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Abstract

Individual differences in general cognitive ability (i.e., intelligence) have been linked

to individual variations in the modular organization of functional brain networks.

However, these analyses have been limited to static (time-averaged) connectivity,

and have not yet addressed whether dynamic changes in the configuration of brain

networks relate to general intelligence. Here, we used multiband functional MRI

resting-state data (N = 281) and estimated subject-specific time-varying functional

connectivity networks. Modularity optimization was applied to determine individual

time-variant module partitions and to assess fluctuations in modularity across time.

We show that higher intelligence, indexed by an established composite measure, the

Wechsler Abbreviated Scale of Intelligence (WASI), is associated with higher tempo-

ral stability (lower temporal variability) of brain network modularity. Post-hoc ana-

lyses reveal that subjects with higher intelligence scores engage in fewer periods of

extremely high modularity — which are characterized by greater disconnection of

task-positive from task-negative networks. Further, we show that brain regions

of the dorsal attention network contribute most to the observed effect. In sum, our

study suggests that investigating the temporal dynamics of functional brain network

topology contributes to our understanding of the neural bases of general cognitive

abilities.
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1 | INTRODUCTION

Intelligence describes our ability to reason, to understand complex

ideas, to learn from experiences, and to adapt effectively to the

environment (Neisser et al., 1996). Understanding the biological

bases of human intelligence is an important scientific aim, and neu-

roscientific research has begun to contribute insights about how

individual differences in brain function (Duncan, 2005; Sripada,

Angstadt, & Rutherford, 2018), brain structure (Gregory et al.,

2016; Haier, Jung, Yeo, Head, & Alkire, 2004), and intrinsic brain

connectivity (Hilger, Ekman, Fiebach, & Basten, 2017a; Van den

Heuvel, Stam, Kahn, & Hulshoff Pol, 2009) relate to general intelli-

gence (for review see Basten, Hilger, & Fiebach, 2015; Jung &

Haier, 2007).

Recent years have seen an increasing interest in understanding

how human cognition emerges from the intrinsic organization of

functional brain networks (Park & Friston, 2013), often studied using

functional MRI (fMRI) in the absence of task demands (i.e., under†Olaf Sporns and Christian J. Fiebach should be considered joint senior author.
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resting-state conditions; Biswal, Yetkin, Haughton, & Hyde, 1995).

The topology of these networks determines how information is trans-

ferred between brain regions, and graph theory provides a set of tools

to study these topological characteristics (Rubinov & Sporns, 2010).

In the field of intelligence research, early graph-theoretical work pro-

posed that global properties of brain networks such as higher global

network efficiency are associated with higher intelligence (van den

Heuvel et al., 2009), a finding not replicated in more recent studies

(Kruschwitz, Waller, Daedelow, Walter, & Veer, 2018; Pamplona,

Santos Neto, Rosset, Rogers, & Salmon, 2015). In contrast, other

studies have suggested that intelligence is related to efficiency in the

interconnections of specific brain regions (Hilger et al., 2017a).

Graph-theoretical investigations revealed further that the human

brain exhibits a hierarchically modular organization with clusters of

nodes (modules, subnetworks) that are densely connected among

each other but only sparsely coupled to nodes in other modules

(Meunier, Lambiotte, & Bullmore, 2010; Sporns & Betzel, 2016).

A modular organization balances segregated and integrated informa-

tion processing, both of which are important for human cognition

(Cohen & D'Esposito, 2016). Region-specific modularity was recently

also shown to covary significantly with individual differences in gen-

eral intelligence (Hilger, Ekman, Fiebach, & Basten, 2017b).

The functional brain network correlates of intelligence were so far

mostly studied as a static (i.e., time-invariant) property of the human

brain, that is, by averaging time courses of neural activation across the

entire duration of a resting-state fMRI scan (typically 5–10 min). This

approach, however, ignores that intrinsic brain networks vary substan-

tially across time (Cohen, 2018; Lurie et al., 2018; Zalesky, Fornito,

Cocchi, Gollo, & Breakspear, 2014). Importantly, it has been shown

that the dynamic interplay between states of high integration (low

modularity) versus high segregation (high modularity) is linked to dif-

ferent levels of attention (Shine, Koyejo, & Poldrack, 2016) and cogni-

tive performance (Shine et al., 2016). These first results suggest that

the study of network dynamics has great potential for providing

insights into human cognition from a mechanistic point of view — and

thus also for advancing our understanding about the neural mecha-

nisms underlying different levels of general cognitive ability.

