
RESEARCH ARTICLE Open Access

Application of group LASSO regression
based Bayesian networks in risk factors
exploration and disease prediction for
acute kidney injury in hospitalized patients
with hematologic malignancies
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Abstract

Background: Patients who were diagnosed with hematologic malignancies (HM) had a higher risk of acute kidney
injury (AKI). This study applies the Bayesian networks (BNs) to investigate the interrelationships between AKI and its
risk factors among HM patients, and to evaluate the predictive and inferential ability of BNs model in different
clinical settings.

Methods: During 2014 and 2015, a total of 2501 inpatients with HM were recruited in this retrospective study
conducted in a tertiary hospital, Shanghai of China. Patients’ demographics, medical history, clinical and laboratory
records on admission were extracted from the electronic medical records. Candidate predictors of AKI were
screened in the group-LASSO (gLASSO) regression, and then they were incorporated into BNs analysis for further
interrelationship modeling and disease prediction.
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Results: Of 2395 eligible patients with HM, 370 episodes were diagnosed with AKI (15.4%). Patients with multiple
myeloma (24.1%) and leukemia (23.9%) had higher incidences of AKI, followed by lymphoma (13.4%). Screened by
the gLASSO regression, variables as age, gender, diabetes, HM category, anti-tumor treatment, hemoglobin, serum
creatinine (SCr), the estimated glomerular filtration rate (eGFR), serum uric acid, serum sodium and potassium level
were found with significant associations with the occurrence of AKI. Through BNs analysis, age, hemoglobin, eGFR,
serum sodium and potassium had directed connections with AKI. HM category and anti-tumor treatment were
indirectly linked to AKI via hemoglobin and eGFR, and diabetes was connected with AKI by affecting eGFR level.
BNs inferences concluded that when poor eGFR, anemia and hyponatremia occurred simultaneously, the patients’
probability of AKI was up to 78.5%. The area under the receiver operating characteristic curve (AUC) of BNs model
was 0.835, higher than that in the logistic score model (0.763). It also showed a robust performance in 10-fold
cross-validation (AUC: 0.812).

Conclusion: Bayesian networks can provide a novel perspective to reveal the intrinsic connections between AKI
and its risk factors in HM patients. The BNs predictive model could help us to calculate the probability of AKI at the
individual level, and follow the tide of e-alert and big-data realize the early detection of AKI.

Keywords: Acute kidney injury, Hematologic malignancy, Bayesian networks, Disease prediction, Clinical
epidemiology

Background
Patients with hematologic malignancies (HM) share a
higher incidence of acute kidney injury (AKI) during
anti-tumor treatment. A Danish population-based co-
hort study reported that the 1-year risk of AKI was
18.8% in patients diagnosed with lymphoma, 27.5% in
leukemia and 31.8% in multiple myeloma [1]. Among
these HM patients, the occurrence of AKI is not only as-
sociated with common risk factors in non-cancer pa-
tients but also with the malignancies itself and following
treatment [2, 3]. The progression of AKI further limits
anti-tumor treatment and brings about a higher in-
hospital mortality and heavier economic burdens [4, 5].
Furthermore, AKI diagnosis is easily overlooked by phy-
sicians in other divisions apart from nephrology. A study
in China found that about three-quarters of inpatients
did not receive a prompt diagnosis of AKI during
hospitalization [6].
Early recognition of high-risk patients with AKI could

help us to adopt preventive strategies to reverse the devel-
opment of AKI [7]. Several logistic regression-based
models had been proposed to predict the occurrence of
AKI in patients undergoing cardiac surgeries and other
clinical settings [6, 8–11]. The precondition of logistic re-
gression requires the variable independence. While risk
factors of AKI are usually interdependent. Hence, develop-
ing a more flexible and efficient predictive model will fa-
cilitate the early recognition of AKI. Bayesian networks
(BNs) is designed as a kind of machine-learning algorithm.
It can not only display the complex networks among fac-
tors visually and graphically, but also acquire their prob-
abilistic dependency relationships [12]. Moreover, BNs is
not strict about statistical assumptions and perform well

in handling the missing data. This made it more suitable
for clinical researches [13]. Least absolute shrinkage and
selection operator (LASSO) regression is an advanced
variable selection algorithm for multi-collinear data or
high-dimensional data. Previous studies proved that
inserting LASSO regression into BNs analysis can not only
simplify the complexity of the network but also improve
the model’s predictive accuracy [14, 15].
In this study, we applied group LASSO regression-

based Bayesian networks to investigate the interrelation-
ships between AKI and its risk factors in HM patients,
and to evaluate the predictive and inferential ability of
BNs model in different clinical settings.

