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Background: In the current literature, there are ongoing debates on the toxicity of graphene 
oxide (GO) that demonstrate contradictory findings regarding its toxicity profile. As 
a potential drug carrier, these findings are very concerning due to the safety concerns in 
humans, as well as the dramatic rise of GO being excreted into the environment. Therefore, 
there is an imperative need to mitigate the potential toxicity of GO to allow for a safer 
application in the future.
Purpose: The present study aims to address this issue by functionalizing GO with Pluronic 
F127 (PF) as a means to mitigate toxicity and resolve the biocompatibility of GO. Although 
results from previous studies generally indicated that Pluronic functionalized GO exhibits 
relatively low toxicity to living organisms, reports that emphasize on its toxicity, particularly 
during embryonic developmental stage, are still scarce.
Methods: In the present study, two different sizes of native GO samples, GO and NanoGO, 
as well as PF-functionalized GO, GO-PF and NanoGO-PF, were prepared and characterized 
using DLS, UV-Vis, Raman spectroscopy, FTIR, and FESEM analyses. Toxicological assess-
ment of all GO samples (0–100 µg/mL) on zebrafish embryonic developmental stages 
(survival, hatching and heart rates, and morphological changes) was recorded daily for up 
to 96 hours post-fertilization (hpf).
Results: The toxicity effects of each GO sample were observed to be higher at increasing 
concentrations and upon prolonged exposure. NanoGO demonstrated lower toxicity effects 
compared to GO. GO-PF and NanoGO-PF were also found to have lower toxicity effects 
compared to native GO samples. GO-PF showed the lowest toxicity response on zebrafish 
embryo.
Conclusion: These findings highlight that toxicity is dependent on the concentration, size, 
and exposure period of GO. Functionalization of GO with PF through surface coating could 
potentially mitigate the toxicity effects of GO in embryonic developmental stages, but further 
investigation is warranted for broader future applications.
Keywords: graphene oxide, pluronic, nanomaterial, toxicity, embryogenesis

Introduction
Nanotechnology has paved the way for the creation of new tools which could solve 
many longstanding global issues currently being faced by mankind. In recent years, 
new discoveries and advances in the field of nanotechnology has spurred renewed 
interests of its potential applications in various disciplines such as engineering, 
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biotechnology, as well as biomedicine. This has only been 
possible in recent decades which saw many notable 
ground-breaking discoveries being made that ultimately 
sparked the rapid expansion of research in this relatively 
new field of science. Today, nanotechnology has become 
one of the most promising research areas with numerous 
novel discoveries in journal publications and its myriad of 
exciting applications. At its core, the field of nanotechnol-
ogy revolves around nanomaterials or nanoparticles and at 
the forefront of this new age of nanomaterial research are 
graphene-based nanomaterials.

Graphene is a carbon-based compound that consists of 
a single or multi-layered sheet of graphitic films that are 
made up of a honeycomb-shaped lattice structure with 
a thickness of approximately 1 nm.1 It has also been 
established to be one of the stable materials and has been 
dubbed the “wonder material” with myriad of applications, 
especially in the field of biomedicine.1 Graphene oxide 
(GO), a derivative compound of graphene, is produced 
by oxidation process which introduces oxygenated func-
tional groups in the graphene structure. This highly oxi-
dized structure imparts hydrophilic properties on the basal 
planes and edges that allow GO to be more stable in water 
suspensions and, hence, more easily exfoliated into mono-
layer sheets.2 The basal planes of GO also possess hydro-
phobic properties due to the presence of free surface π 
electrons which allows π–π interactions to occur for drug 
loading.3 Thus, the amphiphilic properties of GO sheet- 
like molecule help to stabilize hydrophobic molecules 
such as poorly water-soluble drugs without affecting its 
therapeutic efficacy.4 Previous studies on GO highlight 
a possible therapeutic application as an anti-microbial 
agent due to its potential anti-microbial activity against 
gram-negative and gram-positive bacteria.5–7 GO can also 
be conjugated with other compounds that possess pharma-
cological activity as well as a potential candidate for 
a targeted drug delivery system for cancer therapy. 
Previous researches utilized anti-cancer drugs, doxorubicin 
(DOX) and camptothecin (CPT) as a drug model in a GO 
nanocarrier study.8–10

However, with the potential application of GO as 
a drug carrier, the safety concerns of GO have been 
brought up. As recent studies have demonstrated, the toxi-
city profile of GO in a number of in vitro and in vivo 
systems has been elusive. In current literature, there are 
ongoing debates on the toxicity of GO which is also 
reflected in the journal publications that demonstrate 
somewhat contradictory findings regarding its toxicity 

profile. As a potential drug carrier, these findings are 
very concerning due to safety concerns in humans, as 
well as the dramatic rise of GO being inevitably excreted 
into the wastewater and subsequently, the environment. 
Based on previous study, GO has the ability to penetrate 
the plasma membrane and potentially alter the cell mor-
phology and ultimately induce cell apoptosis.11,12 In addi-
tion, in vivo studies also demonstrated chronic toxicity in 
mice exposed to high concentrations of GO, with signs of 
chronic toxicity observed in the lungs and liver of surviv-
ing mice.13,14

Therefore, there is an imperative need to look into 
ways to mitigate the potential toxicity of GO to allow for 
a safer application and more effective disposal of GO in 
the future. Surface coating or surface functionalization 
could be a promising solution to reduce the toxicity of 
GO, as reported by previous studies (Table 1), which 
utilized polyethylene glycol (PEG),15 poly (amido amine) 
(PAMAM),16 and dextran (DEX).17 Reduced toxicity of 
GO conjugated with polymers, such as polyethylene glycol 
(PEG) and dextran (DEX),18 has been reported in A549 
human cells. A previous study by Ma et al19 has reported 
that GO coated with Pluronic (GO-MB/PF127) was highly 
biocompatible towards HL-7702 normal liver cell line, 
with cell viability remaining greater than 90% even at 
concentrations up to 10 µg/mL after 48 hours and 
72 hours of exposure. In addition, an in vitro study con-
ducted using GO dispersed with Pluronic has shown that 
Pluronic could improve GO biocompatibility in fibroblast 
cells, with only 5% of inhibition towards cell proliferation 
at concentrations of up to 50 µg/mL for 72 hours, which 

Table 1 Biocompatibility of Surface Functionalized GO

Surface 
Coating

Findings References

Polyethylene 

glycol (PEG)