Here, we apply graph-theoretical modularity analyses to resting-

state BOLD fMRI data from a large sample of healthy adult humans

(N = 281) to test the hypothesis that intelligence covaries signifi-

cantly with the amount of dynamic reconfiguration within modularly

organized, intrinsic brain networks. Going beyond previous work,

we measured global modularity at different spatial scales, to gain

insights into the brain's intrinsic network architecture beyond an

arbitrarily chosen resolution level. The results of this analysis repli-

cate and extend our previous finding that intelligence is not related

to global modularity of static (i.e., time-invariant) networks (Hilger

et al., 2017b). Most importantly, we observed an association

between intelligence and dynamic network reconfiguration, such

that more intelligent persons show greater stability of network seg-

regation over time.

2 | METHODS

2.1 | Participants

The data used in the current study were acquired by the Nathan

S. Kline Institute for Psychiatric Research (Enhanced NKI Rockland

sample, Release 1-5; Nooner et al., 2012; http://fcon_1000.projects.

nitrc.org/indi/enhanced/; NKI-RS Enhanced Sample, RRID:SCR_

010461). Procedures were approved by the NKI Institutional Review

Board (#239708) and informed written consent was obtained from all

participants. All analyses were based on a subsample of 281 healthy

participants (98 males, mean age: 47.19 years, 246 right-handed) for

whom complete multiband neuroimaging and phenotypical data were

available, including the Wechsler Abbreviated Scale of Intelligence

(Wechsler, 1999; range: 69–141; mean FSIQ: 101.44), and whose

imaging data sets survived the Connectome Computation System

(CSS) quality check (see below).

2.2 | Data acquisition and analysis

Fast sampling (TR = 645 ms) task-free fMRI (eyes open) was acquired

with a 32-channel head coil on a 3T Siemens Tim Trio scanner.

Acquisition parameters of the 9:46 min (≈900 time points) scans

were: TE = 30 ms, flip angle = 60�, voxel size = 3 mm isotropic,

FOV = 222 × 222 mm2, and 40 slices. A T1-weighted structural scan

(TR = 1,900 ms, TE = 2.52 ms, flip angle = 9�, voxel size = 1 mm iso-

tropic, FOV = 250 × 250 mm2, 176 slices) was obtained from each

participant for coregistration. Preprocessing was based on the CSS

pipeline (Xu, Yang, Jiang, Xing, & Zuo, 2015; https://github.com/

zuoxinian/CCS; RRID:SCR_017342) and involved discarding the first

16 volumes (10:32 s), removal and interpolation of outlier volumes

(due to either hardware instability or head motion), slice timing and

motion correction, global mean intensity normalization, coregistration

between functional and structural images, nuisance regression using

global, white matter, and CSF mean signals as well as 24 motion

parameters (six motion parameter of the current and the preceding

volume, plus each of these values squared; Friston, Williams, Howard,

Frackowiak, & Turner, 1996), temporal band-pass filtering (0.01–

0.1 Hz), removal of linear and quadratic trends, and projection of the

preprocessed time series onto a standard volume (MNI152). The low-

cut frequency of the temporal filtering (0.01 Hz) was specified as the

reciprocal of the width of the time window (≈100 s, 156 time points).

Nineteen participants from the initial sample of N = 300 were

excluded by the CCS quality check due to low-quality anatomical

images, mean framewise displacement (FD) > 0.2 mm, maximum trans-

lation > 3 mm, maximum rotation > 3�, or minimum cost of boundary-

based registration > 0.6 (Greve & Fischl, 2010). Our approach to

remove outliers is essentially equivalent to motion scrubbing (Power,

Barnes, Snyder, Schlaggar, & Petersen, 2012) and strict censoring

(Power et al., 2014; Siegel et al., 2017). However, instead of removing

respective time points, we replaced outliers with an interpolated value

(see, e.g., Siegel et al., 2017) to retain the same number of time points

in all sliding windows (Betzel, Fukushima, He, Zuo, & Sporns, 2016;
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Fukushima et al., 2018). Detection of outliers and interpolation were

performed using the function 3dDespike in AFNI (Allen et al., 2014;

Cox, 2012; https://afni.nimh.nih.gov/pub/dist/doc/program_help/

3dDespike.htm; RRID:SCR_005927).

2.3 | Graph-theoretical modularity analyses

The cortical volume of the template brain was parcellated into

114 regions of the Yeo atlas (Figure 1a; Betzel et al., 2016; Yeo et al.,

2011) that served as network nodes and allowed the assignment to

17 (used for the identification of individually optimal gamma values)

or 7 (used for illustrating connection-specific stability values as

depicted in the coclassification matrix; cf. Figure 1d and 4a) functional

networks (VIS, visual network; SMN, somatomotor network; DAN,

dorsal attention network; VAN, ventral attention network; LIM, limbic

network; CON, control network; DMN, default-mode network; Yeo

et al., 2011). Weighted edges were modeled on the basis of Fisher z-

transformed Pearson correlation coefficients between the nodes'