Methods
Study design and participants
During Oct. 1st, 2014 and Sept. 30th, 2015, a retrospect-
ive cohort study was conducted in Zhongshan Hospital
of Fudan University, a tertiary hospital in eastern China.
Patients who had a diagnosis of lymphoma, leukemia or
multiple myeloma were enrolled as the study partici-
pants. Patients who hospitalized less than 24 h, under-
went dialysis or renal replacement therapy (RRT) and
lacked the repeated serum creatinine (SCr) tests were
excluded from the final analysis [16, 17].

Data collection
Patients’ demographic data, medical history, clinical
diagnosis, anti-tumor treatment, biochemical tests, and
other information were extracted from the hospital elec-
tronic medical records system and laboratory database.
Baseline biochemical results refer to the first test within
24 h during hospitalization. We divided them into 3
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parts: (1) Liver function: alanine aminotransferase
(ALT), aspartate aminotransferase (AST) and total bili-
rubin (TBiL); (2) Renal function: SCr, the estimated
glomerular filtration rate (eGFR) and serum uric acid
(SUA); (3) Other: albumin, hemoglobin, white blood cell
(WBC), serum sodium and potassium.

Definition and classification
According to the KDIGO guideline in 2012 [18], AKI is
defined as an absolute increase in SCr by ≥0.3 mg/dL
within 48 h or ≥ 1.5-fold from the baseline within seven
days. Since the urine output cannot be dated accurately,
we only used the SCr changes for AKI diagnosis. The se-
verity of AKI was divided into Stage 1: SCr increases
≥0.3 mg/dL or ≥ 1.5–fold to 1.9-fold baseline; Stage 2:
SCr increases ≥2.9–3.0 fold baseline; Stage 3: SCr in-
creases ≥3.0 fold baseline or ≥ 4.0 mg/dL, or the initi-
ation of RRT [18]. According to the 10th revision of
International Classification of Diseases (ICD-10), the
hematologic malignancies in this study included lymph-
oma (C91-C95), leukemia (C81–85) and multiple mye-
loma (C90) [19]. Anti-tumor treatment was divided into
autologous stem cell transplantation (ASCT), chemo-
therapy and untreated/palliative care. The baseline refer-
ence levels of serum sodium and potassium were
137~147mmol/L and 3.5~5.3 mmol/L. Values below or
above the reference level were defined as hypo−/hyperna-
tremia and hypo−/hyperkalemia. The normal values of
eGFR and SUA were set as ≥90mL/min/1.73m2 and ≤
359 μmol/L, respectively. Anemia refers to hemoglobin <
115 g/L, and hypoalbuminemia refers to albumin < 35 g/L.

Group LASSO regression
The absolute shrinkage and selection operator (LASSO)
is a shrinkage method within least square method that
enables to shrink estimation of continuous variables to-
wards zero [20]. In order to handle the categorical vari-
able, the Group LASSO (gLASSO) is extensively
developed to perform the predefined grouping variable
selection instead of single dummy variable selection. As-
suming that we have J groups of categorical variables
{G1,G2, …,Gj} and each of them had p1,p2, … pj levels,

the gLASSO estimator β̂
GrLasso

is presented as:

β̂GrLasso ¼ argβ min
Xn
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By adjusting penalty l1 and l2, the candidate variables
can be selected in group level and remain invariant in
group orthogonal transformation such as ridge regres-
sion. The coefficients in one group will either all be zero
or all nonzero. The penalty functions of grLasso, grMCP,
and grSCAD carry out group selection, while the gel and

cMCP penalties carry out bi-level selection. The point
estimation of fitted lambda (λ) along with the
regularization path is selected according to AIC, BIC, or
GCV criteria. Then, k-fold cross-validation for penalized
gLASSO models is performed to plot a grid of values for
the regularization parameter lambda (λ). The lambda.-
min refers to the optimal variable selection with the
minimum cross-validation error. Compared with the lo-
gistic model, gLASSO performs better on multi-collinear
or high-dimensional data.

