is an automatic insulin delivery
system (i.e., artificial pancreas) with the ability to determine
continuously the amount of insulin required to provide
optimum closed-loop glucose control (i.e., to minimize the
variability around a desired glucose level) and to eliminate the
individual from the insulin dosage decision making in this
control loop.
The development of a closed-loop artificial pancreas has the

potential to simultaneously reduce the risks of hypoglycemia
and hyperglycemia while also enabling individuals with Type 1

diabetes mellitus to maintain a normal lifestyle.7 To create a
closed-loop artificial pancreas, three crucial components are
needed: a continuous glucose sensor, an insulin pump, and a
robust controller.7−11

For effective long-term control of BGC, the control system
must be capable of tight control under critical disturbances with
extreme changes such as food, activity, and stress. While
feedback control (FBC) and model predictive control (MPC)
have shown promise under mild changes (e.g., overnight) in
disturbances,12−15 these approaches have not shown strong
promise for long-term tight control under extreme changes in
disturbances. Due to recent technological advancements of
body monitoring devices,30,31 activity-, stress-, circadian
rhythm-related disturbances16−19 can be monitored in real
time, which makes feedforward control (FFC) a possibility.
Given that FFC directly models the relationship between
disturbances and the control variable, BGC in this context, an
accurate modeling approach that can produce stable causation
relationships between critical disturbances and BGC has the
potential to make a significant advancement in the development
of an effective long-term artificial pancreas.
Hence, the focus of this article is strictly model development

for effective FFC. The maximization of cause-effect relationship
between critical disturbances and BGC is the goal of this model.
Mathematically, a viable and general FFC law based on the
model yt̂ = f x(xt; θ̂) is given below by eq 1:
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where B is constant systematic model biased such that B = f x(0;
θ̂) − Yset, Yset is the target value of the controlled variable (i.e.,
the set point), yt̂ is the modeled estimate of BCG at current
time t, f x is the fitted function; xt is a vector of measured input
variables at t, θ ̂ is the vector of estimated parameters, and xI,t is
the insulin infusion rate at t that is required to satisfy eq 1 (i.e.,
the inlet flow rate needed so that eq 1 is satisfied at t). Equation
1 gives the estimated insulin infusion rate to compensate for the
all modeled input changes. Thus, the goal and scope of this
work is to obtain a model for f x that is able to significantly
tighten BGC in an automatic FFC scheme. Note that under eq
1, large systematic modeling bias does not impede effective FF
control because B cancels out, as shown. Physically, this means
that eq 1 estimates the amount of insulin infusion at each time
instant (i.e., xI,t) needed to dynamically compensate for
deviations of modeled inputs from their initial values where
the model was at the target BGC level. Modeling errors in
estimating xI,t will exist and will be compensated for under FB
control. Note that any modeling approach that contains
outputs, such as k-steps-ahead prediction models, does not
meet the requirement of f x in eq 1 and is, therefore, not in the
scope of this work. Moreover, the only types of models that
have relevance to our scope are those that depend on inputs
only.
There are a number of studies in the literature involving the

development of models in BGC for real type 1 diabetic
subjects.20−26 There are models that used measured BGC
only,20−23 ones that use BGC and food consumption, namely
carbohydrates only,24 and ones that use BGC, food, and
activities variables.25,26 However, we have not found any
approach that gives modeling results for only inputs and thus,
the results reported in these studies are not in this scope of this
work, as they do not meet our criteria under eq 1.
Therefore, the goal of this work is the development of a FF

modeling approach that has the characteristics mentioned
above under eq 1. The outline for this article is as follows.
Specific mathematical details of the proposed approach are
given in the next section. Next, the details of the study in this
paper to evaluate the proposed method are given. Following
this section are the results of this study on 15 2 week outpatient
data collection cases, followed by concluding remarks including
future work.

■ MODELING METHODOLOGY

The proposed modeling approach is a critical advancement
over the modeling method proposed by Rollins et al.,27 which is
an extension of the Wiener method developed by Rollins and
Bhandari.28 The Rollins et al. technique was developed in the
context of noninsulin dependent Type 2 diabetics. For
modeling Type 1 diabetics, it becomes necessary to refine
this approach due to the incorporation of insulin infusion as an
input. This refinement or extension involves the development
of a new parameter estimation procedure that guards better
against overfitting and is better able to handle a large input set.
Before introducing this new procedure, we present the

modeling equations under a general Wiener framework that
is the foundation to this approach.

Mathematical Models. Wiener modeling follows a block-
oriented model structure formed by a series and/or parallel
arrangement of unrestricted static functions and linear dynamic
blocks. A block diagram with p inputs and one output is given
in Figure 1.