BOLD time series (a) across the entire duration of the functional scan

(analysis of static networks), and (b) within tapered (Fukushima et al.,

2018) sliding time windows of length ≈100 s (156 time points; analy-

sis of dynamic networks, see Figure 1b). Window length was

determined so that windows capture the full cycle of the slowest fre-

quency components (Betzel et al., 2016). Time windows were shifted

across the BOLD time series by 10 time points, which resulted in a

total of 70 partially overlapping windows. All analyses were also

repeated using coarser window parcellations, without changes in our

principal findings. Subject-specific module partitions were determined

by running the Louvain algorithm (Blondel, Guillaume, Lambiotte, &

Lefebvre, 2008) 100 times for each of 60 spatial resolution levels

(0.1 < γ ≤ 6; 0.1 steps) on (a) the correlation matrix of the static net-

work and (b) the correlation matrices of each time window for the

dynamic network analysis (Figure 1c). For each repetition of the Lou-

vain algorithm, the single partition that maximizes global modularity

Qind was selected, per gamma, per subject, and time window. All ana-

lyses focused on the resolution level (γ ) where subject-specific static

module partitions demonstrated highest agreement (mutual informa-

tion) with the 17-network partition of Yeo et al. (2011). Temporal var-

iability of functional network organization was operationalized as the

SD of Qind over time. Individual-specific states of high and low modu-

larity were defined as time windows where Qind exceeds or falls below

the individual-specific thresholds of mean Qind ± 50% of mean Qind.

This analysis was repeated using the modularity mean at the group-

level, that is, Q averaged across all time points and all participants,

F IGURE 1 Schematic illustration of analysis workflow. (a) Multiband fMRI data was acquired during resting state. Node parcellation is based
on 114 subdivisions of the 17-network Yeo atlas (see Section 2). Edges were modeled on the basis of Pearson's correlation coefficients between
node-specific BOLD time series for 70 time windows of 156 time points. (b) Weighted unthresholded connectivity matrices were computed for
each time window. (c) Community detection was performed on each connectivity matrix. (d) Left: window-specific coclassification matrices
indicating whether a node pair is assigned to the same module (white) at a given time point. Right: connection-specific stability values were
calculated as proportion of time windows in which two nodes are coclassified to the same module. High values (white) indicate that the nodes of
a pair are assigned consistently to the same module (exhibiting stable consistent module affiliation). Low values (black) indicate that a node pair is
only rarely coclassified to the same module; rather, nodes stay consistently segregated from each other which may be interpreted as “stable
absence” of segregation. Qind, global modularity of individual-specific module partitions. fMRI, functional MRI

364 HILGER ET AL.



Qgroup. Connection-specific stability values were computed as time-

averaged coclassification scores representing the proportion of time

windows in which a given node pair is assigned (coclassified) into the

same module (see Figure 1d and 4a,b, and Section 3 for further infor-

mation). Network-specific stability scores were determined by averag-

ing the coclassification scores of all connections within and between

the seven standard networks as specified by Yeo et al. (2011).

2.4 | Individual difference analyses of network
dynamics

Associations between graph measures and intelligence were calculated

as partial correlations (Spearman, rho) controlling for effects of age, sex,

handedness, and mean framewise displacement. Although not corre-

lated with intelligence in the current sample (rho = −.08, p = .200), in-

scanner head motion is controlled for because it can produce spurious

correlations between time series of neural activation and thus artificially

introduce functional connections (Power et al., 2014) or associations

with behavioral variables (Siegel et al., 2017). p-values < .05 were inter-

preted as indicating statistical significance, except in cases of multiple

comparisons, where p-values were Bonferroni corrected (see below). To

investigate the association between network-specific stability values

and intelligence (28 comparisons) p-values of partial correlations were

Bonferroni corrected, resulting in a corrected threshold of p < .0018. All

analyses were conducted in Matlab (Version 2018a; MathWorks, Inc.,

Natick, MA; https://de.mathworks.com/products/matlab.html; RRID:

SCR_001622).

3 | RESULTS

3.1 | Static network modularity and intelligence

We first focused on the analysis of static brain networks. To this end,

we computed subject-specific resting-state functional connectivity

across the duration of the entire fMRI scan (9:46 min), and extracted

for each participant optimal modular partitions and global modularity

scores (Q) by using modularity maximization (Blondel et al., 2008;

Newman & Girvan, 2003). We varied the resolution parameter γ

between 0.1 and 6.0, in steps of 0.1, to capture modules at different

spatial scales. Selecting a single partition for each subject that best

matched canonical resting-state networks (Yeo et al., 2011), we repli-

cated a previous result (Hilger et al., 2017b) indicating that individual

differences in intelligence are not associated with variations in global

modularity Q (Spearman's rho = −.03, p = .681). Extending previous

results, we here also show that there is no association between intelli-

gence and global modularity at any level of the resolution parameter γ

(all p > .098; see Figure S1).