GO shows no toxicity towards 

J774A.1 murine macrophage cell 

line at concentrations up to 100 µg/ 
mL at 24 hours of exposure

Xu et al 

201815

Poly (amido 
amine) 

(PAMAM)

GO shows good biocompatibility to 
the SMMC-7721 human 

hepatocarcinoma cells with 93% 

viability at a concentration of 200 
µg/mL upon 24 hours of exposure

Liu et al 
201816

Dextran Highly compatible, no toxicity up to 
450 µg/mL (80% viability) in HeLa 

human cervical carcinoma cells

Kim et al 
201117
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was an improvement of more than 50% in cell viability.20 

This demonstrates that Pluronic significantly modifies the 
biocompatibility of GO by affecting the intracellular inter-
action and penetration of GO. Although results from pre-
vious studies generally indicate that Pluronic 
functionalized GO exhibits relatively low toxicity to living 
organisms, reports that emphasize its toxicity, particularly 
during embryonic developmental stages, are still scarce. 
Embryonic developmental stage is an important phase in 
life and any disruption towards this stage could bring 
various deleterious effects and diseases. Therefore, the 
present study aims to address this issue by evaluating the 
toxicity of Pluronic-functionalized GO on zebrafish 
embryogenesis.

Zebrafish as a model organism has attracted the inter-
est of many researchers due to its unique characteristics, 
which are small size, transparent, and short breeding 
cycle that promote high throughput chemical 
screening.21 In addition, 70% of zebrafish genes have 
been found to be homologous to human genes and it 
also exhibist similar physiology responses, especially dur-
ing the development of chronic diseases.22 Apart from 
that, zebrafish embryos are structurally and functionally 
similar to humans, with a protruding yolk sac that sup-
plies micronutrients and vital biomolecules such as pro-
tein and lipid for a sustained metabolic function and 
growth until the onset of exogenous feeding in zebrafish, 
or placental–fetal exchange in humans.23 Thus, the pre-
sent study investigated the toxicity effects of two different 
sizes of GO and evaluated the functionalization of GO 
with Pluronic as a means to mitigate toxicity and resolve 
the biocompatibility of GO in a zebrafish embryonic 
model.

Materials and Methods
Materials
Graphite powder was purchased from ThermoFisher 
Scientific. Sulphuric acid (PP: 98%, AR), phosphoric acid 
(H3PO4) (PP: 85%, AR), hydrogen peroxide (H2O2) (PP: 
30%, AR), hydrochloric acid (HCl) (PP: 37%, AR), ethyl 
alcohol (PP: 99.8%, AR), diethyl ether, and potassium 
permanganate powder (KMnO4) were obtained from 
R&M chemicals. Triblock copolymers Pluronic® F127 
was purchased from Sigma-Aldrich (St Louis, MO, 
USA). All experiments were conducted using deionized 
water.

Synthesis of Graphene Oxide (GO)
An improved Hummers method24 was used to synthesize 
GO using graphite powder. A 9:1 mixture of concentrated 
H2SO4/H3PO4 (360:40 mL) was added to a mixture con-
taining 3.0 g graphite powder. While stirring, 18 g of 
KMnO4 was added gradually to the above reaction mix-
ture, at the temperature of 40°C. Then, the mixture was 
heated up to 50°C and stirring was continued for 12 hours. 
The reaction mixture was cooled to room temperature for 
2 hours and poured into an ice bath (400 mL) with the 
addition of 3 mL of H2O2. A centrifugation technique 
(Sorvall, USA) at 4000 rpm was used to decant the super-
natant from the mixture above. The suspension was 
washed in succession with 200 mL of distilled water, 
200 mL of HCL, and 200 mL of ethanol to remove any 
impurities. The suspension obtained was vacuum filtered 
using PTFE membrane (50 nm of diameters and 0.45 µm 
pore size) (Sigma-Aldrich, USA) and left to dry overnight 
at room temperature.

Preparation of Graphene Oxide (GO) at 
Different Sizes
Based on a method outlined by Hu et al,25 two different 
samples of native GO with different sizes, GO and 
NanoGO, were prepared accordingly. To prepare micro- 
sized GO, 0.015 g of GO powder was dispersed in 15 mL 
of deionized water by bath sonication (60 W, 40 kHz) 
(Skymen, China) for 5 minutes. Next, GO dispersion was 
left to stir overnight (Heidolph MR3001K, Germany) to 
obtain a more uniform and well dispersed solution. To 
prepare nano-sized GO (NanoGO), 0.015 g of GO powder 
was dispersed in 15 mL of deionized water and was sub-
jected to bath sonication (60 W, 40 kHz) (Skymen, China) 
for 24 hours to produce nano-sized GO particles.

Preparation of Pluronic-Functionalized 
Graphene Oxide at Different Sizes
Two different samples of Pluronic F127 (PF)-functionalized 
GO with different sizes, GO-PF and NanoGO-PF, were also 
prepared according to Hu et al.25 Then, 0.4 g of Pluronic 
powder was added gradually into the GO dispersion and 
stirred for 24 hours to produce GO-PF dispersion. To prepare 
NanoGO-PF, the GO-Pluronic mixture was sonicated for 
24 hours to produce NanoGO-PF. Lastly, any excess 
Pluronic (unbound Pluronic) was removed using dialysis 
(Spectra/Por® 7 Dialysis Membrane, MWCO: 12–14 kDa, 
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CA, USA) against 2 L of water over 2 days, with water 
replacement every other day.

Physicochemical Characterization
The Raman spectroscopic analysis of GO and NanoGO 
samples was conducted using a “Wissenschaftliche 
Instrumente und Technologie” (WITec) Raman spectro-
meter, Alpha 300R (WITec GmbH, Ulm, Germany). The 
Raman frequency was acquired with a laser excitation 
wavelength of 532 nm and an integration time of 
5.03645 (s). The laser power on the sample was kept low 
to avoid heating effects. The surface functional groups of 
the GO, NanoGO, GO-PF, and NanoGO-PF were investi-
gated using Fourier transform infrared spectroscopy 
(FTIR-attenuated total reflection mode) technique using 
the Thermo Nicolet Model, Nicolet 6700 (Thermo 
Scientific, Waltham, MA, USA). No sample preparation 
was needed for the ATR method. The sample was placed 
on the stage, enough to cover the diamond area. Each disc 
was scanned at a resolution of 4 cm−1 over a frequency 
region of 400–4,000 cm−1. Each spectrum represents an 
average of 32 scans. The X-ray diffraction (XRD) patterns 
were obtained at 30 kV and 30 mA, with a scanning rate of 
2°/min and 2 ϴ angles ranging from 2–60° with an XRD- 
600 Diffractometer (Shimadzu, Tokyo, Japan). The surface 
morphology and elemental analysis of all GO, NanoGO, 
GO-PF, and NanoGO-PF were observed using a field- 
emission scanning electron microscope (FESEM) (FEI, 
USA) equipped with an EDX spectrometer by placing 5 
µL of the samples on an aluminium stub and then drying 
overnight at room temperature. High resolution TEM 
(HRTEM) imaging of GO and NanoGO was examined 
under a Hitachi H-7100 TEM equipped with 
a thermionic tungsten source operating at 200 kV. 
Samples were diluted with acetone and allowing the 
diluted dispersions to dry at ambient temperature over-
night on 200 mesh carbon-coated copper TEM grids.

