
OPEN

PERSPECTIVE

Using the class 1 integron-integrase gene as a proxy
for anthropogenic pollution

Michael R Gillings1, William H Gaze2, Amy Pruden3, Kornelia Smalla4, James M Tiedje5

and Yong-Guan Zhu6

1Department of Biological Sciences, Genes to Geoscience Research Centre, Macquarie University, Sydney,
New South Wales, Australia; 2European Centre for Environment and Human Health, University of Exeter
Medical School, Royal Cornwall Hospital, Truro, UK; 3Via Department of Civil and Environmental
Engineering, Virginia Tech, Blacksburg, VA, USA; 4Institute for Epidemiology and Pathogen Diagnostics,
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Around all human activity, there are zones of pollution with pesticides, heavy metals,
pharmaceuticals, personal care products and the microorganisms associated with human waste
streams and agriculture. This diversity of pollutants, whose concentration varies spatially and
temporally, is a major challenge for monitoring. Here, we suggest that the relative abundance of the
clinical class 1 integron-integrase gene, intI1, is a good proxy for pollution because: (1) intI1 is
linked to genes conferring resistance to antibiotics, disinfectants and heavy metals; (2) it is found in
a wide variety of pathogenic and nonpathogenic bacteria; (3) its abundance can change rapidly
because its host cells can have rapid generation times and it can move between bacteria by
horizontal gene transfer; and (4) a single DNA sequence variant of intI1 is now found on a wide
diversity of xenogenetic elements, these being complex mosaic DNA elements fixed through the
agency of human selection. Here we review the literature examining the relationship between
anthropogenic impacts and the abundance of intI1, and outline an approach by which intI1 could
serve as a proxy for anthropogenic pollution.
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Introduction

Humans produce and use a diverse array of com-
pounds in domestic, industrial and agricultural
settings. These compounds can contaminate ecosys-
tems, elevating local concentrations of pollutants such
as heavy metals, synthetic organic compounds and
radioactive isotopes. Together with microbiological
contaminants, they create a zone of impact emanating
from human activities. Managing impacts requires
monitoring to assess the efficacy of preventative or
remedial measures, by measuring the quantities and
distribution of individual pollutants. However,
because some 80 000 different compounds are now
traded in the marketplace, testing for all pollutants is
not feasible (Rockstrom et al., 2009). Focussing on just
one class of pollutant is also problematic, because the
composition of pollutants varies both geographically
and temporally. Furthermore, diverse classes of

pollutants, such as antibiotics and endocrine disrupt-
ing compounds, have significant biological effects at
extremely low concentrations (Diamanti-Kandarakis
et al., 2009; Gillings, 2013).

An alternative to direct detection is to use a proxy
that exhibits rapid responses to diverse environ-
mental pressures and could thus be a generic marker
for anthropogenic pollutants. We propose that the
class 1 integron-integrase gene, intI1, could serve as
such a marker, because:

1. it is commonly linked to genes conferring
resistance to antibiotics, disinfectants and heavy
metals (Liebert et al., 1999; Partridge et al., 2001);

2. it has penetrated into diverse pathogenic and
commensal bacteria of humans and their domes-
tic animals (Goldstein et al., 2001; Stokes and
Gillings, 2011);

3. the abundance of intI1 can rapidly change in
response to environmental pressures, because the
class 1 integron resides in diverse bacterial
species that themselves have rapid generation
times, and it is often located on mobile genetic
elements that can readily transfer between bac-
teria; and
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4. the common ‘clinical’ forms of intI1 are xeno-
genetic, that is, recently assembled under selection
pressures imposed by human activities (Gillings
et al., 2008a).

Independent studies have already begun to note
remarkable correlations between intI1 and asso-
ciated genetic elements with various measures of
human impact (Gaze et al., 2011; Pruden et al., 2012;
Jechalke et al., 2013b). Here we review the recent
evolutionary origins of the clinical class 1 integron,
examine a series of case studies using intI1 as an
environmental marker of human pollution, and
suggest methods for using this gene as a proxy for
human impact.