3.2 | Network dynamics and intelligence

The primary aim of the current study was to examine the relationship

between intelligence and the temporal dynamics of brain network

reconfiguration, as indexed by fluctuations in global modularity.

We observed that the SD of global modularity Qind over time (calcu-

lated for each participant at her or his optimal resolution level) varied

considerably between individuals (range: .0083–.1011; M = .0361;

SD = .0147) and, most importantly, that these fluctuations were signif-

icantly correlated with intelligence (rho = −.20, p = .001, R2 = .04; see

Figure 2a). This negative relationship was robust across a broad range

of resolution levels (see Figure S1). The analysis was also repeated

with individual's variability in the number of modules (SDnum) added as

an additional control variable. This does not change the results (corre-

lation between IQ and variability in modularity over time with addi-

tional control variable; r = −.21, p = .0005). Thus, while subjects with

higher intelligence scores did not exhibit different levels of segrega-

tion or integration in their time-averaged functional networks (static

network analyses; see previous section and Hilger et al., 2017a,

2017b), the level of segregation of their functional networks

(as indexed by global modularity) varied significantly less over time.

The increased stability of modular network organization in more

intelligent persons may be related to the frequency at which the

respective person's functional brain network resides in certain states

of modularity, that is, states of particularly high or low modularity. In

periods of low modularity, functional connectivity is more uniformly

distributed across networks and is thought to reflect greater network

integration (Shine, Bissett, et al., 2016). In contrast, periods of high

modularity represent states of greater network segregation in the

form of higher connectivity (more positive and coherent correlations)

within modules and lower connectivity between different modules

(more negative correlations, i.e., anticorrelations). This becomes also

visible in our data as illustrated in the group-averaged connectivity

profiles for high- versus low-modularity states (Figure 3a).

To explore whether the frequency of those states relates to gen-

eral intelligence, we identified, per subject, states of particularly high

or low modularity (i.e., time windows with Qind > mean Qind + 50% of

mean Qind or Qind < mean Qind − 50% of mean Qind) and tested across

subjects whether the count of occurrences of these states correlated

with intelligence. The results revealed significant negative associations

between intelligence and the prevalence of high- and low-modularity

states (high Qind states: rho = −.14, p = .020, R2 = .02; low Qind states:

rho = −.12, p = .047, R2 = .01; uncorrected for multiple comparisons;

see also Figure 2b). As the figure shows, only a minority of subjects

showed such subject-specific states of high (N = 36) or low (N = 10)

modularity. Post-hoc analyses revealed that subjects with extreme

modularity states were characterized by a relatively lower intelligence

score: We observed significantly lower FSIQ values in subjects

demonstrating high-modularity states as compared to subjects

demonstrating no such states (Mann–Whitney U-test, two-tailed:

z = −2.236, p = .025; see Figure S2a) and a trend toward lower FSIQ

values in subjects demonstrating low-modularity states as compared

to subjects demonstrating no such states (Mann–Whitney U-test,

two-tailed: z = 1.657, p = .098; see Figure S2b). Given that functional

connectivity estimates can be seriously affected by confounding

effects of head motion (Ciric et al., 2017; Power et al., 2012, 2014;

Siegel et al., 2017), we also examined whether subjects with extreme

modularity states differed in respect to in-scanner head motion
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(mean FD). However, no such effect was found (subjects demonstrat-

ing high-modularity states versus subjects without such states,

Mann–Whitney U-test, two-tailed: z = 0.214, p = .830; subjects show-

ing low-modularity states versus subjects without such states, Mann–

Whitney U-test, two-tailed: z = −0.014, p = .989).

To obtain a measure for high-/low-modularity states that is more

comparable between subjects, we repeated this analysis by defining

states of high and low modularity relative to the group mean modular-

ity Qgroup, which was defined by first averaging Qind across all partici-

pants and then Qgroup across time windows (mean Qgroup = 0.29).

States of high modularity were defined, for each participant, as those

time windows in which the individual modularity Qind exceeds the

threshold of mean Qgroup + 50% of mean Qgroup. This resulted in

Qind > 0.36 as threshold for high-modularity states. In contrast, states

of low modularity were specified as below the threshold of mean

Qgroup − 50% of mean Qgroup. This resulted in Qind < 0.22 as threshold

for low-modularity states. We again observed a negative correlation

between intelligence and the number of high-modularity states (rho =

−.12, p = .039, R2 = .01; uncorrected), but no correlation for low-

modularity states (rho = −.04, p = .477; Figure 2c).