Bayesian networks
The Bayesian networks (BNs) consists of two parts: a di-
rected acyclic graph (DAG) and its subsequent condi-
tional probability distribution (CPD). In the BNs,
variables are graphically represented by the nodes
X = {Xi, …, Xn} and the relationship between two nodes
is connected by a unilateral arc. If the arc is going from
Xi to Xi + 1, we defined the Xi as the parent node and Xi +

1 as the child node. CPD is acquired to quantify the
probabilistic relationships between parent and child
nodes. The global distribution factorization of X in BNs
model could be specified as:

P X1;…;Xnð Þ ¼ P X1ð ÞP X2jX1ð Þ…P XnjX1;X2;…;Xn−1ð Þ ¼
Yn

1

P Xijπ Xið Þð Þ

π (Xi) refers to the set of the Xi's parent nodes π
(Xi)∈{Xi, …, Xn-1}, and the graphical separation refers to
the conditional independence relationships between (Xi)
and {Xi, …, Xi-1}. BNs modeling contained structure
learning and parameter learning. The structure learning
is acquired from data and can be traced to 3 algorithms:
constraint-based, score-based and hybrid algorithms.
Parameter learning refers to applying either maximum
likelihood (ML) estimation or Bayesian estimation
method to compute the CPD of nodes in the established
network. BNs inference is achieved by computing the
posterior probability of X in the presence of new evi-
dence E. When E changes, conditional probability distri-
butions of both parent and child nodes are also affected.
There are two algorithms for BNs inference, logical sam-
pling algorithm and likelihood weighting algorithm, and
the latter has a lower variance.

Statistical analysis
Pearson chi-square test was used to compare the distri-
bution differences of categorical variables and Cochran-
Mantel-Haenszel (CMH) test was used for ordinal vari-
ables. The crude odds ratios (cOR) and its 95% confi-
dence interval (CI) were calculated to quantify the
association between factors and AKI. The analysis was
run on IBM SPSS 22.0 (IBM Corp., Armonk, NY, USA),
and the threshold of type I error (α) was set to 0.05. The
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process of variable selection in gLASSO regression was
as follows: ① category variables were decomposed into
dummy variables and their group label was assigned into
another parallel dataset; ② the dummy and group data-
sets were analyzed in “grpreg” packages of R program
3.6.0 (R core team); ③ grLasso penalty and BIC criteria
were used to estimate the fitted lambda (λ); ④ 10-fold
cross-validation was performed to screen the optimal
variable selection with the minimum cross-validation
error. Then, the selected preditors further created a
Bayesian network in “bnlearn” packages in the R pro-
gram. The tabu-search algorithm was chosen to establish
the BNs structure, and the ML method was used to ac-
quire the CPD parameters. The area under the receiver
operating characteristic curve (AUC) was applied to as-
sess the prediction ability of the BNs model. A 10-fold
cross-validation was also performed for internal valid-
ation and reducing the overfitting bias. The model dia-
gram was drawn in Netica 5.18 (Norsys Software Corp.,
Vancouver, BC, Canada). Weka 3.8.0 (Waikato Environ-
ment for Knowledge Analysis, the University of Waikato,
New Zealand) was used for model estimation.

Results
During the study period, 2501 patients with hematologic
malignancies were recruited. After excluding those un-
qualified participants, 2395 eligible patients were en-
rolled in the formal analysis (Supplement Figure 1). The
average age of them was 54.9 ± 15.5 years old and 57.4%
were male patients (n = 1375).