The electronic structures of GO, NanoGO, and 
NanoGO-PF were assessed by a UV-Vis spectrophotometer 
(Jenway 7315 Spectrophotometer, USA). Absorption spec-
tra were registered in the range of 200–800 nm. The particle 
hydrodynamic diameter, size distribution, and zeta potential 
(surface charge) of GO, NanoGO, GO-PF, and NanoGO-PF 
were assessed by using a Malvern Zetasizer Nano ZS 
instrument (Malvern Instruments, Malvern, UK) equipped 
with a 633 nm He-Ne laser operating at an angle of 173°. 
Disposable cuvettes DTS1070 (folded capillary zeta cells) 
were used for experiments with a sample volume of 1 mL. 

All measurements were carried out using water as a solvent 
using a refractive index (n=1.330), dielectric constant=78.5, 
and viscosity at 25°C=0.8872 cP. Three independent mea-
surements were averaged, performed at controlled tempera-
ture (25°C), with an automatic attenuator for each sample.

Toxicity Assessment on Zebrafish 
Embryos
The Danio Assay Kit for toxicity assessment was purchased 
from the Danio Assay Laboratories (Danio Assay 
Laboratories Sdn. Bhd, UPM, Malaysia), which was 
equipped with live zebrafish embryos, 96 well plates, 
500 mL of Danio-embryo media containing 0.1% DMSO, 
and manual instruction. The wild-type Zebrafish (AB 
strain) was maintained by the Danio Assay Laboratories 
according to standard in a recirculation system, and under 
the permission of the Institutional Animal Care and Use 
Committee (IACUC), Universiti Putra Malaysia (UPM/ 
IACUC/AUP No. R024/2014). Any dead/coagulated 
embryos that appeared milky, white, and opaque were sepa-
rated from the healthy embryos and discarded. Next, the old 
medium in the petri dish containing the embryos was 
removed and replaced with fresh embryo media that was 
provided with the Danio Assay Kit. The embryos were then 
carefully transferred into a 96-well plate with one embryo 
per well. The embryos in the plate were incubated overnight 
at 28±2°C with a 10-hour light/14-hour dark cycle to allow 
the embryos to acclimatize to the environmental/laboratory 
conditions. Toxicity assay was performed for all four GO 
dispersions. At 24 hours post-fertilization (hpf), each 
embryo was treated with different concentrations of each 
GO dispersion (0–100 µg/mL) and deionized water as con-
trol (n=3, with eight embryos per each replicate).26 The 
embryonic development was assessed daily for survival 
rate, heart rate, hatching rate,and malformations during 
each observation (24 hpf to 96 hpf). The heartbeat was 
observed clearly under an inverted microscope and 
recorded manually by using a stopwatch for a duration of 
15 seconds. The number of heartbeats counted was multi-
plied by four to obtain the heart rate as beats per minute 
(bpm).27 Furthermore, the hatching rate of zebrafish 
embryos was also observed and recorded as “1” to indicate 
hatched embryo, while for a non-hatching embryo it was 
recorded as “0”. Embryos were observed under an inverted 
microscope to assess the survival rate. Embryos were con-
sidered as dead/coagulated when the embryos appeared 
milky white, opaque with visible cellular degeneration, as 
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well as presence of total or partial unrecognizable struc-
tures. The absence of any sign of heartbeat during 15 sec-
onds of observation was also considered as the embryo 
being dead. Each embryo that was observed as dead or 
coagulated was recorded as “1”, while embryos that sur-
vived were recorded as “0” in the data collection sheet of 
each toxicity assay.

Assessment of morphological development along with 
any underlying abnormalities was observed for each treated 
embryo. Each embryo was observed at 24 hours interval 
(24 hpf to 96 hpf). The embryos were examined by using 
a TS100 inverted microscope at 40X magnification (Nikon, 
Japan). Several parameters of morphological development, 
such as the presence of body curvature or scoliosis, edema 
formation, non-detachment of tail, and lack of somite for-
mation were observed to assess any abnormalities in the 
treated embryos. An image of each embryo was captured 
using a DinoLite microscope camera attached to an inverted 
microscope. The DinoLite microscope camera was operated 
through a DinoCapture 2.0 software interface that was 
installed on a laptop (Dino-Lite, USA). All morphological 
observation data was recorded as “1” to indicate malforma-
tion in the data collection sheet while a healthy embryo 
without any signs of malformation was recorded as “0”. 
This was recorded for each developmental parameter pre-
viously mentioned above.

Statistical Analyses
Statistical analysis was performed using SPSS 16.0 (SPSS 
Inc., Chicago, IL, USA). Particle size, size distribution, 
and zeta potential data were analyzed by one-way ANOVA 
(Analysis of Variance) with post hoc Tukey’s test applied 
for paired comparison of means. One-way ANOVA was 
also used to determine the significance of toxicity effects 
at different concentrations of each GO dispersion exposure 
as compared to the respective control group. After 
ANOVA was performed, Tukey and Dunnet post hoc test 
was used to compare between exposure groups with con-
trol. Data are presented as the mean±standard deviation 
and the data were significant when the P-value was ≤0.05.