The inputs, xi for i = 1, ..., p, of the Wiener network are the
measured noninvasive variables or disturbances (i.e., food,
activity, and stress) and the output, y, is BGC. Each input has
its own linear dynamic block, Gi, and each dynamic block has
an intermediate unobservable, output vi, which represents the
independent dynamic response of its corresponding input. All
the intermediate vi’s are collected and passed through a
nonlinear static gain block, f(V), to produce the final output, y.
The linear dynamic blocks are essentially linear ordinary
differential equations, a second-order-plus-lead with dead time
(SOPLDT) form, as shown in eq 2.
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where i = 1, ..., p, p is the total number of inputs, τi is the time
constant, ζi is the damping coefficient, τai is the lead parameter,
and θi is the dead time. Using a backward difference
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interval of Δt, Rollins et al.27 obtained an approximate discrete-
time form of eq 2.
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Figure 1. Block diagram for a general Wiener network with p inputs
and one output. Each input, xi, is passed through their own linear
dynamic block, Gi(s), after which these unobservable intermediate
outputs are collected and passed through a single unrestricted static
gain function, f(V), to produce the output, y.
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As described in Rollins et al.,27 this discrete form provides
several strengths. First, the function form does not change as
values of the parameters change, unlike the continuous form
that can change as ζi changes. Second, one does not have to be
concerned about applying a fading memory algorithm that is
needed for the continuous form to truncate terms after a certain
period in the past. Third, eqs 4−6 are highly nonlinear in the
dynamic parameters (τai, τi, and ζi) and these intelligent
complex structures aid in strengthening input-causation
relationships by restricting parameters estimates to regions
that are phenomenologically sound. A detail discussion is given
in Rollins et al.27 using the information matrix to explain the
strengths of this nonlinear model identification approach over a
linear one where the coefficients in eq 3 would be estimated
directly. Lastly, the physical constraints, namely unity gain, ζi >
0 and τi > 0, also provide intelligence that aids in strengthening
modeled relationships in input-causation.
The engineering community tends to define a linear model

based on the time dependent variables in the model. For
example, eq 2 is linear in v(t) and the transfer functions
represented by this equation are said to be “linear” (but in the
variables). However, this paper defines a nonlinear model based
on the statistical definition, which in Bates and Watts,32 is
defined as “at least one of the derivatives of the expectation
function with respect to the parameters depends on at least one
of the parameters.” Thus, the statistical definition is based on
the form of the parameters in the model and not the variables.
If the proposed approach estimated the parameters in eq 3
directly, the model would be linear and would fall in the scope
of the study by Garnier et al.33 for linear multiple-input, single
output (MISO) structures. However, because the parameters
estimated in this work are the ones given in eqs 4−6 (i.e., the
dynamic parameters), the proposed model is nonlinear, and not
in the scope of the models in Garnier et al.,33 which is
deliberate and is a unique strength of this approach.
After eq 3 is obtained for each i, the modeled glucose value is

determined by substituting these results into the static function,
f(V), such as a second-order regression form shown below:
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where ai, bi, and ci,j, denote the linear, quadratic and interaction
parameters for i = 1, ..., p-1, and j = 2, ..., p. The measurement
model is given as

η ε= +yt t t (8)

where yt is the modeled glucose concentration at time instant t
and εt is the error term under the assumptions of
independence, normality, and constant variance (i.e., εt ∼
N(0, σ2), ∀ t). Under these assumptions, Rollins et al.27

proposed the following estimator for BGC under this
measurement model:
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Thus, eq 9, along with eqs 3−6 give the functional form with its
supporting equations for the proposed FF controller under this

work. Later, in the Results Section, this control law is given as a
differential equation.

Modeling Procedure. The proposed modeling procedure
is a novel approach to maximize input-causation, guard against
overfitting, and maximize long-term stability. As discussed
above, we attempt to maximize input-causation through the use
of highly nonlinear structures and physical constraints. Cross-
validation, in a novel fitting strategy, is used to guard against
overfitting. We do not use a k-fold cross validation procedure
with the testing data randomly split into k equal groups as this
is not a realistic evaluation since in practice the model can only
be applied to data collected after the model is built. Thus, our
cross-validation procedure uses only testing data obtained after
any data (i.e., Training and Validation data) used to influence
model building. We seek to enhance long-term stability by
obtaining consistent performance under significant changes in
unmeasured disturbances. Our cross validation procedure aids
in this goal by seeking to achieve similar fitting results on all
data sets. In addition, we evaluate the models using testing data
several days after the Training data, so that unmeasured
disturbances are more likely to be correlated differently with
measured inputs.
The proposed modeling methodology is an extension and

enhancement of the procedure proposed by Rollins et al.27 due
to the larger number of inputs (13 variables) including the
addition of two exogenous insulin inputs and the additional
complexities they bring. For simplicity and to provide the best
fit for mild extrapolation, this work used a reduced form of eq 9
that is given by eq 10. As shown, eq 10 eliminates all second-
order and interaction terms of eq 9 and consists only of the
first-order, a, terms.