AKI incidence and risk factors
A total of 370 (15.4%) episodes were diagnosed with AKI
during hospitalization. Of them, 308(12.9%), 41(1.7%)
and 21(0.9%) patients were located in AKI Stage 1, 2 and
3, respectively. Twenty patients require RRT. Stratified
by HM category, the incidence of AKI in patients with
multiple myeloma (24.1%) and leukemia (23.9%) was
higher than that of lymphoma (13.4%).
As shown in Table 1, patients under 29 years old had

the highest risk of AKI (cOR: 2.16). The AKI incidence
was higher in female patients than in the male (18.2% vs.
13.4%). Pre-existing diabetes increased the likelihood of
AKI, while such a correlation was not found in patients
with hypertension. In comparison to untreated/palliative
care, patients receiving ASCT and chemical treatment
were more vulnerable to develop AKI (cOR: 4.37 and
2.24 respectively). Liver and renal dysfunction were also
found to have a significant association with AKI. Patients
with abnormal ALT, AST and SCr values on admission
were more likely to develop AKI; insufficient eGFR and
increased SUA level also increased the probability of
AKI. Patients with initial anemia and hypoalbuminemia
had a 2.72 fold and 3.85 fold increased risk of AKI.

Variable selection in gLASSO
The tuning parameter (λ) was specified in gLASSO re-
gression by using 10-fold cross-validation in Fig. 1a. The
optimal λ value was highlighted by the vertical lines with
a minimizing cross-validation error. When log (λ) was
equal to − 4.529, eleven of the initial nineteen variables
were selected, including age, gender, diabetes, HM cat-
egory, anti-tumor treatment, hemoglobin, SCr, eGFR,
SUA, serum sodium and potassium levels. Figure 1b pre-

sented the gLASSO coefficient ( β̂) profiles of candidate
variables. When the gLASSO model met BIC criteria(λ =
0.00896), the same predictors and their nonzero coeffi-
cients were identified.

Bayesian network model of HM-related AKI
Though BNs analysis, we delineated the probabilistic de-
pendencies between HM-related AKI and its preditors in
a complex network (Fig. 2). It was observed that age,
hemoglobin, eGFR, serum sodium and potassium cre-
ated direct connections with AKI, while other variables
were related to AKI indirectly. For instance, HM cat-
egory and anti-tumor treatment indirectly linked with
AKI via hemoglobin and eGFR, and diabetes had con-
nected with AKI by affecting eGFR level. Moreover, the
relationship between covariates can also be given in the
network. Hemoglobin was related to gender, HM cat-
egory and anti-tumor treatment; eGFR was influenced
by age, diabetes, HM category, SCR and SUA level.
Table 2 manifested the CPD table of AKI, quantifying
the relationship between AKI and its parent nodes of
eGFR, hemoglobin and serum sodium. Patients whose
eGFR < 59mL/min per 1.73 m2 together with anemia
and hyponatremia shared the highest AKI incidence
(78.5%). In a similar situation but hypernatremia, the
probability of AKI was estimated to be 68.3%. In con-
trast, patients with normal eGFR, hemoglobin and so-
dium level had the lowest rate (5.2%).

Bayesian network evaluation and model inference
As shown in Fig. 3, the AUC value of BNs model was
0.835 (95% CI: 0.812 to 0.858), which was higher than
that of the logistic score model (AUC = 0.763). In 10-
fold cross-validation, the AUC maintained at the level of
0.812 (95% CI: 0.787 to 0.837). By using the Mantel-
Haenszel test, no statistically significant difference in
predictive accuracy was found between initial and cross-
validation datasets (p = 0.298). According to the patients’
demographics and limited available clinical records, BNs
could infer the individual probability of AKI occurrence
during hospitalization. For instance, when anemia, hy-
peruricemia, and hyponatremia were initially found on
admission in patients with leukemia, the expected prob-
ability of AKI was estimated to be 53.8% based on the
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Table 1 Associated factors of AKI in patients with hematologic malignancies

Variate Total AKI (%) χ2 p-value cOR (95%CI)