Results and Discussion
Raman Spectroscopy
Raman spectroscopy is a non-destructive technique that has 
been widely employed for the characterization of carbon- 
based structures such as GO nanoparticles. This is due to the 
fact that conjugated and double carbon–carbon bonds 

present in GO structures lead to high Raman intensities. 
The Raman spectrum provides useful information on 
defects, carbon sp2 vibrations, and the stacking order. The 
G and D bands are attributed to the first-order scattering 
from the E2g photon of sp2 carbon bonding and structural 
defects (disorder-induced modes), respectively.28 Pristine 
graphite consists of a single layer of sp2 hybridized carbon 
atoms arranged in a honeycomb lattice structure. On the 
other hand, GO is a highly oxidized graphene consisting of 
oxygenated functional groups such as hydroxyl, epoxy, car-
bonyl, and carboxyl groups that contribute to the formation 
of sp3 domains clustered throughout the crystal lattice. In the 
Raman spectra of NanoGO (Figure 1), there was a broaden 
graphite lattice (G band) at 1604 cm−1 and a structural 
disorder band caused by the graphite edges (D band) at 
approximately 1365 cm−1. The G-band positions shifts to 
higher frequencies from 1594 cm−1 to 1604 cm−1 after 
oxidation,29 and the D-band shifts from 1354 cm−1 to 
1365 cm−1 in NanoGO compared to GO. This phenomenon 
can be attributed to the changes of the GO lattice structure, 
when GO is exfoliated upon 24 hours of sonication.30 The 
enhancement of ID/IG ratio correlated with the level of 
defects and disorders of GO sheets. However, the ratio of 
ID/IG intensity of GO (0.850) and NanoGO (0.851) does not 
differ significantly.

Fourier Transform Infrared Spectroscopy
As shown in Figure 2A, the FTIR spectra present oxygen 
functionalities groups in where a strong absorption band was 

Figure 1 Raman spectra of GO and NanoGO samples obtained using 532 nm 
diode laser excitation.
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observed at 3,172 cm−1 (O-H stretching vibrations), 1,725 -
cm−1 (C=O stretching vibrations).31 Bands at 1,621 cm−1 

(C=C skeletal vibrations from unoxidized graphitic dia-
monds), 1,155 cm−1 (epoxy C-O stretching), and 1,042 cm−1 

(alkoxy C-O stretching vibrations) were observed in GO.32 

After the sonication of GO, which produced the NanoGO 
derivative, the intensities for the spectra observed at 3,227 -
cm−1 (O-H stretching vibrations), 1,717 cm−1 (C=O stretch-
ing vibrations), 1,621 cm−1 (C=C skeletal vibrations from 
unoxidized graphitic diamonds), 1,158 cm−1 (epoxy 
C-O stretching), and 1,035 cm−1 (C-O stretching vibrations) 
are slightly weak. Thus, the data above confirms that no 
significant change in the functional groups was observed 

between GO and NanoGO. Interestingly, FTIR spectra of 
GO-PF and NanoGO-PF (Figure 2B) share an almost iden-
tical spectrum with Pluronic which supports the assertion that 
successful functionalization of GO with Pluronic has 
occurred. Pluronic was bound to GO and formed a surface 
coating which covered the underlying functional groups that 
were characteristically present in GO samples. As can be 
seen in Figure 2B, a strong absorption peak at 3,450 cm−1 is 
attributed to the O-H bond stretching, which has dramatically 
decreased in GO-PF and NanoGO-PF samples. This is 
coupled with the decrease in the characteristic peak at 1,730 -
cm−1, corresponding to C=O bond vibration, indicative of the 
fact that most of the oxygen-containing functional groups 

Figure 2 FTIR spectra of: (A) GO and NanoGO samples; and (B) GO-PF, NanoGO-PF, and PF.
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was not detected on the GO structure, which implies that 
Pluronic is bound and covering the GO surface.33 

Additionally, two new absorption peaks formed at 2,890 cm−1 

and 2,975 cm−1 that are characteristics of CH2 and CH3 

functional groups, respectively.34,35 However, the peak for 
CH3 is barely noticeable and dominated by the peak for CH2, 
which has a much higher intensity. This can be explained by 
referring to the basic chemical structure of Pluronic which 
shows the presence of only one CH3 functional group for 
each Pluronic subunit, as can be seen in Figure 2B. The 
presence of these characteristic peaks confirms the functio-
nalization of Pluronic onto GO samples.

XRD Analysis
Graphite shows a characteristic sharp peak at 2ϴ degree of 
26.5° that represents the diffraction of the (0 0 2) crystalline 
plane with the interlayer spacing of about 3.4 Å (Figure 3). 
This characteristic graphite peak disappeared in the XRD 
spectrum of GO, and a new GO characteristic peak appeared 
at about 2ϴ degree of 9.81°, with the interlayer spacing of 
9.01 Å. The increase in the interlayer spacing is probably 
due to the high degree of exfoliation36 and intercalation of 
water molecules and oxygenated functional groups, such as 
carboxylic acid, hydroxyl groups, and epoxides between the 
hydrophilic GO layers.37 A similar phenomenon was also 
observed for NanoGO, with the presence of a new charac-
teristic peak at 2ϴ degree of 9.31°, and a broadened inter-
layer spacing of 9.49 Å. The appearance of a broad strong 
characteristic peak in both the GO and NanoGO samples at 
9.81° and 9.31°, respectively, indicates the successful for-
mation of well exfoliated GO samples. The XRD spectra of 
both GO-PF and NanoGO-PF exhibited two sharp 

characteristic peaks at 2ϴ degree of 23.33° and 19.19°, 
which correspond to the characteristic peaks of PF, thus 
confirming the functionalization of GO samples with PF 
through surface coating.

Field Emission Scanning Electron 
Microscopy (FESEM), EDX Analysis, and 
Transmission Electron Microscopy (TEM)
Field-emission scanning electron microscopy (FESEM) 
(FEI, USA) was employed to further elucidate the surface 
morphology and structure of the different GO aqueous dis-
persion samples. It was revealed in Figure 4A and B that the 
surface morphology of GO appeared as a wrinkled, thin film 
which is consistent with the previously reported morphol-
ogy of GO as a large sheet with a rippled, silk-like surface.37 

Figure 4C and D, respectively, show the FESEM and TEM 
micrographs of NanoGO which is revealed to have a more 
porous topology resembling a loose sponge-like structure 
with perforations. This could be explained by the mechan-
ical process of reducing the lateral dimension of GO sheets 
to nano-size GO particles through sonication, which causes 
the formation of smaller size GO nanosheets. This is pos-
tulated to cause the GO nanosheets to be more densely 
interlinked through overlapping and agglomeration 
between nanosheets, and subsequently forming a porous 
network.38 Next, Figure 3D and E shows the GO-PF and 
NanoGO-PF, respectively. There were noticeable differ-
ences observed between these samples with GO, suggesting 
that Pluronic was successfully functionalized to the surface 
of GO-PF and NanoGO-PF. GO-PF appears to have a more 
wrinkled surface morphology, indicating alterations of the 
GO structure through Pluronic functionalization. Similarly, 

Figure 3 XRD patterns of pristine graphite, GO, GO-PF, NanoGO, and NanoGO-PF, along with PF as control measured at 30 kV and 30 mA, with a scanning rate of 2°/min 
and 2ϴ angles ranging from 2–60°.
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the surface morphology of NanoGO-PF appears to have 
a less distinct porous structure as compared to NanoGO 
seen in Figure 4E, which is most likely to indicate the 
presence of Pluronic that is bound to the NanoGO surface, 
covering its sponge-like pores and forming a denser struc-
ture. In addition to that, GO-PF and NanoGO-PF show 
round micellar structures of Pluronic (Figure 4F).

