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Abstract

Background: Despite modern technologies and novel computational approaches, decoding causal transcriptional
regulation remains challenging. This is particularly true for less well studied organisms and when only gene expression
data is available. In muscle a small number of well characterised transcription factors are proposed to regulate
development. Therefore, muscle appears to be a tractable system for proposing new computational approaches.

Methodology/Principal Findings: Here we report a simple algorithm that asks ‘‘which transcriptional regulator has the
highest average absolute co-expression correlation to the genes in a co-expression module?’’ It correctly infers a number of
known causal regulators of fundamental biological processes, including cell cycle activity (E2F1), glycolysis (HLF),
mitochondrial transcription (TFB2M), adipogenesis (PIAS1), neuronal development (TLX3), immune function (IRF1) and
vasculogenesis (SOX17), within a skeletal muscle context. However, none of the canonical pro-myogenic transcription
factors (MYOD1, MYOG, MYF5, MYF6 and MEF2C) were linked to muscle structural gene expression modules. Co-expression
values were computed using developing bovine muscle from 60 days post conception (early foetal) to 30 months post natal
(adulthood) for two breeds of cattle, in addition to a nutritional comparison with a third breed. A number of transcriptional
landscapes were constructed and integrated into an always correlated landscape. One notable feature was a ‘metabolic axis’
formed from glycolysis genes at one end, nuclear-encoded mitochondrial protein genes at the other, and centrally tethered
by mitochondrially-encoded mitochondrial protein genes.

Conclusions/Significance: The new module-to-regulator algorithm complements our recently described Regulatory Impact
Factor analysis. Together with a simple examination of a co-expression module’s contents, these three gene expression
approaches are starting to illuminate the in vivo transcriptional regulation of skeletal muscle development.
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Introduction

We are interested in addressing the transcriptional regulatory

rewiring that underpins muscle development and evolution.

However, such an approach is predicated on first having a basic

understanding of the core, conserved relationships that exist

between genes within a single muscle and species. In order to

achieve these aims, we have chosen the bovine longissimus dorsi

muscle as our model system. Unlike rodent laboratory models [1],

a large animal system such as the bovine allows reliable

identification of skeletal muscle even in the very early pre-natal

stages (primary, secondary and tertiary myogenesis). In turn, this

permits a developmental sequence not experimentally feasible in

other mammals. Moreover, the bovine is arguably a superior

biomedical model than the rodent because 1) its protein sequences

are more similar; 2) some genetic disorders of relevance to humans

are heritable in bovine and not in rodents; and 3) their larger size

makes bovines closer to humans from a biomechanical pers-

pective.

Differences in transcriptional regulation underpin much bio-

logical variation, from cellular responses within a few minutes to

evolutionary change over eons [2–4]. Under the correct cellular

circumstances, Transcription Factors (TF’s), in coordination with

transcriptional co-factors, ligands, the appropriate signalling

cascade and a receptive chromatin structure, will bind to a target

gene’s promoter region culminating in a targeted gene expression

response. Despite a combination of modern technologies such as

high density single nucleotide polymorphism (SNP) panels,

transcriptional profiling, ChIP-on-chip data [5,6], together with

computational approaches including eQTL [7], eQED [8],

Regulatory Potential [9] and Regulatory Impact Factors [10],

decoding causal transcriptional regulation remains a challenge.

For example, the application of ChIP-on-Chip across a wide

diversity of TF’s and species is lagging well behind the generation

of gene expression data.

Networks are a promising tool for modelling, analysis and

visualisation, and are considered semi-quantitative graphical

representations of transcriptional regulation. Their topology
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reveals modules (clusters of functionally related genes and their

regulators) and hubs (genes with high transcriptional connectivity)

in a non-random fashion often characterized by a connectivity

structure that follows a scale-free power-law distribution [11]. One

method for building biological networks is to establish connections

(edges) between genes (nodes) whose expression profiles are

significantly correlated. While there are numerous such co-

expression networks reported in the literature [12–16], the only

other muscle-specific network is much sparser (comprising 822

genes and 26 TF) [17]. To maximise the robustness of this muscle

network, we took advantage of two unique experimental resources

for in vivo mammalian skeletal muscle biology [18–20] which

together comprise 26 experimental treatments and 3 major

perturbations (genetic, ontogenetic and nutrigenomic) within a

single tissue and species. To the best of our knowledge, there is no

tissue and species-specific developmental data set in the public

domain that matches it for biological comprehensiveness.

A number of refinements to the analysis of gene expression

correlation networks have been proposed for the identification of

TF’s controlling gene expression, including the incorporation of

TF binding sites. However, many transcriptional regulators do not

bind directly to DNA and, for many that do bind, the binding site

is unknown [21,22]. For example, the current release of MatBase

(version 8.0) contains 1,751 human TF for which there is a

position weight matrix description of the binding site for only 728.

In addition, the binding sites of many TFs are so similar that they

do not allow a reliable prediction of function; clearly, sequence

preferences can be altered by the binding context [23].

Fundamentally, the biological processes mediated by many TF

are unknown [21]. This raises an important question; can we

identify complementary genomic approaches that help infer TF

regulation but do not require binding site data?

Here we describe the application of PCIT [24] to construct a

mammalian muscle gene expression correlation network. Addi-

tionally, we describe a new method that helps infer the

transcriptional regulators involved in the regulation of the various

network modules. Because we exclusively focussed on one tissue

type, the inviolable modules of mammalian life and their

transcriptional regulation are captured within a muscle-specific

context. The output thus represents a powerful functional genomic

information resource for mammalian myobiology, and should

generate robust hypotheses for a host of downstream in vitro and in

vivo validations. In light of our regulatory findings, we briefly

discuss the limitations as well as the promise of co-expression

approaches.

Materials and Methods

Ethics statement
Use of animals and the procedures performed in this study was

approved by the New South Wales North Coast and Animal Care

and Ethics Committee (Approval no. G2000/05).