η̂ = ̂ = ̂ + ̂ ̂ + ··· + ̂ ̂y a a v a vt t t t0 1 1, 13 13, (10)

where vî,t is the estimate of vi,t obtained by substituting the
estimated dynamic parameters (i.e., τî, τâi, ζî and θ̂i) into eqs
3−6 for all i. Note that the linear form of eq 10 makes this
particular network structure equivalent to a general class of
transfer functions where the gains for each one is contained in
eq 10 by ai, i = 1, ..., 13. Also, note that a model is completely
specified when the dynamic parameters in eqs 4−6 have
estimates for obtaining eq 3; then for each input these
equations are incorporated into eq 10 along with estimates for
the a’s.
As stated in Rollins et al.,27 the modeling objective is simply

to maximize the true but unknown correlation coefficient
between measured and fitted BGC. This quantity is represented
by ρ ̂y y, and estimated by rfit. Thus, under this criterion, as a

minimum, a model is considered useful, if, and only if

ρ >̂ 0y y, (11)

Because the degree of usefulness increases with ρ ̂y y, , the goal is

to obtain the largest (as close to the upper limit of 1) value as
possible. Due to the highly complex mapping of the parameters
into the response space of rfit, the following criterion is used in
obtaining the parameter estimates:

∑
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The objective criterion, eq 12, is written to address the effect
of unmeasured disturbances, which is an artifact of real
modeling as opposed to hypothetical simulated data modeling
without unmeasured disturbances. The Validation data set
helps to guard against fitting the Training data to unmeasured
input variables that are correlated with measured input variables
during training but differently during validation. This is done by
seeking to obtain similar fitted correlation for Training and
Validation sets, which is a goal of the proposed modeling
approach. The systematic bias that appears in the Validation set
is largely due to level changes in unmeasured inputs. However,
as eq 1 shows, the proposed approached is not affected by this
type of systematic bias and thus, can be effective in the presence
of level changes for unmeasured disturbances. This is a critical
attribute for long-term effective FF control.
For FF model evaluation, of the statistics commonly used for

evaluating model fit, rfit is premier, as supported by the
discussion earlier in regards to eq 1. As discussed, a FF model
needs to be accurate for the change in inputs and rfit is the best
statistical measure of this ability. Statistics that are affected by
model bias are not relevant as measures of performance in this
context as discussed earlier.
The novelty of the proposed modeling procedure lies in a

two level decomposition of the parameter estimation problem.
The first level decomposes the static and dynamic problem.
That is, the dynamic parameters (i.e., the parameters in eq 2)
are estimated first and separately from the static parameters
(i.e., the a ̂i’s in eq 10). The second level decomposes dynamic
parameter estimation into p = 13 separate (i.e., sub-) problems,
one for each input. For this approach to be possible, a modeling
structure must allow these decompositions. Under a SOPLDT
dynamic model structure, the Wiener network is the only one
that does as opposed to other common networks like the
autoregressive moving-average exogenous input (ARMAX)
model.27,29 For this approach to be effective, with only one
input, xi, in each dynamic estimation problem, rfit must depend
only on the dynamic parameters to obtain the best set. That is,
the value of rfit must be solely controlled by the values of the
dynamic parameters irrespective of the values of static
parameters. Fortunately, this is the case because with only
one input, xi, = ̂r ry vfit , i

, the correlation coefficient for yt and vî,t
(see the Appendix for the mathematical proof). Thus, for the
simple linear regression model (SLRM) (i.e., eq 10 with one
input), since vî,t depends only on the dynamic parameters, rfit
depends only on the dynamic parameters. Although a formal
proof is given in the Appendix, one can prove this in practice
quite easily by changing the static parameters for a fixed set of
dynamic parameters and verifying that the value of rfit does not
change by observation.

In the proposed procedure, models are developed from
Training and Validation data sets. The Training set is used to
determine the value of SSE and in adjusting the values of the
parameters directly to minimize this value. The Validation set
calculates rfit for each adjustment on the values of the
parameters, and is used to stop the minimization process for
SSE if rfit for the Training set increases significantly and causes a
significant drop in rfit for the Validation set. This is the practical
way that we feel that cross validation is done in practice as
mentioned above. In addition, the proposed procedure includes
a more stringent condition, that is, rfit for both sets to be close
to one another. Thus, for each input, the goal is not just for
high values of rfit for Training and Validation but also for their
values to be close. Moreover, this procedure will lower the
value of rfit in the Training data to bring its value close to the
Validation data and vice versa. We impose this condition
because we have found from modeling many cases that when
this condition is met that the final fit of the static model at the
fixed set of dynamic values produces rfit values in Training,
Validation, and Testing sets that are very close together to
minimize overfitting and maximum long-term stability as
discussed above.
After finding the dynamic parameters, the next step in the