As we observed that the individual, time-averaged dynamic modu-

larity levels (i.e., modularity values computed for each time window

separately and averaged afterward, different from modularity in static

networks, see Section 3.1 static modularity) varied between individ-

uals (time-averaged Qind: M = 0.24; SD = 0.05; range = 0.10–0.42) and

as these variations may cause more or less frequent occurrences of

extreme modularity states defined relative to the group mean modu-

larity, we tested post-hoc for potential associations between these

individual, time-averaged dynamic modularity levels and intelligence.

There was no significant association (rho = .00, p = .956). Further

post-hoc analyses revealed that the reported effects were to some

extent sensitive to the exact threshold chosen for the definition

F IGURE 2 Scatterplots for the associations between intelligence and functional brain network characteristics controlling for effects for age,
sex, handedness, and mean framewise displacement (N = 281). (a) Association between intelligence (and the inverse of) brain network stability as
indexed by fluctuations over time in global modularity. Variability in global modularity was operationalized as the SD of Qind across time.
(b) Association between intelligence and the number of subject-specific high and low modularity states. States of high (upper row) and low
(bottom row) modularity were operationalized relative to subject-specific mean modularity (see Section 3 for more details). (c) Association
between intelligence and the number of high (left) and low (right) modularity states defined in relation to the group-averaged mean modularity. All
illustrations represent partial correlations, with the y-axis depicting the standardized residuals resulting from linear regression of age, sex, hand,
and mean framewise displacement on the variable of interest, that is, SD(Q) or count of occurrences of modularity states. FSIQ, full scale
intelligence quotient assessed with Wechsler Abbreviated Scale of Intelligence (WASI; Wechsler, 1999); p, p-value of respective association
indicating statistical significance if p < .05; rho, Spearman correlation coefficient; SD(Q), SD of global modularity from individual-specific module
partitions; std. res., standardized residuals
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of high- versus low-modularity states, which we infer from the obser-

vation that associations reach significance only within a certain range

of Q thresholds (individual-specific states: Qind > mean Qind + 5–60%

of mean Qind for high-Q states, Qind < mean Qind − 48–86% of mean

Qind for low-Q states; group-averaged states: Qgroup > mean

Qgroup + 50–56% of mean Qgroup for high-Q states, no sign. Effects for

low-Q states). Nevertheless, the direction of the relation remained

unchanged across all percentiles and was the same for states defined

relative to individual and group-averaged mean modularity. In sum,

both analyses suggest lower rates of high-modularity states in sub-

jects with higher intelligence scores.

3.3 | Network-specificity of intelligence-stability
association

Next, we computed the difference matrix (Figure 3b) between the

group-averaged connectivity profiles for high- and low-modularity

states (defined relative to the group mean modularity, Qgroup). By

annotating this difference matrix with a canonical seven-network par-

tition (Yeo et al., 2011), we determined that the increased segregation

during high-modularity states is primarily driven by a stronger segre-

gation (depicted in blue in Figure 3b) of brain regions that typically

demonstrate decreased activation during tasks (DMN; Raichle et al.,

2001) from brain regions associated with increased activation during

task (VIS, DAN, and VAN).

Finally, we aimed to investigate whether the association between

higher intelligence and more stable network modularity over time is

(a) driven by less variable segregation between all functional networks

(higher consistency of all networks), (b) driven by less variable segre-

gation between only some specific networks (higher consistency of

specific networks), or (c) driven by less variable segregation between

some specific networks that overrides rare periods of greater variabil-

ity in segregation between other networks (higher consistency of spe-

cific networks that counts heavier than the lower consistency of other

networks). To discriminate between these possibilities, we computed

connection-specific coclassification scores as the proportion of time

windows in which a given node pair is assigned (coclassified) into the

same module, with nodal network membership defined on the basis

of the annotation with the canonical seven-network partition (Yeo

et al., 2011; Figures 3a,b and 4a,b). The resulting values are represen-

ted in the coclassification matrix (Figure 4a). Here, high values indicate

that the two nodes of a given node pair are assigned to the same

module most of the time (exhibiting stable consistent module affilia-

tion), whereas low values indicate that a given node pair is only rarely

F IGURE 3 Extreme modularity states. (a) Group-averaged functional connectivity profiles for states of particularly high or particularly low
modularity. States were defined in relation to the across-subject mean Qgroup and are based on a fixed resolution level of γ = 35. For illustration,
each node was assigned to a standard seven-network partition (see Section 2), as depicted in different colors along the axes. (b) Difference in
group-averaged functional connectivity profiles between states of high and low modularity. For illustration of network-specific connectivity
values (bottom row), nodal connectivity values were aggregated within and between the seven standard networks (integrated across both
hemispheres, see Section 2). CON, control network; DAN, dorsal attention network; DMN, default-mode network; LH, left hemisphere; LIM,
limbic network; r, Pearson's correlation coefficient; RH, right hemisphere; SMN, somatomotor network; VAN, ventral attention network; VIS,
visual network
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coclassified as belonging to the same module (nodes stay consistently

segregated from each other which may be interpreted as “stable

absence” of segregation).