Tissues sampled
Details regarding animal resource and experimental designs can

be found in the recent literature [18–20]. In brief, longissimus dorsi

skeletal muscle biopsies of Piedmontese cross Hereford and Wagyu

cross Hereford Bos taurus cattle were acquired at 10 developmental

time points (3 pre-natal, birth and 6 post-natal) and from

tropically-adapted Belmont Red cattle (Bos taurus: 50% Afrikander,

25% Hereford and 25% shorthorn) throughout a nutritional

deprivation and re-alimentation experiment comprising 3 adult

time points for each of the two treatments. RNA was extracted as

previously described [18–20].

Computing the Always Correlated Network
Unlike these previously described studies which used a much

sparser cDNA platform, these transcriptomes were assayed using a

bovine oligonucleotide microarray, developed in 2006 by

ViaLactia Bioscience in collaboration with Agilent, containing

21,475 unique 60-mer probes, representing approximately 19,500

distinct bovine genes. Preliminary edits resulted in 6,077 probes

being discarded because they were expressed at levels below the

sensitivity of the platform (i.e., negative signal to noise ratio) in all

hybridizations. Of the remaining 15,398 probes, 11,421 different

genes were represented capturing ,52% of the 22,000 total genes

estimated by the recent bovine sequencing effort [25]. An

additional 1,673 probes were found to have dubious gene

assignments (due, for example, to identical matches to multiple

genes). The 13,094 potential ‘nodes’ were then pre-filtered, with

all genes whose expression showed no significant deviation from

the mean, defined by a one standard deviation interval, across any

of the 26 treatments removed in an effort to minimise spurious

correlations. These editing criteria resulted in a total of 6,603

genes for which detectably strong and variable expression across

treatments was available.

We computed correlation co-efficients among each of 6,603

genes and reverse-engineered transcriptional networks using PCIT

[24]: In brief, PCIT belongs to the family of weighted network

algorithms and works by comparing the co-expression arrange-

ments for triplets of genes, with all triplets being exhaustively

explored. To ascertain the strength of mutual independence, for

each triplet the co-expression between two members that can be

attributed to the correlation to the 3rd member is determined. This

approach helps discard spurious correlation co-efficients i.e.

arrangements where a large proportion of the correlation between

two genes is actually attributable to the presence of a third gene.

Given that the relationship between each triplet is different,

significance can occur at a range of correlation coefficients. An

edge was only formed in the ‘Always Correlated’ transcriptional

landscape if a significant correlation persisted between the

expression of that particular pair of genes across all six landscapes

i.e. irrespective of the animal’s genetic background, developmental

stage and nutritional status. The sign on the edge in the Always

Correlated landscape was taken from the Overall landscape. The

Overall landscape is based on the significant correlations

computed across all 26 treatments (as denoted on the x-axis of

Figure 1, top left panel). The correlations for the Overall landscape

were built from all the experiments laid end-to-end i.e. the full

Piedmontese development time course (10 time points), the full

Wagyu development time course (10 time points) and the

nutritional restriction experiment (6 time points).

The Transcriptional Regulators
For the purposes of mapping the Always Correlated transcrip-

tional landscape we identified a broad range of transcriptional

regulators, including not only TFs but also signalling molecules

and chromatin remodellers, as has previously been published in a

related context [26]. The bona fide TFs (sequence specific DNA

binding factors) on the array platform were identified in two steps

using Genomatix software (http://www.genomatix.de/). In the

first step, the list of all the known gene names (HUGO) for the

human was used as an input for Bibliosphere [27] and a list of TFs

retrieved based on literature, gene ontology (GO) and manual

annotation. In the second step, genome-wide searches for TFs

were identified in MatBase [28] (based on TF matrices) for

human. Subsequently, these two lists were collated and duplicate

TF entries were removed to generate a final non-redundant list of

1,017. This list of TF is conservative as the full repertoire of

Skeletal Muscle Regulation
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Figure 1. The profiles of MYOD1 and MYOG across the 6 transcriptional landscapes. Their significant correlation in each of the 6 instances
explains their inclusion in the Always Correlated landscape.
doi:10.1371/journal.pone.0007249.g001
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putative TF in mammalian genomes is larger than documented

here. For example, the Zinc Finger motifs number into the

hundreds on their own.

The signalling molecules and chromatin remodelers groups

were established based on GO terms following [26]. In brief, we

examined files available at ftp://ftp.ncbi.nih.gov/gene/DATA/

which were obtained and searched by accession number to identify

gene ontology information for each sequence. We then text

searched for the following strings: ‘‘chromatin’’ and ‘‘signal.’’ (see

Table S1 for identity of genes in these groups). It is possible that

the ‘signal’ text search is not discriminatory enough to exclusively

identify transcriptional regulators and this should be borne in

mind when viewing the network.

Module-to-Regulator Analysis
We identified modules of co-expressed genes in Cytoscape 2.5.1

[29] using the organic clustering algorithm. The organic clustering

option groups together genes with common neighbours. We then

computed a downstream analysis which asks the question ‘‘which

TF had the highest average absolute correlation to all the ‘target’

genes present in a given module?’’ In the event of a TF being a

member of a module, it would be deemed a ‘target’ in this context.

For the purposes of computing this correlation we used the

‘Overall’ contrast. The absolute correlation coefficients (i.e.

unsigned) were used to avoid the problem of modules which

contained a mix of positive and negative correlations.

In the instances where modules are continuous with another

part of a network, an objective delineation of their component

genes is not immediately apparent. Our resolution was to compute

a more stringent (less connected and hence less cohesive) version of

the landscape by only considering edges derived from significant

PCIT connections and with correlations .0.85 in absolute value

(data not shown). We then expanded the module of interest by

adding on to its members only direct neighbours of the full PCIT

set (see Table S2 for module genes).

This filtering procedure gave rise to separate networks for the

main modules in the landscape which could then be used to more

objectively identify the ‘target’ genes for the downstream module-

to-regulator analysis. Some of the less cohesive modules (including

the slow twitch module) were not maintained by this analysis and

so do not feature in the output. Clearly, no filtering is necessary for

those genes that are in discrete networks within the Always

Correlated landscape, such as the vasculature, ribosome and fat

modules. Of these, only modules containing at least 4 nodes were

included in the analysis (with the sole exception of a fat module

containing 3 nodes).