Figure 5 shows the energy-dispersive X-ray (EDX) 
spectra of graphite, native GO samples (GO and 
NanoGO), functionalized GO samples (GO-PF and 
NanoGO-PF), and Pluronic F127. As shown in Table 2, 
the carbon, C element is present in a high percentage in 
pristine graphite (86.68%). The composition of oxygen 
increased significantly from 7.12% in pristine graphite to 
43.63% and 32.92%, respectively, in GO and NanoGO, 
indicating the successful addition of oxygenated functional 
groups in GO and NanoGO during the process of 

synthesis. There were, however, amounts of silicon, Si 
(1.41% in GO), sulphur, S (4.36% in GO and 12.16% in 
NanoGO), and chloride (0.58% in GO and 2.69% in 
NanoGO), originating from the synthesis process and 
impurities present in the pristine graphite. A loss of oxy-
gen-containing group during sonication is also observed in 
a study by Nam et al,39 that utilized the zeta potential of 
GO suspension before and after sonochemical approach. 
This is in agreement with the present study, which shows 
an increase in the zeta potential of NanoGO to −47.408 
when compared to GO (−53.042) (Figure 7C), that could 
be attributed by the lesser presence of an oxygen- 
containing group following 24 hours of sonication. Upon 
functionalization of Pluronic F127, the oxygen containing 
group in NanoGO-PF increases, together with the 
C composition, as Pluronic itself is composed of C and 
oxygen (O) elements. The impurities present in GO and 

Figure 4 FESEM and TEM micrographs of: (A) GO; (B) GO (TEM); (C) NanoGO; (D) NanoGO (TEM); (E) GO-PF; and (F) NanoGO-PF dispersed in distilled water at 
1 mg/mL, along with (G) PF as control. Scale bar shown is at 2 µm for FESEM micrographs and 200 nm for TEM micrographs.
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NanoGO were completely removed when both samples 
were functionalized through surface coating with PF.

Ultraviolet-Visible (UV-Vis) 
Spectrophotometer
The characteristic feature of UV-Vis spectroscopy for all 
samples displays a strong absorption peak of GO at 228 
nm corresponding to the π→π* transition of C=C ring 
bonds and another shoulder at 300 nm corresponds to 
the n→π* transition of the C=O bonds (Figure 6).25,40,41 

A UV-visible spectrum shows an upward shift and 
higher absorbance in the NanoGO than other GO sam-
ples. This could be attributed to the exfoliation of the 
GO sheets following 24 hours of sonication, which 
creates more particles that are able to absorb more 
light.30 The optical absorption peak at 228 nm, originat-
ing from the π-plasmon of carbon,42,43 remained 
unchanged in both GO and NanoGO. The UV-Vis spec-
trum for NanoGO-PF exhibited similar characteristics 
peak of GO and NanoGO.

Figure 5 Energy-dispersive X-ray (EDX) spectra of (A) pristine graphite; (B) GO; (C) GO-PF; and (D) NanoGO; (E) NanoGO-PF, along with (F) PF as control.

Table 2 Elemental Analysis of All GO Samples, Pristine Graphite, and PF

Samples C O F Mg Al Si S K Cl Fe

Graphite 86.68 7.12 2.44 0.14 0.64 1.30 0.33 0.15 0.31 0.90
GO 50.19 43.63 1.41 4.36 0.58

GO-PF 59.43 40.57
NanoGO 52.24 32.92 12.16 2.69

NanoGO-PF 59.36 40.64

PF 53.80 46.12
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Size, Size Distribution, and Zeta Potential 
Assessment
The preparation process of NanoGO was done in one step 
where the size of large GO sheets was reduced by sonica-
tion. The starting material, GO solution was made of large 
size exhibits HD of ~ 768.4 nm, PDI of 0.47, and a zeta 

potential of −46.41 mV (Figure 7). After the intense soni-
cation, the HD size of larger GO sheets was reduced to an 
average size of 86.14 nm (Figure 7A). In addition, the 
NanoGO produced displays a negative zeta potential of 
−60.23 mV (Figure 7C). The NanoGO was well dispersed 
in deionized water and was very stable, showing no sign of 
aggregation and precipitation. The addition of non-ionic 
Pluronic onto NanoGO led to a significant increase of HD 
(~ 221.82 nm) and of the zeta potential (−10.52 mV). 
Coating of Pluronic masked the negative surfaces charges 
of the NanoGO which was observed by the increased zeta 
potential.44 The addition of PF onto the large sheet of GO 
did not significantly increase the size of GO (Figure 7A), 
albeit an improved size distribution (Figure 7B) and 
increased zeta potential of GO-PF (Figure 7C). GO and 
NanoGO show a significant improvement in size distribu-
tion upon functionalization with Pluronic, which 
indicates good colloidal stability45 and uniform dispersion. 
The hydrophobic part of Pluronic, PPO segment binds 
interacts with the hydrophobic part of the graphene oxide 

Figure 6 UV-Vis absorbance spectra of GO, NanoGO, GO-PF, and NanoGO-PF 
samples dispersed in distilled water at 1 mg/mL at 200–800 nm wavelengths.