The evolutionary history of the class 1
integron

Integrons are an ancient and common feature of
bacterial genomes, where they usually reside on
chromosomes (Gillings, 2014a). They have three
core features: an integron-integrase gene (intI), a
recombination site (attI) and a promoter (PC). These
features allow capture and expression of exogenous
genes as part of gene cassettes that are recombined
into the attI site using the integrase activity encoded
by intI (Boucher et al., 2007; Cambray et al., 2010)
and subsequently expressed from PC (Collis and
Hall, 1995) (Figure 1). This allows genes to be
acquired and expressed with minimal disturbance
to the existing genome. Integrons sample cassettes
from an extraordinarily diverse pool that encodes
functions of potential adaptive significance. Conse-
quently, they are a hot spot of genomic diversity in a
range of genera (Gillings et al., 2005; Boucher et al.,
2011; Hall, 2012; Wu et al., 2013).

Hundreds of integron classes have been described,
defined on the basis of the relative homology of intI
(Cambray et al., 2010; Boucher et al., 2011). Of these,
the class 1 integrons, so named because they were
first to be discovered, had properties that meant that
they were well equipped to move by lateral DNA

transfer into a wide range of commensal and
pathogenic bacteria, and to accumulate diverse
antibiotic resistance genes once humans tried to
control bacteria with antimicrobial compounds.
These fortuitous properties included: location on
the chromosomes of Betaproteobacteria whose habi-
tats intersect the human food chain; ability to move
between chromosomal locations and between spe-
cies (Gillings et al., 2008a); carriage by 0.002% of
cells in an unaffected soil (Gaze et al., 2011)
compared with as many as 5% of cells in affected
soil, fresh water and biofilms (Gaze et al., 2005;
Hardwick et al., 2008); ability to acquire a wide
range of gene cassettes (Biskri et al., 2005); and
frequent association with qac genes that encode
versatile efflux pumps (Gaze et al., 2005; Gillings
et al., 2009a).

When metagenomic DNA is examined from
environmental sources, diverse genes belonging to
intI1 can be detected. In contrast, all examples of
intI1 recovered from clinical contexts have essen-
tially identical DNA sequences, showing that there
was a single common ancestor for the ‘clinical’ class 1
integron that has spread antibiotic resistance among
Gram-negative pathogens (Gillings et al., 2008b).
Consequently, the class 1 integrons now circulating
freely within human-dominated ecosystems have a
conserved DNA sequence that, in the main, distin-
guishes them from the diverse class 1 integrons
present in the more general environment.

The best explanation for the origin of the clinical
class 1 integron is that a chromosomal class 1
integron from an environmental betaproteobacter-
ium was captured by a transposon of the Tn402
family (Figure 2). This integron carried a gene
cassette encoding resistance to disinfectants (qacE),
and subsequently captured a gene for sulphonamide
resistance (sul1), deleting the terminus of the qacE
cassette (Kholodii et al., 1995; Gillings et al., 2008a;
Gillings, 2014a).

The Tn402 transposon has the unusual property
of targeting the res sites of plasmids (Minakhina
et al., 1999) and, consequently, the Tn402-class 1
integron hybrid was able to transpose into a wide
variety of plasmids (Figure 2) that then enabled
lateral transfer into an equally wide variety of
bacterial species. One of the most successful of
these insertion events associated the Tn402-integron
with a mercury resistance operon (mer) to spawn the
Tn21 element that itself went on to generate a series
of complex derivatives (Liebert et al., 1999;
Partridge et al., 2001). The Tn402-integron has also
subsequently generated extensive internal variation
by deletion of parts of qacE, sul1 and/or the Tn402
transposition machinery (Hall et al., 1994; Brown
et al., 1996; Partridge et al., 2001). Variation in the
cassette array has been generated by the collective
acquisition of over 130 different antibiotic resistance
gene cassettes (Figure 2) (Partridge et al., 2009),
conferring resistance to the majority of antibiotics
used to control Gram-negative pathogens (Mazel,

attIintI attC attC attCPc

Circular gene cassette

Cassette inserted into array 

IntI mediated 
recombination

Figure 1 Integron structure and function. Integrons consist of a
gene for an integron-integrase (intI) that catalyses recombination
between the attC site of circular gene cassettes and the attendant
integron recombination site, attI. This activity results in the
sequential insertion of multiple, different cassettes to form a
tandem cassette array that, in some cases, might contain hundreds
of different genes. Inserted genes are expressed by an integron-
encoded promoter, Pc.
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2006; Cambray et al., 2010; Stokes and Gillings,
2011).