Results

The Always Correlated transcriptional landscape
With the available 6,603 genes, we reverse-engineered the

following six interlaced transcriptional landscapes using PCIT

[24]: Overall (using all 26 experimental conditions), Piedmontese

(10), Wagyu (10), Prenatal (8), Postnatal (12) and Nutrition (6). An

appealing numerical feature of PCIT is that, irrespective of the

overall distribution of correlation coefficients (which may or may

not be normally distributed) the significant ones always follow a

bell-shaped normal-like distribution (Figure 2). An edge in the

Always Correlated transcription landscape was assigned when a

significant PCIT correlation was observed for a pair of genes in all

6 parent transcriptional landscapes described above (Figure 1).

Significant co-expression correlations as low as ,0.5 were

identified in the ‘‘Overall’’ transcriptional landscape, but the

coefficients of those confirmed across all 6 landscapes tended to be

higher than this. This approach yielded a landscape with 3,506

nodes and 6,506 edges (Figure 3; and in more detail on the web

site; http://www.livestockgenomics.csiro.au/courses/Hudson_

muscle_transcription.html). Of the 6,506 edges, only 224 (i.e.

3.4% of the total) were negative (Table 1). This is consistent with

[12] who computed a gene co-expression network across many

human tissues and reported an over-representation of positive

associations. The network and node file information for assem-

bling the Always Correlated transcriptional landscape are in

Tables S3 and S4 respectively.

While a pair of genes in the Always Correlated landscape may

be joined by a positive or negative edge, this does not imply that

the significant correlation is the same sign in all six networks.

While comparatively rare, there are several instances where the

sign is positive in 5 of the 6 networks and negative in the other,

and vice versa (yellow background in Table S3).

Modules in the Always Correlated transcription
landscape

The Always Correlated landscape comprised one large,

cohesive network (2,620 nodes), two much smaller networks (65

and 18 nodes respectively) and a large number of very small

networks containing 2 to 10 genes each. The biologically

meaningful modules present in the main network could easily be

discerned by eye once node colour was mapped to GO term, and

were additionally verified by the Cytoscape plug-in MCODE (data

not shown). Taking into account GO term and intra-connectivity,

the major functional modules contain an enrichment of cell cycle,

extracellular matrix, glycolysis/fast twitch muscle subunits, slow

twitch muscle subunits, nuclear-encoded mitochondrial and

mitochondrially-encoded mitochondrial genes. This enrichment

was formalised statistically using the Cytoscape plugin, BinGO

[30] after highlighting the key modules manually and selecting the

‘‘Biological Process’’ option for Bos taurus. The enrichments for the

cell cycle, nuclear-encoded mitochondria, extracellular matrix and

glycolysis modules were awarded the following P-values: 2.93 e213,

1.10 e211, 9.97 e26 and 7.88 e215 for ‘‘M-phase’’, ‘‘oxidation

reduction’’, ‘‘collagen fibril organisation’’ and ‘‘cellular carbohy-

drate process’’, respectively.

Furthermore, several mitochondrially-encoded mitochondrial

genes (ND1, ND3, ND4, ND4L, ATP8) form a small cluster

between the glycolysis and nuclear-encoded mitochondrial gene

modules, indicating a spatially arranged ‘metabolic axis’ running

coordinately through the main network. When including networks

outside of the main networks, other functionally coherent modules

included genes encoding neural, immune system, microvascula-

ture, fat metabolism and ribosomal proteins. The ribosomal

module comprised only 7 genes, much smaller than in previously

published co-expression reports. This is because the editing

procedure removed many genes encoding ribosomal proteins

from the downstream analyses because of their low standard

deviation. The small isolated network at the top left hand side of

the overall landscape comprising 65 genes defied a simple

annotation.

Muscle contractile subunits in the Always Correlated
transcriptional landscape

The positions of the bovine orthologues of the human and

mouse fast, slow and embryonic muscle fibre type specific

structural subunits were determined (Table 2). The majority (i.e.

7 of the 11 slow subunits, 7 of the 12 fast subunits and 2 of the 3

embryonic subunits) made it onto the network, and clustered in a

manner consistent with their known biology. TPM2, not listed as a

Skeletal Muscle Regulation
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Figure 2. The frequency distributions of all correlation coefficients in each of the six transcriptional landscapes (black) plus those
deemed significant by PCIT (red).
doi:10.1371/journal.pone.0007249.g002
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slow twitch fibre protein in [31], is located in the slow twitch

module. MYH8, an embryonic myosin isoform, is located in the

fast twitch module. However, it is negatively correlated with the

other genes in the module, reflecting its’ downregulation

concurrent with the developmental upregulation of the fast twitch

subunits. The genes encoding the fast twitch proteins lay in a

module with a group of genes encoding proteins involved in

glycolysis. In contrast, the slow twitch module did not contain any

metabolic enzymes. In addition to the two large modules

containing genes encoding muscle structural proteins, a number

of smaller modules or clusters of genes also contain a subset of

muscle structural proteins (Table 2). Interestingly, three small heat

shock proteins, HPSPB3, 7 and 8, implicated in muscle function

and myopathies [32] have expression patterns correlated with

muscle structural proteins. HSPB1 is also in the Always Correlated

landscape linked to HSPB8, to which it is also known to bind [32].

Hubs in the Always Correlated transcriptional landscape
Major hubs (i.e. the most highly connected nodes) in the

network include two genes from the cell cycle module (DSE,

DLGAP5) with 37 connections each. To formalise whether hub

genes tended to belong to a particular gene ontology, we sorted the

nodes by connectivity (in descending order) and the GO terms of

those enriched at the top of the list was determined using the

GOrilla tool [33]. The cell cycle was the top hit followed by

glycolysis and cell adhesion. None of these fundamental cellular

processes are specific to muscle tissue and not surprisingly the

correlations transcend any muscle specific process. Conversely,

muscle-specific genes were not enriched by this analysis. This

information is displayed on the network using the more traditional

connectivity criterion (Figure 3B).