Age

< 29 yr 213 57 (26.8) 0.564 0.453a 2.16 (1.47~3.18)

30~49 yr 539 78 (14.5) 1.00

50~69 yr 1236 172 (13.9) 0.96 (0.72~1.28)

≥ 70 yr 407 63 (15.5) 1.08 (0.76~1.55)

Gender

Male 1375 184 (13.4) 10.561 0.001b 1.00

Female 1020 186 (18.2) 1.44 (1.16~1.80)

Comorbidities

Hypertension 473 75 (15.9) 0.075 0.784b 1.04 (0.79~1.37)

Diabetes 814 159 (19.5) 15.748 < 0.001b 1.58 (1.26~1.98)

HM category

Lymphoma 1941 261 (13.4) 31.429 < 0.001b 1.00

Leukemia 201 48 (23.9) 2.02 (1.42~2.86)

Multiple Myeloma 253 61 (24.1) 2.05 (1.49~2.81)

In-hospital Condition

Emergent 163 41 (25.2) 12.610 < 0.001b 1.94 (1.34~2.82)

Normal 2232 329 (14.7) 1.00

Anti-tumor Treatment

ASCT 50 13 (26.0) 20.846 < 0.001b 4.37 (2.04~9.36)

Chemotherapy 2036 334 (16.4) 2.24 (1.57~3.79)

Untreated/palliative 309 23 (7.4) 1.00

Liver Function

ALT (≥40 U/L) 150 35 (23.3) 7.616 < 0.001b 1.74 (1.17~2.58)

AST (≥35 U/L) 270 62 (23.0) 13.154 < 0.001b 1.76 (1.29~2.39)

TBiL(≥20.4 μmol/L) 90 17 (18.9) 0.847 0.357b 1.29 (0.75~2.21)

Renal Function

SCr(≥115 μmol/L) 113 79 (69.9) 269.309 < 0.001b 15.9 (10.44~24.21)

eGFR(≥90 mL/min/1.73m2) 1650 170 (10.3) 207.618 < 0.001a 1.00

eGFR(60~89 mL/min/1.73m2) 596 110 (18.4) 1.96 (1.51~2.55)

eGFR(≤59 mL/min/1.73m2) 147 90 (61.2) 13.75 (9.52~19.86)

SUA(≤359 μmol/L) 1619 198 (12.2) 88.388 < 0.001a 1.00

SUA (360~420 μmol/L) 398 58 (14.6) 1.22 (0.89~1.68)

SUA (421~480 μmol/L) 200 40 (20.0) 1.79 (1.23~2.62)

SUA (≥481 μmol/L) 178 74 (41.6) 5.11 (3.66~7.13)

Biochemical Test

Album (< 35 g/L) 584 156 (26.7) 75.012 < 0.001b 2.72 (2.16~3.43)

Hemoglobin (< 115 g/L) 1338 297 (22.2) 105.701 < 0.001b 3.85 (2.93~5.04)

WBC (≥9.5 × 109) 406 102 (25.1) 35.028 < 0.001b 2.15 (1.66~2.79)

Hyponatremia 325 135 (41.5) 216.335 < 0.001b 5.84 (4.50~7.59)

Hypernatremia 41 15 (36.6) 4.74 (2.47~9.09)

Hypokalemia 333 122 (36.6) 227.450 < 0.001b 4.59 (3.53~5.97)

Hyperkalemia 24 20 (83.3) 39.69 (13.45~117.15)

AKI acute kidney injury, cOR crude odds ratio, HM hematologic malignancy, ASCT autologous stem cell transplantation, ALT alanine aminotransferase,
AST aspartate aminotransferase, TBiL total bilirubin, SCr serum creatinie, eGFR estimated glomerular filtration rate, SUA serum uric acid, WBC white
blood cell
a Cochran-Mantel-Haenszel (CMH) test; b Pearson Chi-square Test
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prior information of BNs. However, once these biochem-
ical indicators were corrected to the normal level in
time, the risk of AKI can be reduced to 9.9% (Fig. 4).