Consequently, the ‘clinical’ intI1 variant is now
found on a range of different mobile elements that
are freely transmissible between diverse commensal
and pathogenic bacteria associated with humans
and domestic animals (Nandi et al., 2004; Bailey
et al., 2010; Djordjevic et al., 2013; Liu et al., 2013).
This ‘clinical’ intI1 is also closely linked to various
genes that confer phenotypes of environmental
significance, such as antibiotic, disinfectant and
heavy metal resistances (Figure 2) (Liebert et al.,
1999; Norman et al., 2009; Gillings et al., 2009b;
Moura et al., 2010; Heuer et al., 2012; Domingues
et al., 2013). Finally, ‘clinical’ intI1 comprises a
single molecular species with essentially identical
DNA sequences, regardless of the diverse genetic
and cellular landscapes they now inhabit (Figure 2).

Antibiotics and antibiotic resistance
genes as pollutants

Between 30% and 90% of ingested antibiotic is
excreted unchanged by both animals and humans
(Sarmah et al., 2006). Antibiotics are only partly
removed by wastewater treatment (Giger et al., 2003;
Watkinson et al., 2007) and, depending on the
antibiotic, can still be found at levels between 10
and 1000 ng l� 1 in secondary effluent (Le-Minh
et al., 2010). Antibiotics can enter soils via animal
manure used for fertilization (Chee-Sanford et al.,

2009), whereas other antibiotics are excreted pre-
ferentially in urine (Subbiah et al., 2012). As much
as 80% of the antibiotics used in aquaculture flow
into the environment (Cabello et al., 2013). Conse-
quently, there is a zone around human activities that
is enriched with antibiotics.

The use of antibiotics has vastly increased the
abundance of ‘clinical’ class 1 integrons, such that
they are now present in up to 80% of enterobacteria
in humans and farm animals (Tenaillon et al., 2010;
Marchant et al., 2012; Liu et al., 2013). Conse-
quently, large numbers of bacteria containing
integrons are released into the environment, with
one estimate suggesting that disposal of sewage
sludge in the United Kingdom adds 1019 integron-
containing bacteria to waste streams each year
(Gaze et al., 2011). Wastewater treatment is not
designed to remove DNAs, and the abundance of
intI1 often increases during the water treatment
process (LaPara et al., 2011; Ma et al., 2011b, 2013;
Chen and Zhang, 2013; Cheng et al., 2013; Du et al.,
2014). This might be a consequence of selection
driven by the antibiotics, disinfectants and heavy
metals that are also inefficiently removed during
water treatment (Baker-Austin et al., 2006; Selin,
2009; Hegstad et al., 2010; Rosewarne et al., 2010).
As a result, any bacteria that carry class 1 integrons
associated with resistance determinants, or that are
able to acquire them by lateral gene transfer, would
increase in abundance during various stages of
water treatment.
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Association of a single DNA sequence variant of intI1 with diverse xenogenetic elements,
each composed of a mosaic of plasmids, transposons and resistance determinants    

Integron 
cassettes

Diverse class 
1 integrons 

Transposons Plasmids Resistance 
genes

Tn402-intI1 hybrid 

acquire 130+ resistance cassettes -- spread to multiple plasmids -- with multiple resistance genes 

