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Abstract: In this paper, we group South American countries based on the number of infected
cases and deaths due to COVID-19. The countries considered are: Argentina, Bolivia, Brazil, Chile,
Colombia, Ecuador, Peru, Paraguay, Uruguay, and Venezuela. The data used are collected from a
database of Johns Hopkins University, an institution that is dedicated to sensing and monitoring
the evolution of the COVID-19 pandemic. A statistical analysis, based on principal components
with modern and recent techniques, is conducted. Initially, utilizing the correlation matrix, standard
components and varimax rotations are calculated. Then, by using disjoint components and functional
components, the countries are grouped. An algorithm that allows us to keep the principal component
analysis updated with a sensor in the data warehouse is designed. As reported in the conclusions,
this grouping changes depending on the number of components considered, the type of principal
component (standard, disjoint or functional) and the variable to be considered (infected cases or
deaths). The results obtained are compared to the k-means technique. The COVID-19 cases and their
deaths vary in the different countries due to diverse reasons, as reported in the conclusions.

Keywords: data science; disjoint and functional components; infectious diseases; k-means clustering;
multivariate statistical methods; R software; SARS-Cov2; sensing and data extraction

1. Introduction

The COVID-19 pandemic has deteriorated the usual dynamics that rule the world [1].
Its impact on health and the worldwide economy is evident [2,3]. The number of people
affected by the COVID-19 disease, the significant number of human lives that have been
lost, and the consequences of the containment measures are urgent concerns that should
be analyzed. This must be done in a technically responsible way to guarantee an effective
response from the authorities of each country [4].

The Coronavirus (COVID-19) disease is caused by the novel severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) and was first identified in Wuhan City, Hubei
Province, China, early in December 2019 [5]. COVID-19 arrived in South America at the
end of February 2020 [4]. The coronavirus attacks some organs of the human body, but
mainly the lungs [6]. In recent months, experts have detected the presence of some strains,
as a result of the mutation of the virus, with higher rates of spread. As mentioned, the
world has been greatly affected by the presence of this virus and governments are currently
engaged in a mass vaccination process with the aim that people will be able to resume their
activities in a normal way [4].

To confirm suspected cases of COVID-19, the real-time transcription-polymerase chain
reaction (RT-PCR) test is applied, based on the detection of a certain amount of genetic
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fragments other than the virus in an individual [7]. Nevetheless, other diagnostic tools to
detect COVID-19 cases have been proposed [8].

Proper planning of the response to an emergency is marked by the challenges of
economic and political will [8]. However, the application and adaptation of statistical
methods for data analysis that strengthen the interpretation of the information, taken from
different points of interest, are actions that undoubtedly improve the quality of the response
to the emergency [4]. These are actions that the citizens expect from their government
authorities. As in other regions around the world, in South American countries, the number
of infected people and deaths due to COVID-19 are increasing every day.

One popular multivariate statistical method is the principal component analysis (PCA),
which allows for classification of variables or individuals [9,10]. The PCA has been used
in several studies related to COVID-19 [11–13]. The objective of the present investigation
is to apply the PCA to classify South American countries with respect to the number of
infected and deaths due to COVID-19. We want to determine how the pandemic evolves in
South American countries by using different multivariate methods, based on both matrix
and functional approaches. These methods allow us to identify differences and similarities
among the countries under study to understand the damage that the COVID-19 pandemic
has caused them. The countries considered for this classification are: Argentina (ARG),
Bolivia (BOL), Brazil (BRA), Chile (CHI), Colombia (COL), Ecuador (ECU), Peru (PER),
Paraguay (PRY), Uruguay (URY), and Venezuela (VEN). We use modern techniques based
on (i) standard PCA; (ii) disjoint principal component analysis (DPCA); and (iii) functional
principal component analysis (FPCA). The full data set used in this investigation can be
downloaded from https://ourworldindata.org/coronavirus (accessed on 12 June 2021).
The data regarding the numbers (per million inhabitants) of infected cases and deaths are
taken from 1 March 2020 to 15 March 2021. We design an algorithm that permits one to
summarize the multivariate methods presented in this work to sense changes in the data
by using a sensor and having an updated analysis.

The remainder of the paper is organized as follows: In Section 2, the fundamentals
of the PCA, DPCA, and FPCA are provided. Sections 3 and 4 apply the PCA, DPCA, and
FPCA described in Section 2 to analyze the data collected. In Section 5, we discuss the
results of the study and address the conclusions as well as ideas for future research.

2. Methods
2.1. Principal Component Analysis

The PCA is used in data matrices, with the measurements of a set of variables on a set
of individuals being stored. The objective of the PCA is to reduce the original variables to
a few latent variables (principal components) and to work in a reduced-dimension space
that facilitates the interpretation. The principal components are obtained by solving an
optimization problem defined as

max (Z = w>Vw), (1)

subject to w>w = 1,

where V = (1/n)X>X is the sample matrix of covariances of the data matrix X (centered
by columns), and the constraint w>w = 1 indicates that the vector w is of unitary norm,
with X being a matrix with n individuals and p variables. When applying a dimension
reduction to q components (q < p), the solution to the optimization problem defined in
(1) is the largest eigenvalue λ of V , that is, Vw = λw. The eigenvalues of V are sorted in
descending order as λ1 > · · · > λq. The first principal component w1 is the eigenvector
of the unitary norm associated with the largest eigenvalue of V , that is, λ1. Similarly, the
second principal component w2 is the eigenvector associated with λ2, where w1 and w2
are orthogonal, that is, w>1 w2 = 0, and so on for the rest of the components.