Network-specific stability (Figure 4b) was determined by averag-

ing the stability values (coclassification scores) of all connections

within and between the seven standard networks. A network-specific

coclassification score of 1 would reflect that a given network (e.g., the

VAN) is highly coherent internally (and thus very segregated from

nodes in other modules). In contrast, a network-specific

coclassification score of 0 would reflect that a given network is totally

incoherent and does not exist as a separable module. We thus inter-

pret relatively higher coclassification scores for any given network as

an indication of higher internal coherence of that respective network,

that is, more segregation of that network from nodes in other net-

works, while lower coclassification indicates its dissolution.

In participants with higher intelligence scores, only nodes within

the DAN were more consistently co-assigned to the same module

(positive correlation between intelligence scores and network-specific

coclassification scores: rho = .19, p = .0017, R2 = .04; Bonferroni-

corrected threshold for 28 comparisons: p = .0018; Figure 4c). This

result indicates that the DAN is internally more coherent (rep-

resenting a more separable module) in people with higher intelligence

scores than in people with lower intelligence scores. No other func-

tional network demonstrated a significant association with intelligence

(−.11 < rho ≤ .13; all p > .03). In sum, these results suggest that the

global association between intelligence and more stable network

modularity over time (see Section 3.2) is driven by a more coherent

(and in that sense more stable) organization within a specific network,

that is, the DAN. This conclusion is consistent with the above-

specified case (b).

4 | DISCUSSION

We have shown that human intelligence is associated with the

dynamic reconfiguration in functional brain networks as indexed by

temporal fluctuations in global modularity. Participants with higher

intelligence scores demonstrated higher stability of network segrega-

tion over time and exhibited lower rates of high-modularity states.

Our results suggest that an intrinsic network architecture exhibiting

F IGURE 4 Results of coclassification analyses. (a) Group-averaged coclassification matrix representing connection-specific temporal stability
scores (see Figure 1d). Values represent the proportion of time windows in which a given node pair is assigned to the same module. (b) Network-
specific stability values were calculated by averaging all connection-specific coclassification scores within and between each of seven functional
networks (aggregated across both hemispheres) provided by the Yeo atlas (Yeo et al., 2011). (c) Intelligence-related effects in coclassification
values of nodes within the dorsal attention network, depicted for those 28 subjects with the highest and lowest IQ (colored number, mean; white
dot, median; thick bar, interquartile range). CON, control network; DAN, dorsal attention network; DMN, default-mode network; IQ (FSIQ), Full
Scale Intelligence Quotient assessed with Wechsler Abbreviated Scale of Intelligence (WASI; Wechsler, 1999); LH, left hemisphere; r, Pearson's
correlation coefficient; LIM, limbic network; RH, right hemisphere; SMN, somatomotor network; VAN, ventral attention network; VIS, visual
network
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fluctuations within a more narrow range of modularity may offer an

advantage in the face of momentary task-driven demands related to

cognition. Finally, we found that greater network stability associated

with higher intelligence was driven primarily by brain regions belong-

ing to the DAN.

4.1 | Higher network stability associated with
intelligence

Although previous research indicates that integrated and segregated

information processing are both essential for human cognition

(Cohen & D'Esposito, 2016), neither the general level of network inte-

gration (indexed by global efficiency; Hilger et al., 2017a; Kruschwitz

et al., 2018) nor the general level of network segregation (indexed by

global modularity; Hilger et al., 2017b, and present results) seem to

differentiate between high versus low general intelligence — when

investigated in static, time-invariant networks. Rather, we observed

here that higher intelligence is associated with more stable (i.e., less

variable) levels of network segregation over time. Furthermore, we

found that across the ~10 min of the task-free fMRI scan, individuals

with higher intelligence scores settled relatively less often into states

of particularly high network segregation. A similar association for low

segregation states was, however, only observed when defining these

states relative to subject-specific modularity thresholds. This latter

result was driven by only a small subgroup of subjects and should

therefore be interpreted with caution, requiring further investigation.

Studies of task fMRI suggest that states of low modularity facili-

tate network integration (Shine, Bissett, et al., 2016), probably

because information can be exchanged more freely across module

boundaries (Betzel et al., 2016), which is especially important for com-

plex cognitive tasks requiring the coordination of different subpro-

cesses (Cohen & D'Esposito, 2016; Shine, Bissett, et al., 2016). In

contrast, high modularity facilitates network segregation. This is more

characteristic of specialized information processing (Betzel et al.,

2016), for example, in tasks requiring the unhindered processing of

one type of information (e.g., motor information during finger tapping;

Cohen & D'Esposito, 2016).

