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Abstract
Background: Reverse engineering cellular networks is currently one of the most challenging problems in systems
biology. Dynamic Bayesian networks (DBNs) seem to be particularly suitable for inferring relationships between cellular
variables from the analysis of time series measurements of mRNA or protein concentrations. As evaluating inference
results on a real dataset is controversial, the use of simulated data has been proposed. However, DBN approaches that
use continuous variables, thus avoiding the information loss associated with discretization, have not yet been extensively
assessed, and most of the proposed approaches have dealt with linear Gaussian models.

Results: We propose a generalization of dynamic Gaussian networks to accommodate nonlinear dependencies between
variables. As a benchmark dataset to test the new approach, we used data from a mathematical model of cell cycle control
in budding yeast that realistically reproduces the complexity of a cellular system. We evaluated the ability of the networks
to describe the dynamics of cellular systems and their precision in reconstructing the true underlying causal relationships
between variables. We also tested the robustness of the results by analyzing the effect of noise on the data, and the
impact of a different sampling time.

Conclusion: The results confirmed that DBNs with Gaussian models can be effectively exploited for a first level analysis
of data from complex cellular systems. The inferred models are parsimonious and have a satisfying goodness of fit.
Furthermore, the networks not only offer a phenomenological description of the dynamics of cellular systems, but are
also able to suggest hypotheses concerning the causal interactions between variables. The proposed nonlinear
generalization of Gaussian models yielded models characterized by a slightly lower goodness of fit than the linear model,
but a better ability to recover the true underlying connections between variables.
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Background
Reverse engineering cellular networks is one of the most
challenging problems in systems biology. Starting with
the measurements of certain variables, such as gene
expression or protein concentration values, an attempt is
made to infer the control mechanisms of the cellular sys-
tem generating the available data, i.e. the underlying net-
work of connections between its components. As only
time series measurements provide information concern-
ing the dynamics of a cell's regulatory mechanisms, recent
studies have concentrated on analyzing such data.

The various reverse engineering methods proposed in the
literature range from highly detailed models, such as
those based on differential equations, to highly abstract
models, such as Boolean networks. The former describe
the molecular reactions taking place in a cell, and the lat-
ter represent cellular components as binary variables that
are linked to each other by logical relationships [1,2].
Dynamic Bayesian networks (DBNs) are a special class of
Bayesian networks (BNs) that model the stochastic evolu-
tion of a group of random variables over time, and offer a
number of significant advantages over other methods [3-
6]. Like BNs, when applied to cellular networks, DBNs
describe cellular entities (i.e. mRNA or protein concentra-
tions) by means of random variables and model the rela-
tionships between these variables both at qualitative and
quantitative level [5]. At qualitative level, the relation-
ships are encoded into a directed acyclic graph in which
nodes represent the random variables, and arcs the condi-
tional dependencies between them: for each node x, the
parents of x are the variables that have a directed edge
pointing to x. At quantitative level, the dependence rela-
tionships are described by means of conditional probabil-
ity distributions. Because of their probabilistic framework,
BNs and DBNs can automatically take into account the
variability of biological systems, as well as the possible
presence of experimental noise in the data.

However, while BNs only offer a static picture of the sys-
tem, DBNs can show how variables regulate each other
over time. For example, when analyzing gene expression
data, BNs represent the expression level of each gene by a
random variable, and infer a snapshot of the state of the
cellular system at mRNA level. DBNs take this representa-
tion one step further, and represent the relationships
between gene expression levels over time. Assuming a
temporal dependency of order 1, one random variable is
associated with the expression value of a gene at time t,
and another with the expression level of the same gene at
time t + 1. In this representation, the direction of depend-
encies is constrained by the time dimension, and so the
parents are the variables at time t and the children are the
variables at time t + 1. In this way, DBNs can also over-
come the inability of BNs to represent feedback loops, due

to the acyclicity constraint of the graph. This limitation
makes BNs unsuitable for representing many biological
systems in which feedback controls are a critical aspect of
regulation.