Figure 2 The recent evolutionary origin of the clinical class 1 integron and its incorporation into diverse xenogenetic elements. The raw
materials for the assembly of the complex mosaic DNA elements that now carry the clinical intI1 were all present in the environmental
resistome. A single sequence variant from the diverse pool of class 1 integrons in natural environments was captured by a Tn402
transposon, thus forming a Tn402–intI1 hybrid, and giving the integron greater mobility. This hybrid integron, in total, has captured at
least 130 different gene cassettes encoding resistance to diverse antibiotics. At the same time, the Tn402 portion of the hybrid element
targeted the res sites of plasmids, transposing the whole hybrid molecule into a diverse collection of plasmids. This, in turn, promoted
movement of clinical intI1 between different bacterial species by conjugation of those plasmids. Human selection events have also
independently fixed the acquisition of diverse resistance genes onto the collection of plasmids invaded by the hybrid integron. These
independent acquisitions resulted in the accumulation of genes for resistance to metals, antibiotics, disinfectants and other compounds,
along with other genetic elements such as insertion sequences and transposons. As a result, a single molecular species (the clinical intI1
sequence variant) has become associated with an ever expanding and diverse set of plasmids, transposons and resistance genes. These
mosaic elements can be thought of as xenogenetic, in the sense that they owe their current structures and abundance to human activity.
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Resistance genes and DNA vectors are increas-
ingly being recognized as environmental contami-
nants (Pruden et al., 2006; Stalder et al., 2014), and
their abundance in natural environments and wild
animals has been increasing since the first human
use of antibiotics (Knapp et al., 2009; Gillings,
2013). The complex DNA molecules that now bear
class 1 integrons often also carry genes for resistance
to diverse antibiotics, disinfectants and other envir-
onmental contaminants, all embedded in a mosaic
of mobile elements. These individual components
often have a separate phylogenetic origin, each
having been acquired in a separate event, and then
fixed by human selection. Because human activities
have had a direct role in the selection of sequential
gene acquisitions, these complex mosaics of resis-
tance elements can be thought of as xenogenetic.
Such xenogenetic molecules have properties of both
pollutants and invasive species, as they are pollu-
tants that can replicate (Storteboom et al., 2010;
Gillings and Stokes, 2012; Pruden et al., 2012).
Methods to control pollution by antibiotics and their
respective resistance genes have been suggested,
including limiting the use of antibiotics in agricul-
ture, and improving treatment of urban, industrial
and hospital waste water (Pruden et al., 2013;
Berglund et al., 2014).

IntI1 as a potential marker of
anthropogenic pollution

The ‘clinical’ intI1 gene has key advantages as a
generic marker of anthropogenic influence. These
include: universal presence and high abundance in
the commensal bacteria of humans and domestic
animals, a consequently high representation in
waste streams, low abundance in less affected
environments and a uniform and highly conserved
DNA sequence. Based on these properties, a number
of research groups have used quantitative analysis of
intI1 to track human influence (Table 1).

Examining the relationship between pollutants,
antibiotic resistance and class 1 integrons reveals a
number of general trends (Table 1). IntI1 is poorly
removed during water treatment, and its abundance
often increases downstream from water treatment
plants and human habitation. The intI1-carrying
bacteria are abundant in manure, in digestates from
biogas plants and in pesticide biopurification
systems (Dunon et al., 2013; Jechalke et al., 2013a).
Mesocosms designed to test land application of
wastewater solids show that intI1 has a slow decay
rate (Burch et al., 2014). In this regard, intI1-carrying
bacterial populations are similar to other persistent
pollutants, such as metals, antibiotics and
disinfectants.

The co-occurrence of integrons, resistance genes
and pollutants is probably causal, as co-selection of
antibiotic resistance genes and integrons occurs in
environments polluted with heavy metals and

disinfectants (Baker-Austin et al., 2006; Hegstad
et al., 2010; Seiler and Berendonk, 2012). This co-
selection is most likely caused by the physical
location of class 1 integrons on a range of transpo-
sons and plasmids that also carry genes for resis-
tance to antibiotics, heavy metals and disinfectants
(Table 1), and consequently, class 1 integrons can be
selected via simple linkage. Similarly, intI1 abun-
dance has been associated with pesticide pollution,
via the co-occurrence of integrons and genes for
degradative pathways on IncP-1 plasmids (Dealtry
et al., 2014b).

Although the class 1 integron integrase gene does
not directly confer resistance to any particular
pollutant, its linkage to a diverse suite of antibiotic,
metal and disinfectant resistance genes means that it
is an excellent de facto measure of the general level
of resistance determinants. For instance, there is a
strong correlation between the abundance of intI1 in
reclaimed water and the abundance of antibiotic
resistance genes such as sul1 and tetG (Wang et al.,
2014). Similarly, at the scale of whole watersheds,
there is a strong correlation between sul1, which is
commonly linked to intI1, and the upstream capa-
cities of wastewater treatment and animal feeding
operations (Pruden et al., 2012). Because resistance
determinants confer selective advantages on those
bacterial cells that carry them, intI1 abundance
should then reflect the general response of the
bacterial community to selection imposed by
anthropogenic pollution. Consequently, intI1 abun-
dance should be a good measure of general selective
pressure. In contrast, targeting specific resistance
determinants such as tet or sul is not a generic
measure, as abundance of these genes is dependent
on both their presence in a waste source and the
presence of specific antibiotics to which they confer
resistance.