Among the top 660 (10%) most connected genes in the Always

correlated Landscape, there were 70 TF, implying an over-

representation hypergeometric test p-value of 8.66E-6. This

indicates that highly connected genes are more likely to be TF

than would be expected by chance, at least in this PCIT-driven

network. This phenomenon could be attributed to the partial

correlation approach capturing causal connections [34]. However,

given the canonical pro-myogenic TF are poorly connected or

absent, we do not believe that connectivity in a co-expression

network should be used as a simple proxy for regulatory importance.

Effect of changing the correlation coefficient cut-offs
The coherency of the modules can be appreciated by increasing

the correlation cutoff of the landscape construction. By focussing on

only those connections with correlation coefficients greater than

0.99 one can construct a small landscape of 467 nodes and 644

edges (Figure 3C). This smaller landscape contains modules of cell

cycle genes, glycolysis genes and genes encoding mitochondrial

proteins, mirroring some of the main modules in the Always

Correlated parent landscape and highlighting those modules built of

only the most extreme correlation coefficients. The dynamic

changing topology of the Always Correlated network can be

visualised by changing the correlation cut-off incrementally. This is

illustrated on Figure S1 which shows in 12 consecutive panels the

topology of the network at the following thresholds: 0.75, 0.80, 0.85,

0.90, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97 and 0.98 respectively.

Developmental expression profiles of the core modules
The consensus expression profiles of the core modules were

plotted across the development time course for the Piedmontese6
Hereford samples (Figure 4). Very similar profiles were observed for

the same modules from Wagyu6Hereford animals (data not

shown). The gene expression in the cell cycle and extracellular

matrix modules are high in the prenatal samples and decline in the

day 280 sample to lower post natal levels. In contrast, the nuclear

Figure 3. The Always Correlated transcriptional landscape.
Networks were visualised using the organic algorithm of Cytoscape [29].
A) Node size was mapped to average transcript abundance, edge colour
was mapped to the sign of the correlation in the ‘‘Overall’’ landscape
and node colour was mapped to Gene Ontology process. Node shape
was mapped as follows: TFs (triangles), signalling molecules (squares)
and chromatin remodelers (diamonds). All other genes (i.e. non-
regulators) were mapped as ovals. B) Node size was mapped to number
of connections. C) The transcription landscape built from connections
with correlation coefficients .0.99.
doi:10.1371/journal.pone.0007249.g003

Table 1. Network connectivity.

OVERALL PIED WAGYU PRENATAL POSTNATAL DIETS

OVERALL 22.921 48.53%2 46.60% 27.08% 7.09% 3.49%

PIED 37.21% 16.55 39.99% 30.42% 7.27% 2.99%

WAGYU 37.95% 29.89% 18.74 27.98% 7.50% 2.88%

PRENATAL 20.09% 22.92% 19.37% 13.20 4.20% 2.56%

POSTNATAL 1.78% 2.10% 1.99% 0.98% 5.87 3.06%

DIETS 1.29% 1.14% 1.09% 0.90% 0.95% 3.03

1Clustering coefficient (diagonal) for each network.
2Percent overlap computed from the ratio of common links divided by the total
number of unique links for positive (above diagonal) and negative (below
diagonal) links across each pair-wise network comparison.

doi:10.1371/journal.pone.0007249.t001
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and mitochondrially-encoded mitochondrial genes both show an

increasing trend in expression level across development. Fat gene

transcription is negligible at primary myogenesis but markedly

induced by secondary myogenesis. Conversely, glycolysis gene

expression ascends during pre-natal development and remains

constitutively high in adult muscle. Fast twitch muscle transcription

is much lower than slow twitch muscle transcription at primary

myogenesis but by differentiation little difference in levels of gene

expression between the fibre types are apparent. Other than birth

which experiences a 3–4 fold down regulation, vasculature

expression is moderate and fairly stable across all time points.

The cell cycle gene expression crashes at birth coincident with the

large-scale exiting of the cell cycle and transition to a post-mitotic

state in mature muscle. As expected, ribosomal gene expression is

high and stable across all time points.

Transcriptional Regulators in the Always Correlated
transcriptional landscape

As the network is scale-free (indicative of being non-random) the

vast majority of nodes have very few connections. This observation

applied to both TF (of which there were 430, of the 1,017 in the list,

included in the networks) as well as all genes (n = 3,506) (Figure 5). In

addition to the TFs, 23 chromatin remodelers and 405 signalling

molecules were also include in the networks (Table S1). In some

instances, the regulators of a given module will make it into the

module itself based on the PCIT networking strategy. For example,

ESRRA – a recently discovered regulator of mitochondrial biogenesis

[35] - is a member of the mitochondrial co-expression module.

Equally, SOX17 – a known major regulator of vasculogenesis [36] –

is a member of the microvasculature module. The transcriptional

regulators present in each of the major modules are documented in

Table 3. This shows that the PCIT-driven co-expression method can,

in many circumstances, cluster regulators with their targets in an

unsupervised fashion, and underscores the ability of weighted

networks to identify causal relationships.

However, while regulators in general perform similarly to all the

genes in the landscape in terms of their connectivity distribution

(Figure 5), we noticed that many of the most fundamental

transcriptional regulators, including the canonical pro-myogenic TF

themselves, are often poorly connected, or indeed completely absent

from the network. This observation impacts on our ability to correctly

reverse-engineer transcriptional regulation using basic co-expression

approaches. For example, MEF2C and MYF5 are totally uncon-

nected and fail to make it onto the landscape, while MEF2A,

MEF2B, MYF6, MYOD1 and MYOG are connected to one gene

only, namely KPNA3, GSTK1, FHOD1, MYOG and MYOD1,

respectively. ANKRD1, ANKRD2 and CSRP3, muscle-specific

transcriptional modifiers, also did not make it into the Always

Correlated landscape.

Module-to-regulator analysis
In an attempt to identify more of the major regulators of core

biological processes purely with co-expression analyses we took

advantage of the computed topology of the Always Correlated

landscape to amplify the signal to noise for a subsequent

downstream analysis. We computed the average absolute co-

expression of bona fide TFs (from the conservative TF list) to those

genes present in the functionally coherent modules identified in the

parent network (refer to Table S2 for input target gene lists i.e. the

genes present in a given module). The computation of the absolute

values, versus the ‘signed’ values, is clearly an important

modification when modules are connected by mixed signs.