In order to improve the interpretation, it is possible t o rotate the extracted components.
Varimax is one of the most popular rotation methods and is applied to the component

https://ourworldindata.org/coronavirus
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loadings (correlations between variables and factors); see details of the varimax method
on p. 270 of [14]. The varimax orthogonal rotation tries to maximize the variance of the
squared loadings in each factor, leading to large loadings for a few variables and the rest of
variables with small loadings. Thus, it is possible to obtain a subset of variables that affect
each component. Then, it is desirable that only one loading per observed variable is large
in absolute value so that the variables are mainly related to exactly one component [9].

2.2. Disjoint Component Analysis

The DPCA is used as an alternative to classify variables and build clusters. The DPCA
seeks to obtain disjoint principal components, that is, to say that the principal components
should be highly correlated to some variables but not to others. In the PCA, the loading
matrix B is orthogonal of p× q dimension. However, in the DPCA, in addition to it being
an orthogonal matrix, B = (bij) must be a disjoint matrix, that is,

(i) For all i, there is only one j, such that bij 6= 0, with i ∈ {1, . . . , p} and j ∈ {1, . . . , q}.
(ii) For all j, there exists at least one i, such that bij 6= 0, with i ∈ {1, . . . , p} and

j ∈ {1, . . . , q}.
The conditions (i) and (ii) above imply an increase of the constraints of the PCA opti-

mization problem defined in (1). To obtain the disjoint components, the heuristic procedure
presented in [15,16] can be used. Another procedure for computing disjoint components,
based on particle swarm optimization, can be seen in [17], whereas an algorithm to compute
disjoint components in three-way tables is presented in [18].

2.3. Functional Component Analysis

Unlike the PCA and DPCA, the FPCA considers data as functions, often over time [19–21].
The FPCA allows us to capture the variability of the phenomenon under investigation
through its evolution over time. In the FPCA, each eigenvalue corresponds to an eigen-
function. The eigenfunctions describe the variability in the data set [22]. In the FPCA,
the components are called harmonics.

In the PCA and DPCA, we have an n× p data matrix with n individuals and p original
variables. Nevertheless, in the FPCA, we have p functions xi(t), for i = 1, . . . , p, where
the values of the data matrix xit are converted into functions xi(t), that is, the value of the
variable i at time t, so one function is assigned to each original variable of the PCA [23].

In the multivariate context, a linear combination can be written as the dot product
w>x, where w = (w1, . . . , wp)> is a vector of weights and x = (x1, . . . , xp)> is a vector of
variables. In the FPCA, linear combinations are represented as the dot product in a Hilbert
space defined as

L2(T) : 〈w, x〉 =
∫

T
w(t) x(t)dt, (2)

where T used in (2) is the time interval considered. In the FPCA, the sample covariance
variance matrix is replaced by a bivariate function established by

v(s, t) =
1
p

p

∑
i=1

xi(s)xi(t), (3)

where the functions xi considered in (3) are centered.
Note that a functional principal component must satisfy the expression given by∫

T
v(s, t)w(t)dt = λw(t), (4)

where λ is an eigenvalue and w is its corresponding eigenfunction. The equation given
in (4) is the functional version of the matrix equation Vw = λw. There are several ways to
solve (4); see, for example, [24,25]. Here, we follow the method outlined in [21]. Therefore,
if the eigenvalues obtained by solving the equation given in (4) are sorted in descending
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order, as λ1 > · · · > λq, the first functional principal component w1 is the eigenfunction
corresponding to λ1. The second functional principal component w2 is the eigenfunction
associated with λ2 of unitary norm and is orthogonal to w1, and so on in such a way that
the new functional principal component is orthogonal to the one calculated in (4), that is,∫

T
wi(t)wj(t)dt = 0, (5)

for i < j. Thus, the score of the variable i in the component k, for k = 1, . . . , q, is stated as

fik =
∫

T
wk(t) xi(t)dt, (6)

where the formulation defined in (6) represents the dot product between wk and xi.
Note that the expression given in (5) ensures that the functional components are orthogonal.

2.4. Algorithm and Computer Configurations

We have designed an algorithm that allows the multivariate methods presented in this
work to sense changes in the data. This algorithm should be implemented in a software
that, through the use of a sensor, would permit us to have an updated analysis. Algorithm 1
provides a summary of the methodology proposed in this study. The experimental analyses
conducted here were carried out using a computer with the following characteristics: (i) OS:
Windows 10 for 64 bits; (ii) RAM: 8 Gigabytes; and (iii) Processor: Intel Core i7-4510U
2–2.60 GHZ. The R software [26] was used for the PCA and FPCA, whereas the DPCA was
implemented by the authors in C# based on the algorithm proposed in [15,16].

Algorithm 1 Approach for sensing and updating the component analyses

1: Update the local data warehouse with the data extracted from the website.