Figure 7 (A) Particle size, (B) size distribution, and (C) zeta potential of GO, GO-PF, NanoGO, and NanoGO-PF samples as measured by DLS. Data represents mean±SD 
(n>3). * Denotes significant difference compared to GO and # denotes significant difference compared to NanoGO, with P≤0.05.
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sheet, while the hydrophilic segment that consists of PEO 
extends into the aqueous environment, providing an 
improved stability to the GO and NanoGO structure.46,47

Toxicity Assessment on Zebrafish 
Embryos
Survival Rate
One of the major hurdles in fully integrating GO application 
in industries, especially biomedicine, is the potential bio-
compatibility issues that have been reported in literature. 
There were many reports that suggest GO having significant 
cytotoxicity in both in vitro and in vivo studies involving 
various biological models such mammalian cells and ani-
mal models. However, functionalization of GO through 
surface coating has shown positive correlations between 
GO surface functionalization and reduced toxicity effect/ 
improved toxicity profile. One of the many potential surface 
coatings that were studied was dextran (DEX), a type of 
glucose polymer, bovine serum albumin (BSA), and poly-
ethylene glycol (PEG). A research group has reported that 
GO coated with DEX (GO-DEX) was highly biocompatible 
towards HeLa cell line, with cell viability remaining at 
80%, even at concentrations of up to 450 µg/mL.17 In 
addition, in vitro studies conducted using BSA as 
a surface coating on GO, have shown that it could improve 
GO biocompatibility, with only a slight inhibition towards 
cell proliferation up to 50 µg/mL. This was attributed to 
protein adsorption to GO, which weakened GO interaction 
towards the cells.48,49 Besides that, another in vitro study 
also demonstrated that GO-PEG conjugate was highly bio-
compatible towards A549 cells, with no cytotoxicity 
response observed at concentrations of up to 100 µg/mL 
after a 48 hour incubation period.50 Pluronic is of particular 
interest due to the fact that PEG, also known as polyethy-
lene oxide (PEO), is one of the core components of the 
triblock copolymer. Thus, the fundamental properties of 
Pluronic as a surfactant and its ability to form 
micelles around particles could potentially prove useful 
for surface coating/functionalization in mitigating the toxi-
city effects of GO.

Pluronic (PF), also known as poloxamers, are non- 
ionic triblock copolymers composed of a central hydro-
phobic chain of polypropylene oxide (PPO) flanked by two 
hydrophilic chains of polyethylene oxide (PEO). Due to its 
amphiphilic structures, the polymers have surfactant prop-
erties that make it useful in industrial applications. Among 
other things, it can be used to increase the water solubility 

of hydrophobic, oily substances or otherwise increase the 
miscibility of two substances with different hydrophobic 
properties. For this same reason, these polymers are com-
monly used in industrial applications, cosmetics, and phar-
maceuticals. Pluronic has also been evaluated for various 
drug delivery applications, such as the delivery of hydro-
phobic compound, curcumin,51 and was even shown to 
sensitize drug-resistant cancers to chemotherapy.52,53 In 
the present study, PF was non-covalently functionalized 
with GO, which involved a simple and efficient synthesis 
process.

Figure 8 shows the survival rate of zebrafish embryos 
treated with the test samples, with GO exhibiting the high-
est mortality rate. Starting with the GO-treated group, as 
shown in Figure 8A, the embryonic survival rate was at 
100% among embryos in the control (CTRL) group, as 
well as at lower concentrations of GO from 1–5 µg/mL 
when observed up to 96 hpf. Although there was a slight 
decrease in survival rate for embryos treated with 10 and 
15 µg/mL of GO, it was not significant when compared to 
control. However, starting from 30–60 µg/mL of GO, 
a significant decrease in the survival rate was seen at 48 
hours, and the embryos have shown a continuous decline 
in the survival rate at the end of the exposure period (96 
hpf). At the highest treatment concentrations of GO; 90 
and 100 µg/mL, the survival rate of the GO-treated 
embryos declined drastically after 24 hpf, to 0% upon 
exposure period of 48 hpf. This finding elucidates that 
GO toxicity is dependent on the dosage and exposure 
period.26,54,55 Based on Figure 8B, GO-PF exhibited the 
most promising results, demonstrating no decline in the 
survival rate at all concentrations (1–100 µg/mL) up to 96 
hpf, albeit a slight decline in embryonic survival rate to 
95.83% in 90–100 µg/mL of treatment groups at 72 hpf 
and a further noticeable decline to 87.5% at 96 hpf. 
However, it should be noted that this was not significant 
when compared to control.

As for the NanoGO-treated toxicity assay, similar to the 
toxicity profile observed in the GO-treated toxicity assay, the 
survival rate of embryos was also affected by the dosage and 
exposure period (Figure 8C). In NanoGO-treated embryos, 
lower concentrations of up to 15 µg/mL showed no signifi-
cant decrease in survival rate, while at higher concentrations 
starting at 30 µg/mL, a significant decrease in survival rate 
was observed and experienced a further decline after pro-
longed exposure at 96 hpf. Interestingly, the embryonic mor-
tality at higher concentrations of NanoGO (30–100 µg/mL) 
was not as drastic compared to GO. Although the survival 
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rate at 90–100 µg/mL was comparable to GO, with a 0% 
survival rate at 48–96 hpf, the survival rate at 30–60 µg/mL 
improved significantly in NanoGO treated embryos, and was 
found to only experience a drastic decline at 96 hpf when 
compared to control, which demonstrated a somewhat 
delayed toxicological response in NanoGO-treated embryos. 
NanoGO exhibited a lower toxicity response toward the 
treated embryos compared to GO, which establish a size- 
dependent toxicity response by GO.

This finding is supported by several in vitro and in vivo 
studies that showed nano-sized GO possessed lower toxi-
city compared to micro-sized GO.56,57 Lower toxicity of 
NanoGO could be due to the lesser interaction with 
immune cells, and subsequently interfere with the activa-
tion of NF-Kβ pathway and the production of inflamma-
tory cytokines. Another possibility is because nano-sized 
GO is more likely to be eliminated through the excretory 
pathways. Unlikely, micro-sized GO is larger and it has 

Figure 8 Effects of different treatments on survival of zebrafish (Danio rerio) embryos upon exposure at 24–96 hpf. Embryos of zebrafish were exposed at different 
concentrations of either (A) GO, (B) GO-PF, (C) NanoGO, or (D) NanoGO-PF at concentrations of 0–100 µg/mL. Distilled water was used as control. Data were averaged 
from three independent experiments and are shown as mean±SD. Significant difference compared to control treatment (CTRL) is denoted by “*” (One-way ANOVA, 
P<0.05).
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been reported to be accumulated in different organs, hence 
leading to a more rapid toxicity response.14,58,59 Upon 
exposure of NanoGO to the embryo, it is quickly excreted 
out, causing it to take a longer time to accumulate in the 
embryo and induce toxic effects as elucidated by the 
delayed toxicity profile of NanoGO shown in Figure 8C. 
Large size GO with sharp edges interacts with the cells 
membrane and adhere to the embryonic chorion,60 which 
in turns exacerbate the impacts on survival of the cells at 
the highest exposure dose, while small size GO induced 
significant cytotoxicity via internalization into the cells 
even at the lower concentration exposed.61