procedure is to obtain the static parameters under eq 10. With
the dynamic parameters fixed, this becomes a linear regression
problem that has a global minimum as the solution. However,
because we have a validation set, we observe its rfit performance
under an iterative approach to the global minimum using an
iterative optimization process. We have found that most of the
time, the global minimum is the optimal solution but
sometimes we find a slightly better solution based on the
validation set that is not too far away from the global minimum.
The final process in the proposed procedure is the

elimination of inputs that adversely affect the final model
when fitting the combined set of inputs under the static model.
Each input is removed from the model with all the other inputs
kept in the model. If rfit increases when an input is removed,
this input is taken out of the final model. After completing this
process for all the inputs, the inputs that passed this test are
used to obtain the fit of the final model under the static model.
It should be noted that in most cases all the activity inputs were
retained in the model and if any were eliminated this number
was only a few. Rollins et al. obtained this set from an extensive
study in type 2 modeling involving all 22 of the armband
inputs. Given that most of the inputs were retained in this work
for each subject, this set appears to be quite acceptable. Also,
note that the final set of inputs for a given model is not of
concern in this work since we have no use for the models
beyond model building to evaluate this approach.

Figure 2. BodyMedia, Inc. SenseWear Pro3 body monitoring system.
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■ STUDY

Subjects in this study followed a 2 week free-living outpatient
protocol in which no constraints or conditions were placed on
their daily diet or lifestyle. The subjects in this study were all
healthy young adults from the ages of 18 to 25 with type 1
diabetes and on insulin pump therapy with a body mass index
(BMI) from 20.8 to 27.6. To obtain a sufficiently fast sampling
rate necessary for discrete-time (DT) dynamic glucose
modeling, the iPro continuous glucose monitor (CGM)
(Medtronic MiniMed, Inc., Northridge, California) was used
to provide glucose measurements. Use of the CGM requires the
insertion of a short flexible sensor (by needle) into the
subcutaneous tissue of the abdominal/supra-iliac area (i.e.,
between the umbilicus and the hip). The sensor samples the
surrounding interstitial glucose, which is then used to infer an
individual’s blood glucose levels with a reporting frequency of
every 5 min. Following FDA recommendations, the sensors
were replaced every 3 days. A period of 1 to 2 h of missing
measurements resulted during initialization of the new sensor
after each insertion. To maximize sensor reading accuracy, the
sensor must be calibrated with at least four finger-stick
measurements daily from the subject’s personal blood glucose
lancet meter.
Activity information was collected using the SenseWear Pro3

body monitoring system (BodyMedia Inc., Pittsburgh,
Pennsylvania) shown in Figure 2, which is wore on the triceps
of the subject’s arm. The SenseWear armband utilizes pattern
detection algorithms30,31 that employ physiologic signals from a
unique combination of sensors to generate values for 20 activity
variables. The armband collects data using a two-axis
accelerometer and four sensors that are used to determine
heat flux, skin temperature, near body temperature, and
galvanic skin response (GSR). The two-axis accelerometer
provides information about body position and tracks upper arm
movement. The heat flux sensor calculates the amount of heat
being dissipated from the body by measuring the amount of
heat lost along a thermally conductive path between the skin
and a vent on the side of the armband. Skin temperature and
near-body temperature are measured by sensitive thermistors
and GSR is measured via the conductivity of the subject’s skin
as it varies due to physical and emotional stimuli.31 The
SenseWear armband samples at a rate of once per minute;
however, measurements at 5 min intervals were used to match
the sampling rate of the CGM used in this study. The armband
was typically only removed once a day while the subject was
showering. Finally, to represent circadian rhythm (i.e., the
body’s internal clock), we used a variable that we called the
time of day (TOD), which is simply 24 h clock time.
Food information was collected using food logs. For Subjects

1−6, and 11, detailed food logs were kept on the actual food
consumed and, for Subjects 7−10, meals were logged based on
the size of the meal with small =1, medium =2, and large =3. As
part of the detailed protocol, subjects recorded the approximate
serving size and the time they started eating, for all of the food
they consumed, into a PDA, which used Weightmania Pro
software (Edward A. Greenwood, Inc., Cambridge, Massachu-
setts) to determine the carbohydrate, fat, and protein content
of their meals. In addition, the subjects’ insulin pumps were
downloaded on biweekly basis to retrieve their daily bolus and
basal insulin infusion rate data. The 13 variable input set for this
study is given in Table 1.