2: Indicate the presence of new data in the local repository when the data warehouse, through a
sensor (trigger), sends a signal to the software that performs the component analyses.

3: Generate the score matrices and the corresponding loading matrices when the software receives
the signal from the sensor and processes the DPCA through its C# implementation.

4: Obtain the corresponding matrices to process the PCA and FPCA when the software communi-
cates with R and sends the request to it.

5: Produce the corresponding plots that serve as support for the component analyses when the
software sends the request to R.

6: Store the results of the component analyses in the local data warehouse by means of the software.

7: End showing all the results of the updated component analyses in the graphical user interface
using the software.

3. Results I
3.1. PCA and DPCA Results for the Number of COVID-19 Infected Cases

A PCA was performed using the data in Table 1 with two components based on
the correlation matrix. In this table, the columns show the countries and the rows show
the number of COVID-19 infected cases (per million inhabitants) in each of the months
from March 2020 to March 2021. In addition, a loading matrix was obtained but is not
interpretable. Then, the varimax rotation was applied and a loading matrix, which is easier
to interpret, was obtained; see Table 2. The percentage of variability explained by the model
was 73.92%. Figure 1a shows the plot of the space of countries with the data of COVID-19
infected cases. From this figure, note that ARG, COL, PRY, and VEN are well represented
by the first component, while BOL, BRA, CHI, PER, and URY are well represented by the
second component. However, ECU has very similar loadings in both components.
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Table 1. Data matrix of the number of COVID-19 infected cases per million inhabitants for the indicated month and country.

Month ARG BOL BRA CHI COL ECU PER PRY URY VEN

2020-03 23.320 9.168 26.887 148.671 17.808 126.961 32.300 9.112 97.303 4.748
2020-04 74.653 90.807 383.281 777.248 110.077 1286.283 1089.142 28.181 87.802 6.963
2020-05 274.872 755.160 2011.963 5537.081 449.583 802.809 3866.934 100.945 51.820 41.393
2020-06 1054.943 1990.654 4173.853 8152.400 1345.499 982.482 3661.822 173.150 32.533 151.992
2020-07 2804.951 3732.537 5929.842 3990.017 3884.646 1639.341 3708.588 437.013 94.426 448.096
2020-08 5010.048 3410.341 5860.889 2932.538 6280.816 1610.378 7269.051 1727.860 95.286 990.088
2020-09 7373.831 1603.095 4246.639 2681.757 4217.234 1319.497 4992.196 3238.125 129.832 998.524
2020-10 9202.697 552.215 3409.259 2472.506 4805.250 1765.282 2681.440 3144.328 310.331 594.001
2020-11 5699.844 252.801 3764.939 2170.254 4768.245 1388.254 1891.010 2697.360 786.763 365.067
2020-12 4446.897 1320.651 6304.567 2993.796 6406.262 1123.783 1595.511 3576.292 3817.801 392.603
2021-01 6675.956 4858.291 7192.142 6179.886 8885.288 2171.731 3733.550 3546.429 6511.452 470.146
2021-02 3985.461 2756.354 6334.831 5101.220 3081.706 2002.317 5629.776 3679.898 4679.701 428.651
2021-03 1379.088 638.395 3062.888 2266.347 673.508 605.678 1703.270 2038.407 2444.060 147.877

Table 2. Loading matrices for data of the number of COVID infected cases with two components (C1
and C2) for the indicated country and method.

Varimax DPCA
Country C1 C2 C1 C2

ARG 0.943 0.068 0.484 0.000
BOL 0.300 0.874 0.000 0.519
BRA 0.585 0.743 0.000 0.519
CHI −0.163 0.871 0.000 0.415
COL 0.827 0.401 0.466 0.000
ECU 0.649 0.554 0.417 0.000
PER 0.316 0.687 0.000 0.416
PRY 0.883 0.121 0.438 0.000
URY 0.381 0.446 0.000 0.340
VEN 0.794 0.224 0.428 0.000

(a) (b)
Figure 1. Space of countries for data of the number of COVID-19 (a) infected cases and (b) deaths.

To further improve the interpretation, a DPCA was carried out. Before performing
the calculation of its components, as part of the preprocessing, a centering and scaling
were applied to the matrix with the data of COVID-19 infected cases. Table 2 also reports
the loading matrix with two disjoint components for the number of infected cases. The
percentage of variability explained by the model was 69.27%. Of the variability, 4.65%
was lost, but we gained in terms of interpretation as we can conclude that ECU is better
represented in the first component. In summary, when using two components for the data
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on the number of COVID-19 infected cases, the South American countries are classified as:
(Group 1) ARG, COL, PRY, VEN, and ECU; and (Group 2) BOL, BRA, CHI, PER, and URY.

Next, we performed a PCA with three components. A variability percentage of
87.07% was attained and once again the loading matrix obtained is not interpretable. Then,
a varimax rotation was applied and no clearer interpretation was achieved, so we decided to
use the DPCA again. When calculating three disjoint components, a variability percentage
of 76.60% was obtained and 10.47% variability was lost, but an interpretable loading matrix
was generated as observed in Table 3. In summary, when using three components for
the data of the number of COVID-19 infected cases, the South American countries are
classified as: (Group 1) ARG, COL, ECU, and VEN; (Group 2) BOL, BRA, CHI, and PER;
and (Group 3) PRY and URY. Note that, when going from two to three components, one
country came out of each of the two initial groups (PRY and URY, respectively) to form a
third group.