Towards practical application of intI1 as a
marker

Resistance genes and their vectors originate from
environmental sources, where they form part of the
resistome (D’Costa et al., 2006; Wright, 2010). This
is also the case for intI1, which occurs naturally in
environmental samples (Figure 2). The use of
generic intI1 PCR primer pairs (Stokes et al.,
2006) effectively amplifies both clinical and envir-
onmental variants of intI1, potentially contributing
noise to quantification of intI1 shed from human
sources. In environmental samples, intI1 exhibits
considerable sequence diversity (Gillings et al.,
2008b), whereas the clinical intI1 has a uniform,
conserved sequence. For example, the Fungene
database (http://fungene.cme.msu.edu/index.spr)
(Fish et al., 2013) has over 500 sequences with
499% identity to intI1. These are mostly from
clinical isolates, although a few are from environ-
mental strains.
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Table 1 Environmental and laboratory studies examining the relationship between diverse pollutants, antibiotic resistance genes and
class 1 integrons

System Location Sample, method Comments Reference

Hospital effluent France Water treatment, qPCR IntI1 abundance increases because of effluent Stalder et al. (2014)
Medical center effluent France E. coli isolation, PCR IntI1 abundance increases because of effluent Oberle‘X’ et al. (2012)
Sewage treatment USA Aerobic digester, qPCR IntI1 has longest half-life of genes tested Burch et al. (2013)
Sewage treatment China Activated sludge, qPCR IntI1 abundance increases Ma et al. (2013)
Sewage treatment China Isolation, water, qPCR IntI1 abundance increases in effluent Ma et al. (2011a)
Sewage mesocosms USA Sludge, effluent, qPCR Efficiency of intI1 removal dependent on

treatment system
Ma et al. (2011b)

Wastewater treatment China Water, qPCR Efficiency of intI1 removal dependent on
treatment system

Du et al. (2014)

Wastewater treatment China Water, qPCR Efficiency of intI1 removal dependent on
treatment system

Chen and Zhang (2013)

Wastewater treatment China Water, sediment, qPCR intI1 increases in abundance downstream
from city

Zhang et al. (2009)

Wastewater treatment USA Water, sediment, qPCR IntI1 abundance significantly increases in
effluent

LaPara et al. (2011)

Wastewater treatment UK Bacterial isolation, PCR Shows co-selection of intI1 and disinfectant
resistance

Gaze et al. (2005)

Freshwater microcosm USA Bacterial isolation Shows co-selection of antibiotic and metal
resistance

Stepanauskas et al. (2006)

Waste streams UK Sludge, manure, qPCR Shows selection of intI1 by waste antibiotics/
disinfectants

Gaze et al. (2011)

River catchment Cuba Sediment, water, qPCR Ab resistance correlates with degree of
pollution

Graham et al. (2011)

River catchment Pakistan Water, qPCR IntI1 and other gene abundance increases
with human impact

Khan et al. (2013)

River catchment USA Sediment, water, qPCR IntI1 abundance increases with industrial
pollution

McArthur et al. (2011)

Stream catchment Australia Sediment, qPCR IntI1 abundance increases with human
impact

Hardwick et al. (2008)

Freshwater habitats Canada Water, floc, microarray IntI1 cassette abundance increases with
human impact

Drudge et al. (2012)

Estuary, catchment France E. coli isolation, qPCR IntI1 and Ab resistance correlates with
degree of pollution

Laroche et al. (2009)

Estuary USA Sediment, water, qPCR IntI2 abundance increases with human
impact

Uyaguari et al. (2013)

Estuary Canada Sludge, PCR IntI1 and diverse cassettes associated with
industrial waste

Koenig et al. (2009)

Various Worldwide PCR, cloning IntI2 abundance increases with human
impact

Rodrı́guez-Minguela et al. (2009)

Environ. gradient USA Sediment, qPCR IntI1 abundance increases with metal/anti-
biotic pollution

Wright et al. (2008)

Environ. gradient China Sediment, sequencing Integron and plasmid abundance increases
with impact

Chen et al. (2013)

Environ. gradient Argentina Bacterial isolation, PCR Trend for intI1 to increase in abundance with
urbanization