Additional support for the behavioral relevance of network segre-

gation as indexed by modularity comes from clinical studies. Increased

modularity has, for example, been observed in persons with Attention

Deficit Hyperactivity Disorder (ADHD; Lin et al., 2014) or in patients

suffering from major depression (MD; Ye et al., 2015). Graph-

theoretical investigations indicate that enhanced levels of network

segregation can lead to a fragmented network organization with

sharply isolated modules (Watts & Strogatz, 1998), which may cause a

breakdown of communication between major functional subsystems.

Interestingly, however, these two clinical conditions present with

opposing cognitive deficits: while ADHD is associated with high levels

of impulsivity (White, 1999), the executive function deficits observed

in MD are associated with reduced cognitive flexibility (Lee, Hermens,

Porter, & Redoblado-hodge, 2012). These studies, however, are diffi-

cult to compare to this study because of methodological differences,

including (a) that they relied primarily on static functional networks,

(b) involved group comparisons that, accordingly, do not require the

definition of concrete thresholds for high versus low modularity, and

(c) differences in graph analysis methods (e.g., binary vs. weighted

graphs).

Irrespective of the specific task content, the brain seems to

decrease its general level of network segregation when switching

from rest to task (Shine, Bissett, et al., 2016)—with lower levels of net-

work segregation associated with higher cognitive performance

(Cohen & D'Esposito, 2016; Shine, Bissett, et al., 2016). Based on

recent evidence demonstrating that, during rest, intelligence is not per

se associated with the level of segregation or integration (Hilger et al.,

2017a, 2017b; Kruschwitz et al., 2018; Pamplona et al., 2015), one

can plausibly assume that more intelligent people may invest more

effort into reconfiguring their network when switching from rest to

task in order to reach better-suitable network configurations that

facilitate high cognitive performance (Cohen & D'Esposito, 2016;

Shine, Bissett, et al., 2016). The results of a recent study, however,

point into exactly the opposite direction. Here, fewer differences

between resting-state and task-general network organization were

associated with higher levels of general intelligence—which the

authors interpreted as indicating that more intelligent subjects need

to reconfigure their network less when switching from rest to task

(Schultz & Cole, 2016). This study adds a missing piece into this

emerging picture as it reveals that during rest (a) higher temporal sta-

bility of intrinsic network segregation and (b) fewer states of

extremely high network segregation are associated with higher levels

of general intelligence.

Task-related connectivity is assumed to rely critically on connec-

tivity properties measured during rest (see also Amico, Arenas, &

Goñi, 2019; Tavor et al., 2016), reflecting individual differences (Cole,

Bassett, Power, Braver, & Petersen, 2014). Furthermore, first evidence

suggests that individual profiles of connectivity dynamics generalize

between rest and task and may therefore represent a task-invariant

common characteristic (Fong et al., 2019). These observations suggest

that the association between intelligence and higher stability in net-

work organization over time is not limited to task-free (resting-state)

conditions, but represents a more general phenomenon. Against this

background, we here speculate that during cognitive tasks (with

unchanging cognitive demands), higher intelligence may be associated

with both, that is, a more effectively reduced degree of network seg-

regation (Cohen & D'Esposito, 2016; Shine, Bissett, et al., 2016), and

an overall higher extent of temporal stability within this adapted archi-

tecture (this study and Fong et al., 2019). Finally, the association

between intelligence and fewer occurrences of high-modularity states

may suggest an intrinsic protection against unintentional shifts toward

states of network fragmentation (i.e., particularly high modularity) that

are likely to disrupt information processing and hinder ongoing

cognition.

Our conclusion is complementary to a recent proposal suggesting

that general intelligence depends on the ability to flexibly transition

between “easy-to-reach” and “difficult-to-reach” network states

(Barbey, 2018; Girn, Mills, & Christo, 2019). Our finding of higher

intelligence associated with greater temporal stability in network
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organization during rest (see also Fong et al., 2019, for similar finding

under task conditions) expands on the intuitively plausible proposal

that higher intelligence relies on higher task-dependent network flexi-

bility. We thus propose that higher intelligence may be associated

with both, that is, higher flexibility in network configurations when

task demands change, and higher network stability when task

demands remain stable across time. The latter may occur when sub-

jects engage in the same task (Fong et al., 2019) or remain within the

resting-state condition (this study and in Fong et al., 2019). However,

this suggestion needs to be tested empirically by studies investigating

dynamic changes in network organization that occur during the switch

from rest into task. The proposal of Barbey (2018) postulates further

that the superior “ability” of more intelligent people to adaptively form

task-specific network configurations results from differences in intrin-

sic small-world network attributes, specifically, in global network inte-

gration or global network segregation levels measured in static

functional brain networks (Girn et al., 2019). Contrasting this view, we

observed no relation between global modularity and intelligence in

static, time-averaged network metrics (see also Hilger et al., 2017b).