However, in reality the vast majority of co-expression network

connections are positive. To compute the module-to-regulator

correlations we used the values obtained from the ‘Overall’ network.

A number of known regulators were identified by the Module-to-

Regulator analysis which were absent from the PCIT-driven

network approach (refer to Table S5 for the full output). TF with

a large number of connections to a module (i.e. hubs) are also more

likely to be awarded a high ranking (specific to that module) by the

module-to-regulator analysis.

While we assessed the absolute, average correlation of all genes

on the array, the bona fide TF were coded numerically so that their

output could be specifically identified. Our discussion centres on the

TF output specifically. An example of the extra TF information

provided by the Module-to-Regulator analysis is TFB2M, a

Table 2. Composition of modules containing muscle subunits in the Always Correlated network.

Slow twitch
fibres

Fast twitch
fibres

Embryonic
fibres

Other structural
protein genes

Other muscle protein
genes

Slow twitch module MYL2, TNNT1, MYBPC1 TPM2, LDB3 MB, CA3, SH3BGR

Fast twitch module MYH1, TNNT3, MYOM2,
TPM1, ACTN3, MYBPC2,
TMOD4

MYH8 NEB (tv), MYPN, SSPN RYR1, ALDOA, ATP2A1,
ENO3, CKM, PFKM, FBP2,
PGAM2, DHRS7C, JPH2

In another module/
cluster

[MYL6B, (HSPB3)]
[TNNC1 (TRDN)]
[TPM3 (HDAC3)]

[MYL4 (TMSB10,
TMEM204, TUBB2B,
DLAT)]

[MYBPH, MYBPHL[ [TTN (tv), NEB (tv)]
[LMOD2, TTN (tv)] [SMPX (PDE4DIP)]
[MYOT (GHITM)] [MYBPC3 (SFRS7)]
[KBTBD5 (RPS6KA3, HSPB8)] [TNNT2
(TCF7L2, CTNNB1, NAV3, PSRC1,
SH3PXD2A)] [TCAP, PDLIM3, (HSPB7)]
[TRIM63, (SLC7A8)]

Not in the Always
Correlated network

MYH7, MYL3,
MYOZ2, MYOM3,
TNNI1, TMOD1

MYL1, MYH2, MYH4,
TNNC2, MYOZ1,
TNNI2, MYLPF

MYH3, MYL7 Many other genes Many other genes

Fibre type assignments are from [31], except for TMOD1 and TMOD4 [64] and MYL6B [65].
italics negatively correlated with the majority of the members of the module.
tv – transcript variant.
[] module or cluster.
() non-structural protein.
doi:10.1371/journal.pone.0007249.t002
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fundamental regulator of mitochondrial transcription [37] which

has very high average absolute correlations (0.92 and 0.89) to genes

in both the nuclear-encoded and mitochondrially-encoded mito-

chondrial modules, but does not make it into either module by

PCIT because no single connection is deemed significant enough.

Table 3 provides a synopsis of the main results for each module,

comparing the two methods. For the purposes of illustration, the co-

expression profiles of the genes present in the neuron module, plus

that of TLX3 [38] (which was not a member of the PCIT-driven

module, but was identified by the Module-to-Regulator analysis) are

shown in Figure 6 using the 26 treatments of the Overall landscape.

Discussion

In this paper we present by far the most comprehensive

mammalian skeletal muscle co-expression network to date. It is

Figure 4. The expression profiles of mammalian muscle over development. Representatives from each of the main functional modules are
shown: Immune, nuclear and mitochondrially-encoded mitochondrial genes (A); Extra-cellular matrix, fat and glycolysis gene transcription (B);
Vasculature, fast and slow twitch muscle (C); and Cell cycle, ribosome and neuron gene transcription (D).
doi:10.1371/journal.pone.0007249.g004

Skeletal Muscle Regulation

PLoS ONE | www.plosone.org 8 September 2009 | Volume 4 | Issue 10 | e7249



based on the muscle expression profiles of 6,603 variably expressed

bovine genes, assembled using a data-driven information theoretic

based algorithm called PCIT [24]. The exceptional utility of

information theoretic approaches in reverse-engineering networks

has recently been formalised in a competitive arena. In the

DREAM2 genome scale network challenge the various competing

algorithms were presented with a compendium of 500 normalised

E. coli microarrays [39]. The winner was the CLR algorithm of

[40] which, in an analogous fashion to PCIT, ‘‘goes beyond the

pairwise mutual information to include the state of a third gene…’’

[39]. The combination of the Module-to-Regulator analysis with

PCIT correctly inferred a number of components of the regulation

of biological processes that are conserved across the experimental

perturbations. The success of the module-to-regulator analysis

suggests that our ability to compute transcriptional regulation was

augmented by using the topology of the co-expression modules.

This input data enriches for the conserved connections and

generates a less noisy set of target genes for subsequent

downstream analyses.

Our experimental design leads to a highly robust co-expression

transcriptional landscape. This is because the biological perturba-

tions are so dramatic they force more genes to aggressively span a

high proportion of the parametric space for the expression signals

(Figure 7). While experimental perturbations are not a necessary

condition for inferring co-expression networks [41] , they are

considered useful [42] and will influence the topology of the

landscape. In this respect, the foetal developmental perturbations

are particularly discriminatory because pre-natal bovine muscle

undergoes proliferation followed by differentiation, through two

(or three) major waves of myogenesis. The changing cellular

Figure 5. The connectivity of all genes in the Always Correlated
transcriptional landscape versus the transcriptional regulators.
doi:10.1371/journal.pone.0007249.g005

Table 3. The transcriptional regulators correlated with the functional modules.