Nardelli et al. (2012)

Environ. gradient Australia Sediment, qPCR IntI1 abundance increases with heavy metal
pollution

Rosewarne et al. (2010)

Environ. gradient Worldwide Soil, sediment, PCR IncP plasmid abundance increases with
pesticide impact

Dealtry et al. (2014a)

Swine production Not stated Soil and water, qPCR IntI1 and other genes increase in abundance Hong et al. (2013)
Slaughterhouse water Portugal Bacterial isolation, PCR IntI1 increased in abundance during

treatment
Moura et al. (2007)

Farm manuring Germany Soil, rhizosphere, qPCR IntI1 and other genes increase in abundance Jechalke et al. (2014)
Farm manuring UK Soil, qPCR IntI1 increased in abundance Byrne-Bailey et al. (2011)
Farm manuring Germany Soil, manure, PCR IntI1 and other genes increase in abundance Binh et al. (2009)
Manure, wastewater China Water, manure, qPCR IntI1 and other genes increase in abundance Cheng et al. (2013)
Manure treatment China Manure, qPCR array Transposons and resistance genes increase in

abundance
Zhu et al. (2013)

Animal microbiota Various E. coli isolation, PCR IntI1 increases in frequency with increased
human contact

Skurnik et al. (2006)

Archived soils Scotland Soil, qPCR Correlation of resistance genes with copper
pollution

Knapp et al. (2011)

Diverse Various Review Shows co-selection of antibiotic and heavy
metal resistance

Baker-Austin et al. (2006)

Diverse Various Review Shows co-selection of antibiotic and heavy
metal resistance

Seiler and Berendonk (2012)

Diverse Various Review Shows co-selection of antibiotic and disin-
fectant resistance

Hegstad et al. (2010)

Abbreviations: Ab, antibiotic; intI2, class 2 integron-integrase gene; qPCR, quantitative PCR.
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Sequences for environmental variants of intI1 are
still in the minority in databases, and the region of
intI1 for which most data are available is that
amplified by primers HS464/HS463a (Gillings
et al., 2008b). Examination of the sequence data
(Supplementary Table S1) reveals a number of
nucleotide positions where the clinical intI1 can
be distinguished from most reported environmental
variants. A primer pair targeting intI1 nucleotide
positions 165–184 and 456–476 (intI1F165 50-CGA
ACGAGTGGCGGAGGGTG-30 and intI1R476 50-TAC
CCGAGAGCTTGGCACCCA-30) is one possibility for
specifically amplifying the clinical version of intI1.
Because these primers target the clinical intI1
sequence, but not the diverse intI1 variants known
to be present in environmental bacteria, they should
allow a more precise quantitative analysis. As more
complete sequences from environmental variants of
intI1 become available, better regions for discrimi-
nation could be identified.

Sample collection and processing

Environmental monitoring of human impact and the
efficacy of remediation could be conducted using
quantitative analysis of intI1 abundance. Careful
consideration should be given to sampling strategies
and data generation. Samples of sediment, soil or
water should be taken in a uniform, reproducible
manner. The likelihood of temporal variation should
be taken into account. For instance, sewage treat-
ment water can vary considerably over a 24-h
period, and composite or flow proportionate sam-
ples should be considered. Ideally, each sampling
time or point should be represented by at least
triplicate samples, to be treated as triplicates in all
subsequent steps such as DNA extraction and
quantitative PCR (qPCR). Each sampling point for
soil or sediment can be laid out in a grid to capture
microvariation. At the minimum, samples should be
identified by date, GPS coordinates and land use.
The GSC (Genomic Standards Consortium) provides
a guide to collection of environmental data under its
MIMARKS environmental packages (Yilmaz et al.,
2011), conveniently implemented by RDP according
to habitat type with prepopulated googlesheets (http://
rdp.cme.msu.edu/wiki/index.php/RDP_MIMARKS_
GoogleSheets). For a detailed description of one
multipurpose soil sampling procedure, see the
BASE website (http://www.bioplatforms.com.au/
special-initiatives/environment/soil-biodiversity/
sample-collection-procedure). Soil can be stored at
4 1C, or snap-frozen immediately upon collection,
and maintained frozen during transport to minimize
changes to microbial populations.