Discussion
With the development of novel chemotherapeutic agents
and targeted medicine, the survival time and quality of
life have been remarkably improved among cancer pa-
tients. Meanwhile, the periodic anti-tumor treatment
also poses patients a higher risk of renal dysfunction
[21]. In this study, the incidence of AKI among patients
with multiple myeloma, leukemia and lymphoma was
24.1, 23.9 and 13.4%, respectively. It is higher than that

of general inpatients [22–24] and patients with solid tu-
mors [25, 26]. Therefore, it is essential to take measures
to prevent AKI and adverse consequences associated
with deterioration of renal function.
Developing the predictive models has been proved as a

promising way for early detection of high-risk patients
with AKI. While in the traditional logical regression,
predictions can not be performed unless we know all the
state of variables in the model. In fact, it is difficult to
realize because persuading patients to accept excessive
tests is against medical ethics. Thus, developing a more
flexible model, which can handle the incomplete and
missing data, may make more clinical senses. In this
study, we applied the Bayesian network to AKI risk

Fig. 1 AKI variable selection by using gLASSO regression
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factor interpretation and risk prediction. It can also infer
the probabilities of AKI with the finite amount of known
evidence instead of the total. The parameters of un-
known variables are computed by using the prior know-
ledge acquired from BNs modeling. It enables physicians
to assess the patients’ individual AKI risk more flexibly
and easily. We found that the AUC value of the BNs-
based AKI model was higher than that of the logistic
score model (0.835 vs. 0.763) and showed the strong ro-
bustness in 10-fold cross-validation. Moreover, the
structure and parameters of BNs model are not fixed
and can be optimized continuously by expanding the
sample size and accumulating the variable information.
It was observed that the occurrence of HM-related

AKI is usually multifactorial, including comorbidities,
liver/renal dysfunction, anemia, HM category and anti-
tumor treatment. The complex interrelationships be-
tween AKI and these risk factors make it unsuitable for
the logistic analysis. Multicollinearity among variables is
often encountered in clinical analysis and should be con-
sidered carefully unless it may lead to incorrect infer-
ences. Penalization and regularization techniques, such
as LASSO, have been proved to be the best algorithms
for reducing the complexity of high-dimensional data. It
is especially suitable for dealing with the enormous
number of clinical factors and avoiding overfitting [27].
As an extension of LASSO method, gLASSO can imple-
ment grouping variable selection, which overcomes the

limitations that LASSO can only select the single
dummy variable. In the present study, we used gLASSO
regression to screen 11 key predictors of AKI, and then
present them for BNs structure and parameter learning.
The pre-selection of variables before modeling can sim-
plify the network structure and avoid the false positive
arcs between two irrelevant nodes. Currently, LASSO, as
an effective variable selection tool, has been widely used
in machine learning modeling [28, 29].
Our results revealed that age, hemoglobin, eGFR,

serum sodium and potassium were directly related to
AKI. HM category and AKI was linked indirectly with
hemoglobin and eGFR. Because of renal vascular dys-
function and chronic inflammation, patients with
chronic kidney disease (CKD) are highly susceptible to
AKI, which also can rapidly progress into a serious con-
dition. Anemia is one of the most common complica-
tions in HM patients, which can be caused by the
decreased hematopoietic capacity of bone marrow, blood
dilution, repeated blood collection, iron metabolism dys-
function, decreased erythrocyte survival and a slow
erythropoietin response et al. A Korean study reports
that anemia was more common in HM patients than in
patients with solid tumors (79.4% vs. 50.4%), and HM
patients also share a higher risk of AKI and long-term
mortality [30].
Apart from the conventional risk factors, our study re-