Based on results in Rollins et al.27 for a Type 2 subject and in
Beverlin et al.34 for 20 noninsulin dependent Type 2 diabetics, a
goal was set for rfit to be greater than 0.40 with a value greater
than 0.60 considered excellent. Note that this goal of rfit may
not seem very high. However, one must recognize that this is an
application in FF model development for inputs only and not a
model prediction application requiring high model accuracy.
Our objective function, eq 11, is defined in terms of
“usefulness”, which essentially means any model that has the
potential to significantly tighten BGC for a given subject. For a
given subject, it is not likely necessary for ρ ̂y y, to be too high to

achieve usefulness when input model causation is strong.
However, ultimately, the only way to truly evaluate the
effectiveness of a given model is its use in FFC. Models with
strong input-causation fitting can actually do better than
models with weaker input-causation and higher rfit results.
The first half of this study involved splitting the data into 1

week of Training data and 1 week of Validation data. The
second half of the study split the data into 1 week of training
data, 4 days of Validation data, and 3 days of test data.
Although correlation is the premier performance statistic as

mentioned above, three other statistics were determined that
are affected by model bias. Because bias can be neutralized as
shown in eq 1, these statistics are irrelevant as FF model
performance measures, but are included to give an indication of
how well rfit holds its level in Validation and Testing data under
conditions when model bias can be significant. These additional
statistics are the average deviation (AD), the average absolute
deviation (AAD) and mean relative absolute deviation
(MRAD). The AD is simply the average of the residuals and
is an estimate of model bias, B, as shown below:

∑̂ = = − ̂
=

B
n

y yAD
1

( )
i

n

i i
1 (13)

where n is the number of observed blood glucose measure-
ments in the statistic being calculated. A check that the
aforementioned convergence criterion is met is the AD value
equaling 0.0 mg/dL. A model with a significantly large absolute
value of AD or model bias will tend to raise AAD values. The
equation for AAD is similar to AD except AAD takes the
absolute value of the residuals before finding the average.

∑= | − ̂|
=n

y yAAD
1

i

n

i i
1 (14)

The spread in BCG can vary widely among T1Ds, and AAD
will tend to be large when the BGC spread is large. Therefore,
MRAD, a relative ADD value, is defined as follows

Table 1. Input Variables

food activity circadian rhythm insulin

1. carbohydrates 4. transverse accel -
peaks

11. time of day
(TOD)

12. bolus

2. fats 5. heat flux - average 13. basal
3. proteins 6. longitudinal accel -

average
7. near body
temperature

8. transverse accel -
MAD

9. GSR - average
10. energy expenditure
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■ RESULTS

Tables 2 and 3 contain results for 15 subject-specific models
and Tables 4 and 5 for 11 subject-specific models. The data for
Subjects 1−11 were collected by an experienced graduate
student that left the project after completing the first phase of
the study. The other ones (Subjects 12−15) were collected by a
new, less experienced, graduate student in the second phase of
the study. This lack of experience is revealed in the tables by
the number of days of modeling data. Although data collection
for each subject was about 2 weeks, the amount of useful
modeling data was much less for Subjects 12−15 because of

missing BGC data that the CGMS did not give. Thus, for a
given subject, the data in Tables 2 and 3 had a split of 1/2 for
Training and 1/2 for Validation and in Tables 4 and 5 the split
was 1/2 Training, 2/7th Validation, and 3/14th Testing.
As mentioned, Tables 2 and 3 equally split the data into

Training and Validation sets. In Table 2, all the inputs are
included in the models and in Table 3, the armband inputs are
not included. Thus, a comparison of these tables indicates the
modeling improvement from use of the armband inputs. The
average rfit with and without the armband for Validation are
0.62 and 0.52, respectively, indicating a very significant
improvement from use of the armband. The Training and
Validation rfit values are in general quite close together and
thus, supporting the effectiveness of the proposed modeling
approach to obtain similar values to guard against overfitting.
Note that the mean Training and Validation values are 0.60 and

Table 2. Model Results for 1 Week (or 7/14th) of Training and 1 week (or 7/14th) of Validation with All Inputs Includeda

training validation

subject days AD AAD MRAD rfit
b AD AAD MRAD rfit

b

1 14.0 0.00 44.8 0.44 0.61 20.4 50.5 0.33 0.68
2 13.0 0.00 72.1 0.62 0.49 −18.0 68.5 0.72 0.51
3 13.9 0.00 48.0 0.37 0.68 −0.1 49.3 0.33 0.66
4 10.7 0.00 31.6 0.38 0.53 33.4 48.4 0.39 0.55
5 14.0 0.00 62.6 0.47 0.56 15.1 73.6 0.53 0.55
6 13.9 0.00 50.1 0.31 0.67 24.9 45.6 0.23 0.68
7 14.0 0.00 46.7 0.43 0.69 37.1 56.5 0.36 0.64
8 14.0 0.00 32.7 0.36 0.45 10.8 43.2 0.42 0.43
9 13.9 0.00 51.8 0.37 0.63 −35.2 64.2 0.62 0.56
10 16.8 0.00 47.4 0.30 0.57 14.0 46.8 0.30 0.73
11 15.1 0.00 33.7 0.23 0.72 −24.3 47.2 0.43 0.79
12 8.9 0.00 56.3 0.25 0.63 −33.0 83.0 0.57 0.72
13 8.2 0.30 55.4 0.47 0.54 52.5 76.9 0.41 0.58
14 7.9 −0.10 48.2 0.39 0.56 −30.1 48.6 0.59 0.61
15 13.6 0.00 23.1 0.21 0.56 20.7 45.2 0.35 0.56
Mean 12.8 0.0 47.4 0.37 0.60 7.1 56.5 0.44 0.62

aAE and AAE values are in mg/dL. bThe mean Validation rfit for the detailed food logged cases, 1−6, and 11−15, is 0.63. The mean Validation rfit for
the nondetailed food logged cases, 7−10, is 0.59.