IntI1 monitoring could be used for analysis of
water samples, such as wastewater effluents, feedlot
runoff and affected streams, rivers, lakes and oceans.
Water samples can be collected by bulk grab
techniques, using methods described for coliform

monitoring. Water samples contain a particulate
fraction, and many microbes, including microbes
carrying intI1, attach to particulate matter sus-
pended in the water. Most methods employ filtra-
tion, with 0.22 mm cutoff capturing the majority of
bacteria and other particulates. The filter is then
directly subject to DNA extraction. However, extra-
cellular DNA may also be of interest, and this will
pass through filters under some conditions. Recent
studies have introduced techniques for analysing
extracellular forms of antibiotic resistance genes
(Mao et al., 2013). Further assessment and standar-
dization of filter membrane composition and pore
size employed for analysis of intI1 in water samples
for different purposes (extracellular versus intracel-
lular) would be of interest.

Sufficient sample should be taken for multiple
analyses, and for archival storage. To ensure repre-
sentative subsampling, the cone and quarter method
can be used (Ferrari et al., 2008). The DNA
extraction method employed should be suitable for
diverse cell types and for removal of inhibitors
present in soil, sediment, manure, sludge and other
intractable substrates (Yeates and Gillings, 1998;
Gillings, 2014b). The integrity of extracted DNA
should be assessed using agarose electrophoresis
and the concentration estimated photometrically.
Alternatively, double-stranded DNA could be quan-
tified using fluorometric methods (Singer et al.,
1997).

Concentrations of intI1 can then be determined
using real-time qPCR, correcting by the total bacter-
ial abundance as measured by 16S rRNA gene PCR
performed on the same sample. Ideally, three
independent environmental samples should be
processed in parallel to control for variation intro-
duced during processing. PCR inhibition caused by
co-extracted compounds can be overcome using
bovine serum albumin (Gaze et al., 2011), an
environmental master mix or template dilution.
Primers for amplification of 16S rRNA genes should
be specific for bacteria (Nadkarni et al., 2002).
Primer sets need to be optimized across a range of
concentrations and annealing temperatures. Stan-
dard curves for each target gene need to be
determined, and positive control standards of
known copy number prepared by PCR (Hardwick
et al., 2008; McKinney and Pruden, 2012). The qPCR
results could also be normalized by the total DNA in
a sample, which would generate an idea of the
relative abundance of intI1 in relation to the entire
metagenome. If a housekeeping or other gene is used
to normalize intI1 abundance, it should be estab-
lished that it has a similar amplification efficiency
to that of intI1.

Rapidly advancing molecular technologies will
add new capabilities for understanding human
impact. Highly parallel qPCR equipment from
several vendors allows analysis of multiple primer
sets and samples, such that hundreds of antibiotic
resistance genes, mobile elements and their variants
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can be analysed (Looft et al., 2012; Zhu et al., 2013),
allowing more comprehensive spatial and temporal
studies. Furthermore, amplicons can be sequenced,
providing diagnostic-level insight into the probable
origin of these genes. A recent example of the latter
shows clusters of intI1 and antibiotic resistance gene
identities at a country scale and at an interconti-
nental scale for intI1 (Johnson et al., 2014).

As DNA sequencing becomes more efficient and
cheaper, direct sequencing of metagenomic samples
may replace qPCR approaches. In such an analysis,
clinical intI1 sequences could be extracted from the
sequence data and normalized to a single copy
housekeeping gene. Already, such approaches are
being used, based on high-throughput next-genera-
tion sequencing methods.

Conclusion

The clinical version of the intI1 gene has some
unique advantages as a universal marker of selective
pressures imposed by anthropogenic pollution. Its
recent emergence into human-dominated ecosys-
tems means that it has a homogenous and conserved
DNA sequence, simplifying detection. It has seen a
rapid increase in abundance and geographic dis-
tribution, fuelled by the extensive use of antibiotics
and its insertion into diverse mobile elements,
coupled with its penetration into a wide range of
bacterial species associated with human-dominated
ecosystems. During this expansion, it has become
closely linked with genes that confer resistance to
disinfectants and heavy metals, as well as the wide
range of antibiotic resistance determinants for
which it is well known. Consequently, versions of
the clinical intI1 gene are capable of conferring
diverse advantages to those cells that carry them,
and these advantageous phenotypes correspond
with the selective agents that are most likely to be
present in human waste streams.
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