Module gene
ontology

Transcription Factors common
to both approaches

Transcriptional Regulators present in the
Always connected landscape modules and
not in Top 101

Top 10 correlated Transcription Factors
in the Overall landscape using the
Module-to-Regulator analysis2

Cell cycle FOXM1 [66], E2F8 [67], E2F1 [68],
E2F2 [69], HELLS [70]

No TF/NDC80 [71], TOP2A [72]/no chromatin E2F1, CBX2, TCF19, MYBL2, FOXM1, CDCA4 [73],
HELLS, E2F2, E2F8, TIAM1 [74]

Glycolysis/Fast Twitch none EP400, ZBTB7A, MAFB, CBX8, SIX1 [51], TBX15,
YBX1, ELF3/SHC1 [75], OR5A1, LGR4, PDE4C,
ASB12, PTPLA, GPR98, GPR83/SETMAR

BGLAP, TBX15, PAX2, HLF [54], TADA2L, NPAS3,
ARNT2, CHD3, GTF2IRD1 [58], ZNF521

Mitochondria (nuclear-
encoded)

none ESRRA [35], MAX, HIF1AN, SMARCB1, RNF14,
SMARCA4, MBD1, TAF6, ZNF583, MYF6, ZNF618,
EBF2/BSG, HOMER2, C5ORF13, WSB1, STYXL1,
GRM2/no chromatin

CEBPB [76], PIR (co-factor of NFI, see [77]), CDCA7,
NR4A1, ZNF358, ZBTB7B, TFB2M [37], CBX2, KLF9,
AFF1

Mitochondria (mito-
encoded)

none EBF3, PAWR/EFNA2, SMURF1, ADRBK2/no
chromatin

LBX1, ZNF358, ATF4, THRB, NFIX, BHLHB3, BGLAP,
CREB3L4, GPS2, ZBTB7B

Extracellular matrix PHF19 PCBD1, PBX3/CARHSP1 DCLK1, ANGPTL1 [78],
ELMO1, GEM, OPHN1, CNIH, S100A10, VAV3,
LTBP4, ANK2, IQGAP2, SPARC [79], IGFBP6 [80],
DDR2, GPR124, TRAF3/no chromatin

TIAM1 [81], PHF19, SOX12, CBX2, CDCA7, SREBF2,
MYEF2, E2F2, TCEAL8, CDCA4

Immune system IRF1 [57] none IRF1, RNF14, TEAD1, LRRFIP1, EPAS1, NR1D2,
RORC, PCGF5, PHF12, HOXD8

Microvasculature SOX17 [36], SOX18 [36], TAL1 none SOX17, HES2, FOXF1, TAL1, SOX18, LHX6, TCF7,
LMO2, NRIP2, ZHX1

Ribosomal proteins none none SCMH1, CITED1, RBM4, ILF2, PRDM16, PRMT1,
DPF3, NCOA5, CDCA7L, TRIM28

Fat none none TAF6L, DRAP1, ZNF219, ZNF496, CITED1, PIAS1
[55,56], HIF1AN, PAX1, RLF, MTERFD3

Neural TLX3 [38] ZNF621/ACCN2, AKAP7/no chromatin TLX3, IRX6 [82], LHX1 [83], HOXD10 [84], DLX5
[85], HES5 [86], BCL11A [87], MEIS2 [88], HOXB3
[89], SSBP3 [90]

1Order = TFs followed by Signalling molecules then Chromatin remodellers with ‘‘/’’ separating the 3 groups.
2Order = descending strength of absolute average correlation coefficient. References providing experimental evidence supporting our computational output are provided.
doi:10.1371/journal.pone.0007249.t003
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composition of the tissue helps remove spurious correlations and

ensures only the most fundamental relationships remain. Since

some modules are more robust than others in terms of their

average correlation coefficients (Figure 3C) the impact of a given

set of experimental perturbations may not be even across the

landscape.

As a whole, the co-expression landscape is highly modular

(Figure 3A) and scale-free (Figure 5) [11]. These observations are

consistent with real biological regulatory networks. However,

unlike real regulatory networks which tend to be disassortative, i.e.

the hubs are not linked [11], we find that the muscle co-expression

networks are more assortative (e.g. there are a number of inter-

connected hubs). The highly assortative nature of the Always

Correlated landscape is clearly evident when node size is mapped

to connectivity instead of transcript abundance (Figure 3B). From

this perspective, the large nodes are clustered together, particularly

in the cell cycle, extracellular matrix and glycolysis modules. This

assortativeness reduces the extent to which the co-expression

landscape can be considered an ‘‘ultra-small world’’ since most

nodes are not near a hub.

On the other hand, mapping node size to transcript abundance

(Figure 3A) is appealing because it emphasises those proteins that

make major structural contributions to the tissue. From this

visualisation perspective, it is clear that the major components of

skeletal muscle, irrespective of each treatment, are the various

muscle contractile subunits, the mitochondria, and the extracel-

lular matrix. Because so many of the biopsies were derived from

adult muscle which is post-mitotic, the cell cycle module correctly

appears small and insignificant (despite its exceptional cohesive-

ness). The overall modular resolution we observe in our bovine

muscle network strongly resembles the co-expression output of

[43], a similar analysis based on a comprehensive set of 24 healthy

human tissues. The major modules discovered by [43] were

nuclear-driven metabolism, ribosomal proteins, mitochondrial

metabolism, immune response, metal ion homeostasis, extracellu-

lar matrix and cytoskeleton.

The modules identified by the analysis are important because

they reflect fundamental structural and functional components of

skeletal muscle biology. For example, the nuclear- and mitochon-

drially-encoded mitochondrial genes determine the physiology of

the mitochondria, the sub-cellular organelle where bioenergetic

conversion takes place. Any capacity to infer the transcriptional

regulation of this module alone has downstream implications for

changes in mitochondrial performance. In turn, this information

may help elucidate the role of mitochondrial physiology in

mammalian evolution [44], thermoregulation [45], cell and

organismal senescence [46], athletic performance [47] and disease

states such as the metabolic syndrome [48].