Table 3. Model Results for 1 Week (or 7/14th) of Training and 1 Week (or 7/14th) of Validation without Armband Inputs
Includeda

training validation

subject days AD AAD MRAD rfit
b AD AAD MRAD rfit

b

1 14.0 0.0 49.2 0.47 0.52 26.9 56.8 0.36 0.57
2 13.0 0.0 65.4 0.55 0.58 −13.1 64.4 0.64 0.56
3 13.9 0.0 61.0 0.48 0.46 18.2 56.6 0.35 0.42
4 10.7 0.0 32.2 0.38 0.48 32.6 32.6 0.38 0.49
5 14.0 0.0 66.1 0.51 0.50 11.3 81.7 0.62 0.44
6 13.9 0.0 62.8 0.40 0.39 13.9 50.8 0.26 0.35
7 14.0 0.0 58.3 0.55 0.52 21.3 51.5 0.34 0.57
8 14.0 0.0 35.8 0.41 0.25 15.1 46.6 0.46 0.34
9 13.9 0.0 59.3 0.43 0.52 −21.8 64.4 0.63 0.43
10 16.8 0.0 48.8 0.31 0.55 13.3 49.8 0.32 0.67
11 15.1 0.0 33.5 0.23 0.70 −23.5 48.3 0.43 0.77
12 8.9 0.2 58.4 0.26 0.61 −37.6 87.7 0.61 0.61
13 8.2 0.0 61.5 0.53 0.40 54.9 82.0 0.45 0.45
14 7.9 −0.1 48.2 0.39 0.56 −30.1 48.6 0.59 0.61
15 13.6 0.0 25.2 0.24 0.50 26.4 48.5 0.37 0.50
Mean 12.8 0.0 51.1 0.41 0.50 7.2 58.0 0.45 0.52

aAE and AAE values are in mg/dL. bThe mean Validation rfit for the detailed food logged cases, 1−6, and 11−15, is 0.52. The mean Validation rfit for
the nondetailed food logged cases, 7−10, is 0.50.
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0.62, respectively, and 0.50 and 0.52, respectively, for Tables 2
and 3, respectively. Although the three biased indicating
statistics are quite larger for the Validation results in several
cases, rfit is quite consistent given that it is an estimate of fitted
correlation with significant standard error. Thus, the approach
appears to be maintaining its level of fit quite well from
Training to Validation results. The fit of model for Subject 11 is
given in Figure 3. As shown, the input-only model tracks the
observed BGC quite well in terms of correlation. The
systematic bias of the Validation fit is quite evident as well as
the apparent shift in the average BGC level from Training to
Validation data.
Tables 4 and 5 include test data. In Table 4, all the inputs are

included in the models and in Table 5, the armband inputs are
not included. The average rfit with and without the armband for
Testing are 0.59 and 0.51, respectively. These results are very
similar to the previous ones in Tables 2 and 3 and support a
significant improvement from use of the armband. The
Training, Validation, and Testing rfit values are, in general,
quite close together and thus, supporting the effectiveness of
the proposed modeling approach to obtain similar values to
guard against overfitting. Note that the mean Training,
Validation, and Testing values are 0.58, 0.59, and 0.59,

respectively, and 0.50, 0.54, and 0.51, respectively, for Tables
4 and 5, respectively. The AAD and MRAD values in these
tables are similar to the ones in Tables 2 and 3 and the analysis

Table 4. Model Results for 1 Week (or 7/14th) of Training, 4 Days (or 4/14th) of Validation, and 3 Days (or 3/14th) of
Testing with All Inputs Includeda