Table 3. Loading matrix for data on the number of COVID infected cases with three components (C1,
C2, and C3) for the indicated country using the DPCA.

DPCA
Country C1 C2 C3

ARG 0.524 0.000 0.000
BOL 0.000 0.541 0.000
BRA 0.000 0.525 0.000
CHI 0.000 0.446 0.000
COL 0.515 0.000 0.000
ECU 0.472 0.000 0.000
PER 0.000 0.483 0.000
PRY 0.000 0.000 0.707
URY 0.000 0.000 0.707
VEN 0.487 0.000 0.000

3.2. PCA and DPCA Results for the Number of COVID-19 Deaths

Now, a similar analysis to that conducted in Section 3.1 was performed with the
data in Table 4, where the columns show the countries and the rows show the number
of COVID-19 deaths (per million inhabitants) in each of the months from March 2020 to
March 2021.

Next, a PCA with two components was carried out using the correlation matrix. Then,
a loading matrix was obtained but, once again, it is not interpretable. Thus, the varimax
rotation was applied and a loading matrix that is easier to interpret was obtained in Table 5.
The percentage of variability explained by the model was 69.75%. Figure 1b displays the
plot of the space of countries with the data of deaths.

Notice that ARG, COL, PRY, URY, and VEN are represented by the first component,
whereas BOL, BRA, CHI, and PER are represented by the second component. Similarly to
the analysis of the COVID-19 infected cases, ECU has very similar loadings in both compo-
nents. Disjoint components were calculated to improve the analysis. Again, centering and
scaling were applied to the matrix with the data on deaths. Table 5 also presents the loading
matrix with two disjoint components. The percentage of variability explained by the model
was 64.75%, while 5% of variability was lost; however, we gain in terms of interpretation,
concluding that ECU is better represented in the second component. In summary, when
using two components for the data on the number of COVID-19 deaths, the countries are
classified as: (Group 1) ARG, COL, PRY, URY, and VEN; and (Group 2) BOL, BRA, CHI,
ECU, and PER.
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Table 4. Data matrix of the number of COVID-19 deaths per million inhabitants for the indicated month and country.

Month ARG BOL BRA CHI COL ECU PER PRY URY VEN

2020-03 0.598 0.514 0.946 0.625 0.315 4.25 0.912 0.42 0.288 0.105
2020-04 4.228 4.802 27.309 11.245 5.446 46.759 30.97 0.98 4.608 0.456
2020-05 7.103 21.505 109.652 43.261 12.695 139.319 104.785 0.14 1.44 1.46
2020-06 16.992 69.389 142.453 242.41 47.07 66.258 156.833 0.84 1.44 1.3
2020-07 49.472 158.827 154.691 197.164 133.072 66.599 283.394 4.481 2.304 3.982
2020-08 113.22 175.617 135.991 95.837 187.824 48.405 296.222 38.837 2.592 7.807
2020-09 183.136 251.691 106.187 75.957 124.52 272.006 109.426 74.447 1.152 8.511
2020-10 311.202 65.108 74.954 76.687 104.477 74.534 61.111 76.691 2.88 5.981
2020-11 170.991 19.877 62.272 62.93 107.144 44.833 45.854 49.35 5.472 3.489
2020-12 99.897 17.817 102.695 62.666 126.704 32.477 53.289 70.943 29.943 4.615
2021-01 104.633 103.999 139.043 96.464 211.664 46.757 101.482 63.931 73.409 5.663
2021-02 88.304 108.795 143.198 110.903 113.657 53.959 159.924 64.912 49.515 5.453
2021-03 30.843 20.133 73.927 33.165 19.789 16.664 56.533 28.879 20.151 1.934

Table 5. Loading matrices for data on the number of COVID deaths with two components for the
indicated country and method.

Country Varimax DPCA

ARG 0.849 −0.063 0.438 0.000
BOL 0.502 0.716 0.000 0.473
BRA 0.227 0.891 0.000 0.512
CHI −0.098 0.847 0.000 0.452
COL 0.727 0.517 0.476 0.000
ECU 0.365 0.26 0.000 0.247
PER 0.011 0.935 0.000 0.499
PRY 0.964 −0.074 0.509 0.000
URY 0.394 0.025 0.259 0.000
VEN 0.880 0.418 0.505 0.000

A PCA with three components was also carried out and the model attained 85.28% of
explained variability, but the loading matrix is not interpretable, so a varimax rotation was
performed but the interpretation did not improve. When three disjoint components were
computed, we obtained 74.78% of explained variability with 10.50% of variability being
lost. Nevertheless, an interpretable loading matrix was achieved as can be seen in Table 6.
In summary, when using three components for the data on the number of COVID-19 deaths,
we have: (Group 1) ARG, COL, PRY, URY, and VEN; (Group 2) BRA, CHI, and PER; and
(Group 3) BOL and ECU. Observe that, when going from two to three components, the first
group keeps the same countries but the second group is subdivided into two others, where
BOL and ECU come out of the second initial group to form a third group.