Skeletal muscle would appear prima facie to be an amenable

tissue for co-expression analysis as its anatomy is strongly

hierarchically organised from z-disc to sarcomere to myofibril to

muscle fibre to whole muscle [49]. This organisation is partially

reflected in the strong co-expression of a sub-set of the component

molecules in the Always Correlated landscape. For example, we

observe a highly connected module comprising a range of fast

muscle structural subunits (MYH1, TNNT3, MYOM2,

MYBPC2, TMOD4, ACTN3 and TPM1), along with the

glycolytic enzymatic machinery. In accordance with [17] the slow

twitch modules tend to be somewhat less coherent although

MYL2, TNNT1, MYBPC1, TPM2 and MB were clustered. The

absence of some of the expected fast and slow subunits, and the

scattered distribution of many of the other genes encoding muscle

structural proteins suggests that even within a single muscle there

is a less discrete, and more continuous, range of muscle fibre

compositions at the anatomical level. This continuum presumably

satisfies various developmental, evolutionary and environmental

circumstances. A more detailed analysis of the combination of

treatment transcriptional landscapes with the output modules is

Figure 6. The expression profiles of the neuron module genes
across the Overall landscape (i.e. the 10 Piedmontese and 10
Wagyu development time points, plus the starvation-reali-
mentation experiment). The expression profile of the neurogenesis
TF TLX3 is also shown, which did not make the module by PCIT but was
ranked top by the downstream (nerve) module-to-regulator analysis.
doi:10.1371/journal.pone.0007249.g006

Figure 7. Range in expression level of genes versus frequency.
Distribution of genes in postnatal Piedmontese and Wagyu samples in
red and in all Piedmontese and Wagyu samples in blue. Including pre-
natal as well as post-natal muscle stages increases the exploration of
parametric expression space. An increase in the frequency of genes
experiencing moderate-high changes in expression level reduces the
formation of spurious edges in the computed co-expression networks.
doi:10.1371/journal.pone.0007249.g007

Skeletal Muscle Regulation

PLoS ONE | www.plosone.org 10 September 2009 | Volume 4 | Issue 10 | e7249



required to tease out the subtleties regarding the relationships

between the muscle structural proteins.

We used the co-expression modules to further examine key

expression profiles across bovine muscle development to form

what may be called ‘expression motifs’ for the most cohesive well-

annotated modules (Figure 4). This approach is somewhat

equivalent in concept to the module eigen-genes of [50] in the

sense that we are highlighting representative traces that capture

the main ‘transcriptional behaviours’ across mammalian skeletal

muscle development. Of these core motifs, the most variable across

the 10 developmental time points are the 1) cell cycle and

extracellular matrix (which are both high pre-natally and crash at

birth), fast twitch subunits which are low prenatally but rise

markedly at birth, and 2) fat, which rises markedly coincident with

secondary myogenesis before dropping again, and then rising first

at 7 months postnatal (coinciding with the appearance of visible

intramuscular fat) followed by a further rise at 25 months. The cell

cycle pattern reflects the active cell proliferation that occurs pre-

natally in mammals when muscle fibre number is determined, and

the crash coincides with a coordinated large-scale exiting of the

cell cycle prior to birth; adult skeletal muscle being post-mitotic in

mammals, apart from a small population of satellite cells.

Transcriptional regulators
In some cases the master regulators of a given module were

components of the relevant module, based purely on the PCIT

driven network analysis. Examples include, ESRRA [35] in the

mitochondrial module, SOX17 [36] in the microvasculature

module and SIX1 in the glycolysis/fast twitch module. Forced

expression of SIX1 and EYA1 in slow twitch mouse soleus muscle

has been shown to induce a fibre transition characterised by the

replacement of myosin heavy chain I and IIA isoforms, the

activation of fast twitch fibre-specific genes and a switch towards

glycolytic metabolism, providing clear experimental support for

our basic network output [51]. In the study of [5] EYA1 was

identified as one of the key next level TF in the regulatory cascade

initiated by MYOD1. In our study EYA1 was not identified by any

of the analyses. However, EYA1 interacts with and modifies the

activity of SIX1, which was identified in our analyses. Consistent

with the model of [5], four of the six genes that they identified as

regulated by EYA1/SIX1 were members of our glycolysis/fast

twitch module (the other two did not make it into the Always

correlated network) to which SIX1 was linked. Interestingly,

EYA1 did not make it into the Always Correlated landscape and

unlike SIX1, which has approximately four fold increased

expression during prenatal development and little change in post

natal development, EYA1 expression decreases approximately

four fold during prenatal development, increasing post-natally to

approximately the same level as day 60 prenatal samples.

Our new downstream analysis computes the absolute average

correlation of expression of TF across a set of genes, which

themselves were identified by inclusion in a co-expression module

of interest. This approach is highly analogous to [52] who generate

bootstrap replicates of a module and locate the TF that correlates

the strongest across the replicates. Our version of this approach

performs well, presumably because it amplifies the signal to noise

ratio (as it is not reliant on a significant connection to any given

gene). The new output can then be ranked according to

correlation coefficient, and we find the that list of best candidates

(i.e. average correlation coefficients close to unity) is enriched for

known TF of many of those processes (Table 3).

Using this data-driven approach, in conjunction with the

conventional PCIT-driven co-expression output documented above,

we correctly inferred known regulators cell cycle activity (e.g. E2F1

[53]), glycolysis (e.g. HLF [54]), mitochondrial transcription/

biogenesis (e.g. TFB2M [37]), adipogenesis (e.g. PIAS1, circum-

stantial evidence only [55,56]), neuronal development (e.g. TLX3

[38]), immune function (e.g. IRF1 [57]) and vasculogenesis (e.g.

SOX17 [36]), all within a skeletal muscle context. We also discover

that GTF2IRD1 ranks highly against the fast twitch muscle module.

Like SIX1, GTF2IRD1 has been shown to culminate in a complete

loss of slow twitch fibres and concomitant replacement with fast

type IIA fibres under transgenic conditions [58].

The promise and limitations of co-expression networks
The approaches documented above generated a host of new

candidate regulators for these biological processes, several of which

have unknown functions and represent excellent candidates for

future wet-lab validation. It appears that, depending on circum-

stances, both PCIT and the Module-to-Regulator analyses

perform well in reverse-engineering known regulatory biology.