7 days training 4 days validation 3 days testing

subject days AD AAD MRAD rfit
b AD AAD MRAD rfit

b AD AAD MRAD rfit
b

1 14.0 0.00 45.0 0.45 0.60 20.1 52.9 0.36 0.66 16.7 46.9 0.30 0.66
2 13.0 0.00 67.2 0.55 0.57 −33.3 62.6 0.74 0.67 2.9 64.8 0.47 0.54
3 13.9 0.00 50.9 0.39 0.64 −12.9 60.7 0.37 0.53 −21.3 53.0 0.37 0.68
4 10.7 0.00 31.9 0.38 0.53 31.1 52.5 0.45 0.52 35.4 40.5 0.29 0.57
5 14.0 0.00 63.3 0.48 0.55 31.4 87.3 0.63 0.54 −15.0 55.9 0.44 0.67
6 13.9 0.00 52.8 0.33 0.65 37.9 59.8 0.29 0.60 −0.1 34.0 0.20 0.60
7 14.0 0.00 56.4 0.53 0.56 25.6 52.6 0.32 0.58 −1.7 58.7 0.48 0.56
8 14.0 0.00 36.5 0.41 0.21 26.7 46.1 0.38 0.28 −0.1 48.7 0.59 0.30
9 13.9 0.00 53.2 0.38 0.61 −19.4 51.8 0.41 0.65 −54.9 75.8 0.90 0.55
10 16.8 0.00 44.9 0.29 0.62 15.0 43.6 0.25 0.68 0.8 50.9 0.37 0.70
11 15.1 0.00 30.4 0.21 0.79 −22.3 41.8 0.36 0.81 −25.3 60.8 0.56 0.63
Mean 13.9 0.0 48.4 0.40 0.58 9.1 55.6 0.41 0.59 −5.7 53.6 0.45 0.59

aAD and AAD values are in mg/dL. bThe mean Testing rfit for the detailed food logged cases, 1−6, and 11, is 0.62. The mean Testing rfit for the
nondetailed food logged cases, 7−10, is 0.53.

Table 5. Model Results for 1 Week (or 7/14th) of Training, 4 Days (or 4/14th) of Validation, and 3 Days (or 3/14th) of
Testing without Armband Inputsa

7 days training 4 days validation 3 days testing

subject days AD AAD MRAD rfit
b AD AAD MRAD rfit

b AD AAD MRAD rfit
b

1 14.0 0.00 49.2 0.47 0.52 22.1 56.5 0.39 0.56 31.5 57.1 0.33 0.58
2 13.0 0.00 68.0 0.58 0.56 −28.2 65.1 0.79 0.55 6.5 71.7 0.52 0.48
3 13.9 0.00 60.6 0.48 0.47 13.3 51.7 0.30 0.47 25.1 64.2 0.42 0.36
4 10.7 0.00 32.1 0.38 0.49 31.7 52.4 0.44 0.49 34.2 40.6 0.29 0.52
5 14.0 0.00 66.0 0.51 0.49 27.3 92.5 0.71 0.48 −12.4 65.3 0.51 0.45
6 13.9 0.00 63.5 0.40 0.38 23.7 62.8 0.32 0.27 −3.4 37.1 0.21 0.52
7 14.0 0.00 60.7 0.58 0.47 22.6 47.8 0.29 0.60 −2.9 55.1 0.44 0.54
8 14.0 0.00 33.6 0.38 0.39 23.8 42.9 0.36 0.47 −4.6 45.5 0.54 0.48
9 13.9 0.00 63.8 0.48 0.44 −6.0 62.6 0.44 0.47 −44.1 69.0 0.85 0.49
10 16.8 0.00 48.3 0.31 0.56 15.2 42.7 0.25 0.70 11.8 54.1 0.37 0.67
11 15.1 0.00 31.5 0.22 0.77 −20.6 38.7 0.33 0.83 −14.5 59.0 0.51 0.58
Mean 13.9 0.0 52.5 0.44 0.50 11.4 56.0 0.42 0.54 2.5 56.2 0.45 0.51

aAD and AAD values are in mg/dL. bThe mean Testing rfit for the detailed food logged cases, 1−6, and 11, is 0.50. The mean Testing rfit for the
nondetailed food logged cases, 7−10, is 0.55.

Figure 3. Fitted and observed BGC versus time for Subject 11 in
Table 2.
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of model bias is the same as before. That is, although they are
larger for the Validation and Testing results in several cases, rfit
is quite consistent, Thus, the approach appears to be
maintaining its level of rfit quite well from Training to
Validation to Testing results.
In comparing rfit results of detailed food log cases (Subjects

1−6, 11−15) versus meal size (nondetailed) food log cases
(Subjects 7−10), it is not conclusive how much the detailed
food logs improve the fit, if at all. Averaged rfit Validation results
in Tables 2 and 3 for detailed and nondetailed cases are 0.63
versus 0.59 and 0.52 versus 0.50, respectively. In Tables 4 and
5, averaged rfit Testing results for detailed and nondetailed cases
are 0.62 versus 0.53 and 0.50 versus 0.55, respectively. If
Subject 8 is removed in Table 4, the averaged rfit, for the 3
remaining subjects, increases from 0.53 to 0.60, and it is very
close to the detailed result of 0.62. Thus, it seems that if
detailed food log are improving the fit, it does not appear to be
very significant.
The FF model can be obtained by application of eq 1. Note

that from eq 10 at the initial steady state when xt = vt = 0 and y ̂
= Yset + B̂, then aô = Yset + B̂. For simplicity, we use only two
inputs, one for say, carbohydrates, for example, x1, and one for
insulin infusion, say x2. Thus, eq 1 in continuous time is

̂ ̂ + ̂ ̂ =a v t a v t( ) ( ) 01 1 2 2 (16)