4.2 | Dorsal attention network as locus of
intelligence-related network stability

Finally, we identified the DAN as primary locus of the observed asso-

ciation between intelligence and temporal brain network stability. Pre-

vious research has associated the DAN with controlled and voluntarily

reorientation of attention toward goal-relevant information

(Corbetta & Shulman, 2002) — a process that is involved in many cog-

nitive tasks and has been linked to general intelligence (Engle, 2018;

Schweizer, Moosbrugger, & Goldhammer, 2005). Also functional-

neuroanatomical considerations suggest a specific role for the DAN in

intelligence, given that both functional and structural correlates of

intelligence have been revealed in this system (Basten et al., 2015;

Jung & Haier, 2007). In a meta-analysis of fMRI studies (Basten et al.,

2015), we found across-study overlap of intelligence-related activa-

tion effects in the superior parietal lobe, precuneus, frontal regions

including the frontal eye fields and precentral ventral frontal cortex,

and in the middle temporal gyri. These brain regions partly overlap

with the DAN (Yeo et al., 2011). In addition, two recent studies also

support the idea that the way in which attention-related brain regions

are embedded into the intrinsic functional network topology differen-

tiates between persons with higher and lower intelligence scores

(Hilger et al., 2017a, 2017b). However, these two studies investigated

intelligence-related effects in static connectivity and associations

were observed in regions primarily associated with bottom-up (stimu-

lus-driven) attention (ventral attention network). This inconsistency

indicates that different insights may be gained from static as opposed

to dynamic network features (Zalesky et al., 2014) and stresses the

importance of considering both dimensions when trying to under-

stand comprehensively how different network architectures may con-

tribute to individual differences in cognition. This gap was addressed

in a very recent study revealing that higher stability in functional brain

network organization during rest and task was associated with better

performance in a variety of tasks requiring controlled attention (Fong

et al., 2019).

4.3 | Limitations

Our study was designed to test whether intelligence is associated

with brain network dynamics and our results reveal a significant asso-

ciation, specifically, a more stable network organization in people with

higher intelligence scores. However, it must be acknowledged that

the amount of variance explained by these dynamic network proper-

ties seems to be small (i.e., around 4%), especially in comparison with

recent studies using predictive machine learning approaches. Finn

et al. (2015) report that up to 25% of variance in intelligence can be

explained by a multivariate combination of 71,824 intrinsic connectiv-

ity values spanning across the whole brain. Subsequent evidence,

however, has been heterogeneous with some studies reporting pre-

diction results of only around 5% explained variance despite using a

similar predictive statistical approach (Ferguson, Anderson, & Spreng,

2017). In the current study, we followed a different approach: Rather

than using all possible combinations of connectivity values, we instead

tested for a potential relation between intelligence and only one met-

ric (i.e., SD of Q over time), which has been suggested to capture fun-

damental aspects of dynamic network organization. Therefore, we did

not expect as high amounts of explained variance as observed in mul-

tivariate predictive approaches. Nevertheless, we would like to stress

that current findings of associations between brain network topology

and intelligence should be interpreted with caution, as a more com-

prehensive and definitive understanding of this relationship will

require additional study, including work combining static and dynamic

functional connectivity features.

Another important issue is head motion, which has been shown to

significantly influence estimates of functional connectivity in static

networks (Ciric et al., 2017; Power et al., 2014) and can bias associa-

tions with behavioral measures (Siegel et al., 2017). Although it has

been suggested that dynamic (time-varying) functional connectivity is

relatively insensitive to head motion (see, e.g., Abrol et al., 2017, who

report high replicability for dynamic connectivity), and although we

controlled for head motion (mean FD) in all analyses, we cannot ulti-

mately rule out the existence of remaining unknown influence of head

motion on our connectivity estimates.

5 | CONCLUSION

Taken together, our results reveal that the temporal stability of modu-

lar brain network organization is associated with individual differences

in a person's general capacity for cognition and intellectual perfor-

mance. Cognition requires both integrated and segregated informa-

tion processing, and the human brain has been shown to flexibly

adapt its functional network architecture to meet different task

demands. The results of our study suggest that when taking into

account the temporal dynamics of network organization, a more sta-

ble level of network segregation over time is associated with higher
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levels of cognitive performance. We conclude that such an organiza-

tion may constitute an optimal foundation for focused task processing

and may protect the brain against the occurrence of maladaptive net-

work states. The locus of our results within the DAN suggests specific

relevance of brain regions associated with controlled top-down atten-

tion to maintain this intelligence-related advantage of higher network

stability. Taken together, our study proposes that the investigation of

brain network dynamics may have great potential to refine our under-

standing about the mechanisms underlying human intelligence.
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