Table 6. Loading matrix for data on the number of COVID deaths with three components (C1, C2,
and C3) for the indicated country using the DPCA.

DPCA
Country C1 C2 C3

ARG 0.438 0.000 0.000
BOL 0.000 0.000 0.707
BRA 0.000 0.594 0.000
CHI 0.000 0.566 0.000
COL 0.476 0.000 0.000
ECU 0.000 0.000 0.707
PER 0.000 0.571 0.000
PRY 0.509 0.000 0.000
URY 0.259 0.000 0.000
VEN 0.505 0.000 0.000



Sensors 2021, 21, 4094 8 of 17

3.3. Analysis of the PCA and DPCA Results

For both data matrices reported in Tables 1 and 4, the plots displayed in Figure 2a,b
for the number of COVID-19 infected cases and deaths suggest two components if it is
expected to explain about 70% of the variance, and three components if it is expected to
explain about 90% of the variance. For more details about this criterion, see [27]. Some
alternative criteria can be seen in [28,29].

(a) (b)
Figure 2. Cumulative variance plots of the number of COVID-19 (a) infected cases and (b) deaths.

Regarding the number of COVID-19 infected cases with two components, the countries
with the highest score in the first component (C1) are ARG, PRY, and COL. The coun-
tries with the highest scores in the second component (C2) are BOL, CHI, and BRA; see
Figure 1a. When comparing this clustering with Figure 3a, interpreting the components
and considering the countries with the highest scores, note that the component C1 groups
countries that took time to reach the first peak of the pandemic, while the C2 component
groups countries that reached both peaks of the pandemic at similar times.

About the number of COVID-19 deaths with two components, the countries with the
highest scores in C1 are PRY, ARG, and VEN. The countries with the highest scores in C2
are PER, BRA, and CHI; see Figure 1b. When comparing this clustering with Figure 3b,
interpreting the components and considering the countries with the highest scores, observe
that C1 groups countries that had a small number of deaths after the December 2020
holidays, while C2 groups countries that had an increase in the number of deaths after
these holidays.

The previous sections showed the results of the classification of countries for the
number of COVID-19 infected cases and deaths with two and three components. Despite
the fact that two components are suggested in both situations, we decided to also perform
the calculations with three components in order to include in this work an analysis with a
higher percentage of variability (using a third principal component).

In relation to the number of COVID-19 infected cases, adding a third component,
we gain 13.15% and 7.33% in explained variability with standard and disjoint components,
respectively. Regarding the number of deaths, when going from two to three components,
we gain 15.53% and 10.03% in variability with standard and disjoint components, respec-
tively. In general, when using three principal components, there is an explained variability
close to 90% for both the number of infected and the number of deaths due to COVID-19.
Figure 3a,b represent Tables 1 and 4 graphically, respectively. Countries colored in blue,
red, and green are grouped by components C1, C2 and C3, respectively; see Tables 3 and 6.
When comparing Figure 3a,b with the results obtained using two components, it is hard to
detect similarities and differences in the ten South American countries. However, when
using three components, we consider that a better classification is obtained.

Regarding the number of COVID-19 infected cases with three components, in C1
we have ARG, COL, VEN, and ECU; in C2, we have BOL, BRA, PER, and CHI; whereas
in C3, we have PRY and URY. By observing Figure 3a, we can interpret that C1 groups
those countries that have had similar behavior since December 2020. Note that ARG has
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a peak and a fall similar to that which happens with COL. In addition, ECU and VEN
have similar behavior to each other, with small values in the number of infected. We can
interpret component C2 as being those countries that had similar behavior in both peaks;
even those times at which the peaks occurred, the time that elapsed between them was
also similar. In the case of component C3, it groups those countries that had few infected
cases at the beginning of the pandemic and that reached a peak after the December 2020
holidays. These similarities between PRY and URY are detected by component C3, but
with only two components this would not have been detected.

About the number of COVID-19 deaths with three components, we have PRY, VEN,
COL, ARG, and URY in C1; BRA, PER, and CHI in C2; and in C3, BOL and ECU. From
Figure 3b, we can note that component C1 groups the countries with the smallest number
of deaths, which are PRY, VEN, and URY. In this first component, we also identify ARG and
COL with a smaller number of deaths at the beginning and at the end of the study period.
We can interpret component C2 as those countries that had similar behavior in both peaks,
the first between June 2020 and July 2020, and the second peak that was reached after the
December 2020 holidays. Furthermore, observe that C3 groups those countries that reached
their first peak in September 2020 and had an increase in the number of deaths after the
holidays. The similarities between BOL and ECU are detected when C3 is considered, but
not with C2.
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Figure 3. Plots of the number of COVID-19 (a) infected cases and (b) deaths for the indicated country
and month.

Note that, when using the PCA and DPCA, both for the number of COVID-19 infected
cases and deaths, the components are based on the number of peaks and the time in which
these peaks are reached. In addition, observe that the beginning, duration, and end of the
waves are considered in the groupings.