In the Laplace domain, eq 16 becomes

̂ ̂ + ̂ ̂ = ̂ ̂ − ̂ ̂ =a V s a V s a X s G s a X s G s( ) ( ) ( ) ( ) ( ) ( ) 01 1 2 2 1 1 1 2 2 2
(17)

By taking θ̂i = 0, for simplicity, in the s-domain, eq 2 becomes
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Substituting eq 18 into eq 17, rearranging and writing as a
differential equation, one gets the following form for the
proposed FF controller:
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As shown by eq 19, the FF control law contains the numerator
and denominator dynamics of both the load variable and the
manipulated variable, the insulin infusion rate. This equation
can be solved numerically using a technique such as Euler’s
method to give the insulin infusion rate at each time instant to
satisfy eq 1.
For an ARMAX model, the FF controller would be (the

derivation is not shown for space considerations)
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Note that this controller only has numerator dynamics for the
inputs. Because inputs in this context will have very different
denominator dynamics (e.g., very different residence times of
carbohydrates and fats), it is not reasonable to use a model with
this restriction when it is unnecessary. Thus, ARMAX and its
related structures such as ARX are not considered based on the
goals of this research work.

■ CONCLUDING REMARKS

This work proposed an input-only, multiple-input, outpatient
free-living, modeling methodology for T1D subjects for FFC.
We have not found any input-only models for real T1D
subjects in the literature and thus, none that meet the
requirements for FF controller development under eq 1, our
scope. The proposed methodology extends the one developed
by Rollins et al.27 for Type 2 diabetic subjects to include insulin
infusion. It decomposes the static and dynamic parameter
estimation problems and then decomposed the dynamic
parameter estimation problem into a separate one for each
input. This strategy seeks to guard against overfitting and to
strengthen long-term stability by producing Training, Vali-
dation, and Testing fitted correlations (rfit) that are similar as
evidence of achieving these goals. The activity inputs provided
by the armband were shown to be quite valuable in improving
model fit. For several subjects, the fits were excellent (rfit ≥ 0.6)
even though they were developed from free-living data and
totally from noninvasive inputs. This work makes a major step
toward the goal of the development of a long-term automatic
insulin delivery system for T1Ds.
The goal of a FF controller is to determine the insulin

infusion rate that will cancel the effects of measured input
changes on BGC. Thus, the FF model used to build the FFC
system can have large model bias and be quite effective as long
as it is able to accuracy determine the insulin infusion rate to
cancel out changes of measured and modeled inputs.
Consequently, a FF model can be quite biased and still very
effective in this application.
Given that of model bias does not matter in this application,

the premier performance measure is rfit, as it is not affected by
model bias and gives an indication of model fit. However, high
correlation does not necessarily mean high causation. More-
over, under free-living data collection, and this context of
modeling real subjects, input model causation cannot be
determined and can only, ultimately, be evaluated under real
subject FFC. Nonetheless, our approach has attempted to
strengthen input causation in model building by using highly
structure nonlinear models with physically interpretable
dynamic parameters and a model identification strategy to
minimize over fitting. We sought to accomplish the latter by a
cross-validation strategy that used sequential data for training,
validation, and testing sets and obtains similar values of rfit for
all the data sets. In addition, by using a sequential cross-
validation approach as opposed to a k-fold approach, ones is
able to evaluate how rfit maintains it level under a model with
changing bias due to changes in unmeasured disturbances and
this is more realistic in terms of practice because the model will
be used in practice on data that is collected after the model is
built.
In the future, we will continue to improve the accuracy of the

method and evaluate its suitability for FF control in real data
studies. Although the Wiener structure has unique strengths, it
is still limited. Consequently, we will continue to look for other
types of structures that have better phenomenological
attributes, especially for the incorporation of unmeasured
blood insulin. We feel this accomplishment has the potential for
a significant advancement in model-based FFC applications as
it should provide the insulin infusion rate to compensate for
multiple and simultaneous input changes in a dynamic fashion.

Industrial & Engineering Chemistry Research Article

dx.doi.org/10.1021/ie404119b | Ind. Eng. Chem. Res. 2014, 53, 18216−1822518223



■ APPENDIX
The purpose of this appendix is to provide a mathematical
proof for rfit, under simple linear regression (i.e., eq 10) with
one input. Let η̂t = a ̂0 + a ̂ivî,t; in this context, rfit is
mathematically given by
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Thus, with aî > 0, rfit = ̂ry v,t i t,
and for aî < 0, rfit = − ̂ry v,t i t,

. This

result means that if the correlation of measured blood glucose
concentration (BGC) and vî,t is positive, aî can be set at any
positive value and rfit, which will be >0, will depend only of the
behavior of vî,t, which is independently controlled by the values
of the dynamic parameters associated with vi,t. Conversely, if the
correlation of BGC and vî,t is negative, aî can be set at any
negative value and rfit will be >0 and independently controlled
by the values of the dynamic parameters associated with vi,t.
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