There was a significant improvement of the survival 
rate of the treated embryos when exposed to NanoGO-PF 
at similar concentrations (1–100 µg/mL) (Figure 8D). The 
embryonic survival rate was shown to decrease signifi-
cantly at 75% in embryos treated with 100 µg/mL of 
NanoGO-PF upon exposure at 48 hpf, but with no further 
decline at 72 hpf. However, further decline was observed 
when embryos were exposed to the similar concentration 
of NanoGO-PF at 18.75% upon prolonged exposure at 
96 hpf. Embryos treated with other concentrations of 
NanoGO-PF (1–45 µg/mL) did not show any significant 
decline in the survival rate throughout the exposure period 
of 96 hpf, which elucidate the ability of Pluronic to miti-
gate the toxicity of NanoGO in treated embryos. As for the 
survival rate of NanoGO-PF-treated embryos, shown in 
Figure 6D, there was also marked improvement when 
compared against NanoGO. Embryonic survival rate only 
decreased significantly in 100 µg/mL at 48 hpf, while 
other concentrations of 60 µg/mL and 90 µg/mL experi-
enced significant decline at 96 hpf. This again demon-
strates the dose–effect and time–effect relationship of 
NanoGO-PF toxicity, which is evidenced by the toxicity 
profile described above. NanoGO exhibited lower toxicity 
compared to GO, which establishes a size-dependent toxi-
city response by GO.62 However, NanoGO-PF, on the 
other hand, demonstrated a higher toxicity profile com-
pared to GO-PF, as seen in Figure 8B and C, respectively. 
This contradictory finding is postulated to be caused by the 
lower amount of bound/functionalized Pluronic in 
NanoGO-PF in comparison to GO-PF. This could explain 
the decrease in survival rates of treated zebrafish embryos 
only after extended exposure to NanoGO-PF. Some of the 
surface of NanoGO was not properly coated with Pluronic 
surfactant, possibly due to the poor interaction with the 
porous, sponge-like surface morphology of NanoGO 
(Figure 6D), which enables the non-functionalized region 

of the NanoGO surface to interact with zebrafish embryos, 
and subsequently induce toxicity response.

Heart Rate
Heart rate was also one of the toxicological end-points in 
zebrafish development that was evaluated following expo-
sure to GO samples. This was done to assess for any signs 
of cardiac disruption that might indicate potential toxicity 
effects. Transparent embryos during early stages of devel-
opment allow for direct visual inspection of the heart 
morphology, as well as easy assessment of the heart 
rate.63 Normal cardiac rhythm is vital for proper develop-
ment and growth of zebrafish. The normal embryonic heart 
rate of zebrafish is measured at 120–180 beats per minute 
(bpm), which is closer to the normal human heart rate 
compared to conventional animal models such as 
mouse.64,65 Heart rate was expressed as the heartbeat 
measurements of the surviving embryos in different con-
centrations and exposure periods.

There was no significant decrease in the heart rate of 
zebrafish embryos after being treated to GO, as well as 
NanoGO based on the findings exhibited in Figure 9A and 
C. No significant signs of bradycardia (slow heartbeat) or 
tachycardia (fast heartbeat) was observed throughout the 
assessment period of up to 96 hpf for any of the treatment 
concentrations when compared to the respective control 
groups. However, there was a noticeable decrease in heart-
beat in 60 µg/mL of GO, which is an outlier due to the fact 
that only one embryo survived at that concentration.

Contrary to the observations for GO and NanoGO trea-
ted embryos, a significant decrease in heart rate was exhib-
ited in embryos treated with GO-PF at the highest treatment 
concentration, 100 µg/mL at 48 hpf and 72 hpf (Figure 9B). 
Finally, embryos exposed to 60 and 90 µg/mL of NanoGO- 
PF showed a significant decrease in heart rate (P<0.05), as 
seen in Figure 9D only after 96 hpf. The presence of 
Pluronic F127 as dispersant for GO has also shown to 
increase the degree of lactate dehydrogenase (LDH) leakage 
in THP-1 cells exposed to 80 and 100 µg/mL of single layer 
GO (SLGO).66 The increased level of ROS64 and degree of 
LDH leakage in GO samples functionalized with Pluronic 
could potentially contribute to the decreased heart rate 
observed in embryos treated with GO-PF and NanoGO-PF 
samples, which requires further investigation. In another 
study conducted by Ain et al,67 PEG-nGO administered 
intraperitoneally in mice at the concentration of 5 mg/kg 
had significantly increased the concentration of malondial-
dehyde (MDA) in the heart to 330% compared to control 
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mice that received saline solution. This indicates that func-
tionalization of GO with polymer, such as PEG, could 
possibly lead to an increase in the radical oxygen species 
(ROS) when administered, which could be detrimental to the 
vital organs, such as the heart.

Hatching Rate
Another end-point parameter that was observed was hatch-
ing rate. Hatching rate was also expressed as the percen-
tage of hatched embryos after exposure to different 

concentrations of toxicant, as seen in Figure 8. 
Embryonic hatching usually occurs between 48 hpf and 
72 hpf during normal zebrafish development and is seen as 
a critical stage in zebrafish embryogenesis.68,69

Based on the results of the present study, GO and 
NanoGO exposure did not exhibit any significant effect 
on the hatching rate of treated embryos compared to the 
respective control groups, as shown in Figure 8A and C, 
respectively. GO-treated embryos experienced 100% 
hatching rate at almost all treatment concentrations. 

Figure 9 Effects of different treatments on the heart rate of zebrafish (Danio rerio) embryos upon exposure at 24–96 hpf. Embryos of zebrafish were exposed at different 
concentrations of either (A) GO, (B) GO-PF, (C) NanoGO, or (D) NanoGO-PF at concentrations of 0–100 µg/mL. Distilled water was used as control. Data were averaged 
from three independent experiments and are shown as mean±SD. Significant difference compared to control treatment (CTRL) is denoted by “*” (One-way ANOVA, 
P<0.05).
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However, a slight decline in hatching rate to 96% was 
observed for the control group and at 1 and 2 µg/mL, 
while a drop to 88% in hatching rate was observed at 10 
µg/mL. Similarly, embryos exposed to NanoGO at 48 hpf 
also experienced a slight decrease in hatching rate at 2, 5, 
and 10 µg/mL, as well as control group, with only a 92% 
hatching rate while the hatching rate at 1 µg/mL was 
at 88%.