As mentioned, the PCA enables us to classify the countries analyzed in this study,
with the components being latent countries. The DPCA was performed to contrast what
was obtained with the PCA obtaining results consistent. The grouping of the countries,
according to the number of COVID-19 infected cases and deaths (in both cases per million
inhabitants), was carried out to comparatively determine similarities and differences among
the countries during the time considered in our investigation (13 months).
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3.4. k-Means Cluster Analysis for Countries

Next, a k-means analysis was carried out for the South American countries under
study. Figure 4a,b show the results with two clusters, whereas Figure 4c,d display the
results with three clusters. Regarding the number of COVID-19 infected cases with two
clusters, note that in Figure 4a the countries are grouped in a different way when compared
with the PCA/DPCA grouping using two components. From Figure 4b, we can conclude
that the same occurs with respect to the number of deaths, that is, the results of the
clustering with k-means differ from the clustering obtained with the PCA/DPCA. When
comparing the three clusters of the k-means analysis with the three components of the
PCA/DPCA, for the number of COVID-19 infected cases and their deaths, the results
obtained are more similar than when comparing the two clusters of k-means and the two
components of the PCA/DPCA. However, there are also differences. In this work, we
consider that the results obtained with the PCA are more reliable and better reflect reality
than the k-means analysis for the following reasons:

(i) The PCA reduces the dimensionality of the data, grouping the ten original coun-
tries into two or three latent countries. These latent countries (components) are linear
combinations of the original countries. The PCA allows us to interpret the components
obtained considering the original variables (countries) with the highest score in each of
the components.

(ii) In the k-means analysis, we must indicate, from the beginning, the number of
groups to be constructed, minimizing the squared distance of the variables (countries) from
the centroid. Furthermore, k-means is an association method, which forms groups through
their similarity. However, the PCA works with the full data set, maximizing the explained
variance to obtain the components, one by one, trapping as much information as possible
that it finds in the data.

(a) (b)

(c) (d)
Figure 4. Cluster plots with (a,b) k = 2 and (c,d) 3 of the number of COVID-19 (a,c) infected cases and (b,d) deaths.
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4. Results II
4.1. FPCA Results for the Number of COVID-19 Infected Cases

Different to the PCA and DPCA, the FPCA allows us to capture the variability of the
phenomenon under investigation through its evolution over time. In the FPCA, we asso-
ciate a proper or harmonic function with each eigenvalue, which describes the main modes
of variation existing in the data set. In Figure 5a,c, month 0 corresponds to March 2020,
month 1 to April 2020, month 2 to May 2020, and so on until month 12, which corresponds
to March 2021.

In Figure 5a, the first component (solid line) reflects the general evolution of the
number of COVID-19 infected cases reported per month throughout the pandemic in all
the countries considered. The greatest influence can be seen from months 5 to 11 (August
2020 to February 2021). The decline at the end of the curve is due to the fact that the data
for March 2021 are only considered until the middle of the month. The second principal
functional component (solid line) is shown in Figure 5b and it agrees with the variation
detected in the first principal component. This second component only contributes 21.3%
of the explained variability and is not as important as the first one.

Table 7 and Figure 6a show the behavior of the countries over the course of the
pandemic. Note that ECU, URY, and VEN have similar behavior, which is in contrast to
BRA. In addition, the behavior of ARG and CHI differs from the rest. However, ARG and
BOL demonstrate the opposite behavior from each other in the evolution of the number of
new COVID-19 cases reported. We must consider that the number of new cases depends
on the number of PCR tests applied, which might explain why some countries have a low
rate of new cases. The position to the left of the origin in Figure 6a can be due to two
situations, either: (i) the health policies are managed correctly; or (ii) insufficient detection
PCR tests are carried out. A country in the first situation is URY, which is an example of
correct management at the beginning of the pandemic that then ceased to be so.

(a) (b)

(c) (d)
Figure 5. Harmonic components (a,c) 1 and (b,d) 2 of the FPCA for data on the number of COVID-19 (a,b) infected cases,
and (c,d) deaths.
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(a) (b)
Figure 6. FPCA space of countries for data on the number of COVID-19 (a) infected cases and (b) deaths.

Table 7. Loading matrix for data on the number of COVID infected cases with two components (C1
and C2) for the indicated country using the FPCA.

FPCA
Country C1 C2

ARG 7707.767 −4791.927
BOL −3319.535 2075.921
BRA 5959.808 2033.667
CHI 1755.468 5492.041
COL 5692.081 −1991.679
ECU −4878.641 −249.683
PER 2686.448 3222.517
PRY −2023.569 −3145.071
URY −5732.866 −1702.523
VEN −7846.961 −943.263

4.2. FPCA Results for the Number of COVID-19 Deaths

Figure 5c shows the first functional component (solid line), reflecting the temporal
evolution of the number of deaths per month and per million inhabitants globally (all coun-
tries considered simultaneously). The hightest variability is due to the contribution of the
months of June to September 2020. Then, we see a decrease and a rise that can be attributed
to the holiday season. As in the previous analysis of the number of COVID-19 infected
cases, the decline at the end of the curve is due to the fact that the data for March 2021
are only considered until the middle of the month. The behavior of the second principal
functional component (solid line) is similar to that of the first component (see Figure 5b),
not providing more information on the temporal evolution of the event. Its percentage of
variability explained is much less than for the first principal component.