veals that electrolyte disturbance was also associated

Fig. 2 Bayesian Network model of factors relating to AKI in patients with HM
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with a higher risk of AKI. Olgar et al. reported that
among leukemia patients, hyponatremia and hypernatre-
mia accounted for 11.7 and 9.5%, hypokalemia and
hyperkalemia accounted for 7.6 and 6.0% [31]. Volume
depletion such as hemorrhage, diarrhea and vomiting is
the main cause of hyponatremia, which is not uncom-
mon in HM patients receiving chemotherapy. Nutri-
tional deficiency, and continuous undercapacity of
volume can also result in hypokalemia. It was re-
ported that the excessive production of blast cells can
also cause hypokalemia in patients with leukemia
[32]. Consistent with our study, the HM category is
recognized to cast an effect on renal insufficiency [2].
Lymphomatous or leukemic infiltration can lead to
enlarged kidneys. Leukemic hyperleukocytosis can
alter the renal vascular permeability via microcapillary
obstruction and renal vein thrombosis. in the pres-
ence of lymphadenopathy and drug-induced crystal-
luria, such as acyclovir and cotrimoxazole, obstructive
nephropathy can occur. Moreover, we found that pa-
tients receiving ASCT had a higher risk of AKI. This
may be related to the adverse effect of calcineurin in-
hibitors, graft versus host disease and hepatic sinus-
oidal obstruction syndrome [33].
If electrolytes monitor, risk factors recognition, and

prophylaxis management were implemented properly,

one in five hospitalized AKI can be avoided [34]. The
BNs model established in this study can be used to
infer the probability of AKI, so as to identify high-
risk patients in advance and guide subsequent pre-
ventive treatment. When leukemia patients were ini-
tially diagnosed with anemia, hyperuricemia, and
hyponatremia, the expected probability of AKI was
53.8%. If these biochemical indicators were corrected
to normal level timely, the incidence of AKI would be
significantly reduced to 9.9%.
Our study is the first application of BNs in the AKI

study field. It provides us a novel perspective to interpret
the interactions between AKI and its risk factors. BNs
model also shows a superior predictive ability, which can
realize accurate probability calculation at individual
levels. Nevertheless, the study’s limitations should be il-
lustrated. Firstly, the participants of this study came
from a single medical center, which may affect the sam-
ple representation. Secondly, the lack of data on nephro-
toxic drugs may underestimate the association between
chemical treatment and AKI. Thirdly, data in this study
was extracted from the medical record system. Arcs in
BNs can only represent the probability dependencies,
and the causal reasoning needs to be further verified in a
prospective cohort in combination with professional
knowledge.

Table 2 The conditional probability distribution of AKI with eGFR, hemoglobin and serum sodium as parent nodes

Parent Nodes AKI incidence (%)

eGFR Hb Sodium Yes No

≤59 <115 ≤136 78.5% 21.5%

≤59 <115 137~147 47.6% 52.4%

≤59 <115 ≥148 68.3% 31.7%

≤59 ≥115 ≤136 60.7% 39.3%

≤59 ≥115 137~147 38.4% 61.6%

≤59 ≥115 ≥148 45.0% 55.0%

60~89 <115 ≤136 44.7% 55.3%

60~89 <115 137~147 22.8% 77.2%

60~89 <115 ≥148 42.8% 57.2%

60~89 ≥115 ≤136 19.2% 80.8%

60~89 ≥115 137~147 12.0% 88.0%

60~89 ≥115 ≥148 33.4% 66.6%

≥90 <115 ≤136 38.4% 61.6%

≥90 <115 137~147 10.3% 89.7%

≥90 <115 ≥148 36.8% 63.2%

≥90 ≥115 ≤136 19.3% 80.7%

≥90 ≥115 137~147 5.2% 94.8%

≥90 ≥115 ≥148 33.0% 67.0%

AKI acute kidney injury, eGFR estimated glomerular filtration rate, Hb hemoglobin
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Conclusions
AKI is prevalent in hospitalized patients with HM, influ-
enced by a variety of factors including comorbidity,
renal/liver dysfunction and anti-tumor treatment. Bayes-
ian networks can reveal the inherent connections

between HM-related AKI and its multiple risk factors.
The BNs predictive model could help us to calculate the
probability of AKI at the individual level, and follow the
tide of e-alert and big-data realize the early detection of
AKI.

Fig. 3 Receiver operating characteristic curves for AKI predictors in Bayesian network

Fig. 4 Bayesian network under known evidence variables
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