The embryonic hatching rate was also not significantly 
affected by exposure to GO-PF and NanoGO-PF. Figure 10 
and D, respectively, show the hatching rates of GO-PF and 
NanoGO-PF-treated zebrafish embryos which were com-
parable to the embryonic hatching rates during GO and 
NanoGO treatment (Figure 10A and C). Embryonic hatch-
ing rate in GO-PF toxicity assay experienced a decline at 48 
hpf in 1, 5, 45, and 60 µg/mL, as well as in the control group 
that was not significant (P<0.05). NanoGO-PF also demon-
strated a decrease in hatching rate in 5, 15, and 45 µg/mL at 
48 hpf. Interestingly, the decline in embryonic hatching rate 
in 45 µg/mL to 96% was observed up to 72 hpf, indicating 
an incidence of permanent delayed-hatching involving one 
zebrafish embryo, which is not significant (P<0.05) when 
compared to control. The findings obtained in the present 
study are in agreement with a study conducted by Liu et al,26 

which observed no noticeable and significant effect to 
hatching rate of zebrafish when exposed to a similar con-
centration range of GO concentration (0, 1, 5, 10, 50, and 
100 mg/L).

Morphological Assessment
Another important parameter used in zebrafish toxicity 
assay to evaluate the toxicity effects of GO samples was 
morphological assessment. This was performed to assess 
for any abnormalities induced by GO toxicity during zeb-
rafish embryogenesis. Malformations that were assessed in 
the present study include pericardial edema (PE), yolk sac 
edema (YSE), scoliosis (SC), non-detachment of tail, and 
lack of somite formation. The results obtained from the 
toxicity assay showed no significant increase in the inci-
dence of malformations when exposed to different con-
centrations of GO up to 96 hpf. GO toxicity assay showed 
no malformation incidence such as edema and scoliosis. 
Only one embryo incubated in 30 µg/mL of NanoGO 
exhibited incidence of PE at 96 hpf, which is not signifi-
cant when compared to control. GO and NanoGO showed 
no other abnormalities including non-detachment of tail 
and lack of somite formation. It is also worth noting that 
only the occurrence of PE was detected, while YSE 

malformation was not observed in any of the toxicity 
assays that were conducted.

Similarly, the toxicity assay of GO-PF and NanoGO- 
PF samples detected no significant increase in the mal-
formation incidence throughout the exposure period. We 
reported no incidence of non-detachment of the tail as 
well as a lack of somite formations for all treatment 
concentrations up to 96 hpf. However, in GO-PF and 
NanoGO-PF treated toxicity assays, the occurrence of 
morphological abnormalities, especially edema, increased 
slightly compared to GO and NanoGO samples. NanoGO- 
PF showed a higher frequency of malformation occur-
rence, including PE and SC compared to GO-PF. Aside 
from that, as mentioned previously, all incidences of mal-
formations observed were not significant when compared 
to control, indicating that Pluronic functionalization 
through surface coating does not significantly cause mor-
phological defects during critical developmental stages in 
zebrafish embryos. Incidences of malformation that were 
observed such as PE and SC in zebrafish embryonic 
toxicity assay are shown in Figure 11, with the presence 
of PE and SC indicated by an asterisk and black triangular 
icon, respectively. Figure 11 also shows the normal 
embryonic development of zebrafish from 24 to 96 hpf, 
with visible changes in morphology during different 
stages of growth.

Further in vivo administration of Pluronic-functionalized 
GO in other model organisms, such as rats that reflects more 
on the human intrauterine environment is warranted to inves-
tigate the bioavailability and biodistribution profiles of 
Pluronic-functionalized GO in the maternal blood and 
embryos, respectively. A recent study by Cherian et al70 has 
observed the biodistribution of rGO-P in the brain, liver, 
spleen, kidney, bone marrow, and blood of the dams follow-
ing intravenous administration of 10 mg/kg of rGO-P in 
a Wistar rat model, which suggested possible feto–placental 
transmission. The bioavailability of this rGO-P was, how-
ever, only analyzed qualitatively, using Raman spectroscopy.

Conclusion
In the present study, different GO samples were prepared 
and characterized before further use in zebrafish toxicity 
assay to evaluate the dose-, time-, and size-dependent 
toxicity effects on zebrafish embryonic development. 
Aside from that, the potential of GO surface functionaliza-
tion to mitigate toxicological response by utilizing 
Pluronic surfactant as a surface coating was also explored. 
The Pluronic-functionalized GO samples were assessed 
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using zebrafish embryo to compare against native (non- 
functionalized) GO samples. Characterization of the dif-
ferent GO samples that was conducted using DLS, Raman 
spectroscopy, UV-Vis, FTIR, and FESEM analyses has 
successfully identified and validated the structural and 
chemical properties along with the surface morphology 
of all the GO samples with respect to previous findings. 
Based on the toxicity assay performed, it was observed 
that the toxicological response of GO samples exhibited 
a dose- and time-dependent relationship. Size or lateral 

dimension also influenced the toxicity effects of GO sam-
ples as evidenced by the comparatively better toxicity 
profile of NanoGO against GO. Besides effects on 
embryonic mortality, there was no other significant altera-
tion to the hatching rate or morphology of the treated 
zebrafish embryos when compared against respective con-
trol groups. Lastly, this study shows a remarkable 
improvement to the GO toxicity as elucidated by the 
survival rate of GO-PF, as well as NanoGO-PF. GO-PF, 
and NanoGO-PF have, however, induced heart rate 

Figure 10 Hatching rate (%) of zebrafish (Danio rerio) embryos exposed to different treatments of either (A) GO, (B) GO-PF, (C) NanoGO, or (D) NanoGO-PF at 
concentrations of 0–100 µg/mL. Distilled water was used as control. Data were expressed as mean±SD. No significant delay was observed between experimental groups.

submit your manuscript | www.dovepress.com                                                                                                                                                                                                                    

DovePress                                                                                                                                       

International Journal of Nanomedicine 2020:15 8326

Shamsi et al                                                                                                                                                           Dovepress

http://www.dovepress.com
http://www.dovepress.com


induction in zebrafish embryos at higher concentrations, 
which warrants further investigation. The present study 
highlighted the potential of Pluronic F127 to improve the 
biocompatibility and toxicological response of GO, but the 
long-term effect of Pluronic F127 has to be thoroughly 
investigated for future development in the clinical settings.
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