Table 8 reports the loadings for the first two components and Figure 6b shows the
relative positions of the countries considered with respect to the number of COVID-19
deaths per month and per million inhabitants throughout the pandemic. Considering the
projections on the first main axis, we see that the countries with the smallest number of
deaths (per month and per million) are PRY, URY, and VEN, which are the least affected
countries with respect to the number of deaths, but ECU is the average. Forming a group,
we have BOL, BRA, CHI, and COL, which means that their behavior regarding the number
of deaths is similar, with PER being in the position furthest to the right of the axis, indicating
that it is the country hardest hit (in percentage terms) by the pandemic. Note that the
officially reported number of deaths due to COVID-19 may differ significantly from the
true number of deaths, as has been observed in several countries in the region.
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Table 8. Loading matrix for data on the number of COVID-19 deaths with two components (C1 and
C2) for the indicated country using the FPCA.

FPCA
Country C1 C2

ARG 64.104 266.481
BOL 100.787 −6.533
BRA 91.109 −47.293
CHI 86.967 −101.372
COL 90.490 61.045
ECU 1.621 36.494
PER 243.162 −133.709
PRY −162.396 43.453
URY −252.150 −55.442
VEN −263.694 −63.125

4.3. k-Means Cluster Analysis for Time

To complement the component analysis conducted, we also carried out a k-means
analysis for time with three clusters. First, we show the results regarding the number of
COVID-19 infected cases. Table 9 reports the scores of the countries in each of the clusters
and Table 10 shows the membership of each studied month to each cluster.

Tables 9 and 10 allow us to conclude that, from March to June 2020 (also March
2021), CHI is the country with the most infections, followed by PER and BRA. In addition,
from July to November 2020, ARG is the country with most infections, followed by COL,
BRA, and PER. From December 2020 to February 2021, BRA is the country with the most
infections, followed by COL, ARG, and URY.

The k-means analysis is consistent with the results of the FPCA, since Cluster 1
corresponds to the months in which the two functional components show a growth in the
number of COVID-19 infected cases. Cluster 2 is associated with the months in which
the functional components show a decrease. Cluster 3 is related to the months in which
there is a more pronounced growth than in Cluster 1 (as a consequence of the end of the
year holidays).

Table 9. Center of the listed cluster for the number of COVID-19 infected cases in the indicated country using the
k-means method.

Cluster ARG BOL BRA CHI COL ECU PER PRY URY VEN

1 561.375 696.837 1931.774 3376.349 519.295 760.843 2070.694 469.959 542.704 70.595
2 6018.274 1910.198 4642.314 2849.414 4791.238 1544.550 4108.457 2248.937 283.328 679.155
3 5036.105 2978.432 6610.513 4758.301 6124.419 1765.944 3652.946 3600.873 5002.985 430.467

Table 10. Membership of the listed cluster for the number of COVID-19 infected cases in the indicated month using the
k-means method.

Month 20-03 20-04 20-05 20-06 20-07 20-08 20-09 20-10 20-11 20-12 21-01 21-02 21-03

Cluster 1 1 1 1 2 2 2 2 2 3 3 3 1

Now we show the results regarding the number of COVID-19 deaths. Table 11 reports
the scores of the countries in each of the clusters, whereas Table 12 presents the membership
of each studied month to its cluster. Tables 11 and 12 allow us to conclude that, from March
to May 2020 (also March 2021), and in November and December 2020, BRA is the country
that presented most deaths, followed by ARG, PER, ECU, and COL. From June to August
2020, and in January and February 2021, PER had the largest number of deaths, followed
by CHI, BRA, COL, and BOL. In September and October 2020, ARG presented more deaths,
followed by ECU, BOL, and COL.
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Table 11. Center of the listed cluster for the number of COVID-19 deaths in the indicated country using the k-means method.

Cluster ARG BOL BRA CHI COL ECU PER PRY URY VEN

1 247.169 158.400 90.571 76.322 114.499 173.270 85.269 75.569 2.016 7.246
2 52.277 14.108 62.800 35.649 45.349 47.384 48.724 25.119 10.317 2.010
3 74.524 123.325 143.075 148.556 138.657 56.396 199.571 34.600 25.852 4.841

Table 12. Membership of the listed cluster for the number of COVID-19 deaths in the indicated month using the k-means
method.

Month 20-03 20-04 20-05 20-06 20-07 20-08 20-09 20-10 20-11 20-12 21-01 21-02 21-03

Cluster 2 2 2 3 3 3 1 1 2 2 3 3 2

The three clusters detected by the k-means method correspond to the months in
which the functional components show growth in the number of deaths, a more attenuated
growth, and a decrease. Thus, Cluster 2 corresponds to the months in which the main
functional components show a marked growth in the number of deaths. Cluster 3 is related
to the months in which the functional components indicate a less accelerated growth in the
number of deaths compared to Cluster 2. Note that Cluster 1 is associated with the months
in which there is a decrease in the number of deaths due to COVID-19.

5. Conclusions

The behavior of the number of infected cases with COVID-19, and the number of
deaths due to this disease, can vary in the countries for different reasons: (i) political and
economic decisions; (ii) health infrastructure; (iii) the discipline of the people; (iv) the envi-
ronment; and (v) the spread rates of the different strains of the virus, among other factors.