The most robust predictions are presumably for those regulators

common to both analyses (Table 3 column 1). A challenging

overall outcome was that in the specific cases of the well-known

muscle fibre type composition regulators PPARGC1A [59],

PPARD [60], MSTN [61] and AKT1 [62] neither PCIT nor

the Module-to-Regulator analysis performed convincingly in

aligning them with the anticipated muscle module (refer to Table

S5 for full regulator-to-module output). Similarly, the canonical

pro-myogenic muscle gene TFs (MRFs), such as MYOG,

MYOD1, MEF2C, MYF5 and MYF6 were not identified in

either of the analyses as correlated with the expression of genes

encoding muscle structural proteins. MYOD1 regulates MYOG

expression and based on ChIP-on-chip studies [5,6] these TFs are

predicted to regulate many genes in common. In our analysis, they

form a separate cluster of just the two transcription factors. The

genes to which MYOD1 and/or MYOG bind in ChIP-on-chip

experiments have a very wide range of functions, which may

contribute to the lack of high correlation with the functional

modules observed in the data. It has been reported that TFs are

the largest cluster of MRF targets, implying that there may be an

extensive regulatory cascade from the MRFs to the genes encoding

muscle proteins [5]. Arguably, the longer and more complex the

regulatory cascade between TF and target gene, the less likely they

will be highly correlated to each other.

In part the relative lack of muscle structural gene modules will

also have contributed to the lack of association between the MRFs

and the genes encoding the muscle structural proteins. However,

further to this TF do present special challenges to co-expression

analyses: 1) TF tend to be expressed at basal levels close to the

sensitivity of high-throughput technologies [34] whereas their

targets are often abundant and variably expressed 2) TF often

control their targets combinatorially and so their own co-

expression relationship is complicated by the performance of their

regulatory partner, 3) TF activity is frequently independent of its

own expression level. Thus, even in the absence of a change in

expression level, a TF can be strongly activated by ligand or co-

factor binding, phosphorylation, translocation to the nucleus, and

the formation of transcriptionally open euchromatin and 4) TF

can have different functions at different stages of development.

Together, these mechanisms tend to break expression-based

correlations between TF and their targets.

In light of these complications, a powerful conclusion can be

drawn about regulators who successfully make it into the expected

module (for example ESRRA in the mitochondrial module and

SOX17/18 in the vasculature module). The implication is that - at

least across the treatment contrasts used in the computation of the

network - they experience no change in regulatory partner, no

Skeletal Muscle Regulation

PLoS ONE | www.plosone.org 11 September 2009 | Volume 4 | Issue 10 | e7249



change in ligand binding, no change in phosphorylation state, no

reversals in behaviour relative to developmental stage and no

change in cellular localisation that significantly affects their

activity. Put another way, all of their change in regulatory activity

may result from simple changes in their own expression level. Such

regulators readily lend themselves to basic co-expression analyses;

they are the ‘low-hanging fruit.’ But what of those regulators who

are activated in more complicated and subtle ways - are there

methods for identifying them through gene expression data alone?

In our data there is a notable case study. Myostatin, a negative

transcriptional regulator of muscle development is absent from the

Always Correlated landscape and poorly correlated to the fast (0.33)

and slow (0.26) twitch modules. Myostatin harbours a missense SNP

in the Piedmontese animals [63] but not the other breeds we

sampled. Despite no change in transcript level, the myostatin SNP

leads to the translation of a dysfunctional protein that is less able to

put the brakes on Piedmontese fast twitch muscle development [10]

which increases their muscularity relative to the other breeds. How

do we reconcile the poor correlation of myostatin to the fast twitch

module on the one hand, with its accepted biological role in

repressing fast twitch muscle development on the other?

In our opinion the deconvolution of molecules like Piedmontese

myostatin, whose change in regulatory behaviour is manifest

almost exclusively post-transcriptionally, requires more sophisti-

cated methods than simply identifying high co-expression

coefficients to functional modules. One such method is the

calculation of Regulatory Impact Factors computed across the

appropriate experimental contrast - in this case the myostatin

mutant breed versus a wild-type breed [10].

These various regulatory complications thus highlight an

interesting asymmetry in the interpretation of the analysis. While

one can be reasonably confident that a regulator present in a co-

expression module plays a role in that module, one cannot safely

make the converse conclusion. In other words, it is not permissible

to conclude that a regulator absent from a module does not

contribute to its regulation.

As Aaron Levenstein might well have said, ‘‘what co-expression

networks reveal is suggestive, but what they conceal is vital.’’

Supporting Information

Figure S1 The changing topology of the Always Correlated

landscape as the correlation cut-off is made increasingly stringent.

The ‘metabolic axis’ is clearly preserved in most of the networks,

despite other large-scale shifts in orientation and topology. The

same main modules are present in all but the most stringent of the

networks.

Found at: doi:10.1371/journal.pone.0007249.s001 (0.59 MB TIF)

Table S1 The list of transcriptional regulators used to map the

network based on bona fide DNA binding TF, plus text searching

GO terms for ‘‘chromatin,’’ and ‘‘signal.’’

Found at: doi:10.1371/journal.pone.0007249.s002 (0.04 MB

XLS)

Table S2 The genes present in each Always Correlated module.

Found at: doi:10.1371/journal.pone.0007249.s003 (0.03 MB

XLS)

Table S3 The Cytoscape Always Correlated landscape file.

Found at: doi:10.1371/journal.pone.0007249.s004 (1.31 MB

XLS)

Table S4 The Cytoscape Always Correlated Node file.

Found at: doi:10.1371/journal.pone.0007249.s005 (0.56 MB

XLS)

Table S5 The module-to-regulator analysis i.e. the absolute,

average correlation of all genes on the array to each Always

Correlated module. The six digits after each gene name

correspond to confirmation (1) or rejection (0) of whether the

gene is a TF, post-translational modifier, kinase, secreted,

methylated and alternatively spliced. The TF output forms the

basis for the majority of our discussion. The other annotations are

provided as a systems resource for researchers who may have

specific interests in those properties.

Found at: doi:10.1371/journal.pone.0007249.s006 (9.40 MB

XLS)
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