Principal component analyses based on recent and modern methods were carried
out to study the relationship among the aforementioned variables in ten South American
countries. The countries considered were: Argentina, Bolivia, Brazil, Chile, Colombia,
Ecuador, Peru, Paraguay, Uruguay, and Venezuela. A k-means analysis was conducted to
compare our principal component analyses, which resulted in general consistent.

By using a principal component analysis with varimax rotation and a disjoint compo-
nent analysis, we report the following results: with two components, and considering the
number of COVID-19 infected cases, there are two groups of countries, with Argentina,
Colombia, Ecuador, and Venezuela in one group, while Bolivia, Brazil, Chile, Peru, and
Uruguay are in another group. When increasing the number of components to three,
Paraguay and Uruguay moved away from the other countries and formed a third group.

When considering the number of COVID-19 deaths and two components, we estab-
lished two groups formed by Argentina, Colombia, Paraguay, Uruguay, and Venezuela in
one group, while Bolivia, Brazil, Chile, Ecuador, and Peru were in another group. However,
with three components, Bolivia and Ecuador moved away from the other countries and
formed a third group.

In the case of using functional components, we conclude that both components showed
a general evolution of the number of COVID-19 infected cases reported per month through-
out the pandemic, in all the countries considered. The largest values were detected in
the months of July, August and September 2020 on the one hand, and in the months of
January and February 2021 on the other hand. Regarding the relative positions of the
countries, Ecuador, Uruguay, and Venezuela had very similar behavior, and Brazil, Chile,
and Peru also behaved similarly to each other. Another group was made up of Argentina
and Colombia, while Bolivia and Paraguay were far from the rest of the countries and
between them.

Considering the number of deaths using functional components, there are peaks in
the months of September 2020 on the one hand, and January and February 2021 on the
other hand, which is similar to what happened with the number of COVID-19 infected
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cases. The countries with the smallest number of deaths were Paraguay, Uruguay, and
Venezuela, whereas a second group was formed by Bolivia, Brazil, and Chile, with their
behavior regarding the number of deaths being similar and greater than the average. In the
case of Peru, this country was the most affected by the pandemic, while Ecuador was
within the average; Argentina was a little more affected than Ecuador, but less than Chile.
It should be borne in mind that the officially reported number of deaths due to COVID-19
may differ significantly from the number of true deaths, as has been observed in several
South American countries.

Data related to COVID-19 can change over time. Therefore, the conclusions to be
obtained from them, after statistical analyses, are sensitive to these changes. As men-
tioned, the data were obtained from the repository for the 2019 Novel Coronavirus Visual
Dashboard operated by the Johns Hopkins University Center for Systems Science and
Engineering (JHU CSSE) [30], which keeps the data updated, particularly the number of
COVID-19 infected cases and the number of deaths due to this disease. These data were
also used in [31]. Note that the number of confirmed cases is less than the number of true
cases because not all people are tested with PCR. This means that the number of confirmed
cases depends on how many PCR tests a country applies.

When looking at Figure 3, we can see that some countries, such as Bolivia, Brazil,
Chile, and Peru, reacted late in controlling the pandemic because they were the countries to
reach a first peak early with respect to the number of COVID-19 infected cases and deaths.
Figure 3 also shows that countries such as Uruguay, Paraguay, and Venezuela had better
control of the pandemic since the peaks of infected cases and deaths due to COVID-19
were reached some time after the aforementioned countries.

Despite the fact that some countries already knew that they had COVID-19 infected
cases in their territory since the beginning of February 2020, it was in mid-March 2020
when the governments made the first decisions to control the spread of the virus. With full
knowledge of what was happening in Asia and Europe, some South American countries
minimized the impact that COVID-19 would have on the economy [2,3] and on people’s
health. Other countries were a little more cautious and took strong measures from mid-
March 2020, such as closing borders and confining citizens. However, it must also be said
that, regardless of the policies taken by the governments [4], the climate, the limitations
of the health systems (infrastructure, personnel), the behavior of citizens, among other
factors, also affected the variables of this study. By classifying countries into groups, we
can comparatively study the damage caused by the COVID-19 pandemic, analyzing peaks
and waves.

We consider that a better interpretation and classification of the countries is obtained
using three principal components, leading to the following conclusions:

(i) For the number of COVID-19 infected cases, the components C1, C2, and C3 can
be interpreted as: C1 grouped those countries that had similar behavior since December
2020; C2 grouped those countries with similar behavior throughout the entire period of
analysis; and C3 grouped those countries that had few infected cases at the beginning of
the pandemic and reached a peak after the December 2020 holidays.

(ii) For the number of COVID-19 deaths, the components C1, C2, and C3 can be
interpreted as: C1 grouped those countries with the smallest number of deaths, at the
beginning and at the end of the study period; C2 grouped those countries with similar
behavior in both peaks; and C3 grouped the countries that reached their first peak in
September 2020 and reached a second peak after the December 2020 holidays.

For further research, this study can be replicated for other regions of the planet such
as the USA, Europe, and Asia. A study can also be conducted to implement alternative
criteria for selecting the correct number of components [28,29].
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