The existing methods for learning BNs from observations
can be adapted to DBNs. The selection of the best network
to represent the data is treated as a Bayesian model selec-
tion problem, with different networks being compared by
their posterior probability. This score makes a compro-
mise between the ability of the inferred model to describe
the data (i.e. its goodness of fit) and the number of param-
eters used. In this way, a more complex model is preferred
over a simpler one only if its fitting ability significantly
improves. The sound statistical framework of DBNs also
allows them to incorporate prior knowledge and handle
the possible presence of missing data and hidden varia-
bles (representing unobserved factors) in a principled
way.

The formalism of dynamic Bayesian networks can be
applied to describe the relationships between any type of
cellular component, be it genes, proteins or other mole-
cules, but most studies have so far concentrated on ana-
lyzing expression measurements generated by DNA
microarrays (see for example [7-12]). These data provide
a genome-wide view of cellular activity at transcription
level, and this significant amount of information about
the internal state of a cell can improve the chances of
unraveling its control mechanisms. However, evaluating
inference results on a real dataset is controversial. Valida-
tion of the connections obtained between the analyzed
genes can be tried by searching the literature for known
gene interactions, but the major disadvantage of this
approach is that even if no supporting evidence for an
inferred connection is found, it is not possible to conclude
whether it is spurious or not without performing expen-
sive and time-consuming experimental tests [13]. For this
reason, the use of realistic simulated data was proposed
and first applied by Smith et al. [14]. In this study, a com-
plex biological system was simulated, taking into account
various levels of organization from behavior to gene
expression. Following this paradigm, detailed assessments
of DBN inference algorithms applied to gene expression
temporal data were made by Yu et al. [15] and Husmeier
[13], but have some limitations in assessing the suitability
of DBNs to analyze highly complex and nonlinear cellular
systems. In order to simulate the data, Yu et al. used a sim-
ple model that does not describe the underlying molecu-
lar processes. Husmeier used a more realistic genetic
network simulator consisting of a system of differential
equations that describes gene interactions at the levels of
transcription, translation and post-translational modifica-
tions [16] but, although it has also been recently used to
test an extension of DBNs to incorporate perturbations
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[17], it only produces expression profiles for nine genes.
Furthermore, the above-mentioned simulation studies
concentrated on DBN approaches that require discretized
expression data, but discretization can lead to a significant
loss of information.

We therefore decided to concentrate on the class of DBNs
known as Gaussian networks. These treat variables as con-
tinuous, and assume that the conditional distribution of
each variable at time t + 1 is Gaussian, with a mean that is
a linear regression of the parent variables measured at
time t.

As it is often argued that linear models are not suitable for
capturing nonlinear dependencies between variables
[10,13], we here propose a generalization of the linear
Gaussian model in which parent values are transformed
through the hyperbolic tangent function. In comparison
with other approaches aimed at capturing nonlinear rela-
tionships [10], the proposed generalization retains the
good computational efficiency of linear models.

In order to compare the performance of this nonlinear
Gaussian model with the traditionally used linear model,
we undertook a simulation study using data from a math-
ematical model of cell cycle control in budding yeast. This
model, proposed by Chen et al. [18], contains 36 nonlin-
ear differential equations and realistically reproduces the
complexity of a cellular system. In particular, the ques-
tions we were interested in were:

• Are models inferred by means of Gaussian networks
capable of fitting the data measured in cellular systems,
and thus effectively describing their dynamics?

• Do Gaussian networks only provide a phenomenologi-
cal description of the analyzed system, or are they also
capable of learning the true underlying causal relation-
ships between cellular variables?

• Do nonlinear Gaussian networks offer any advantages
over linear networks in terms of the goodness of fit or
reverse engineering capabilities?

The results are discussed in relation to these questions. We
evaluate the goodness of fit of each inferred network (by
calculating the root mean squared error), and its parsi-
mony (the number of parameters used). We then quanti-
tatively compare the inferred connections between the
analyzed variables with their true relationships, and test
the robustness of the results by analyzing the effect of
noise on the data and the impact of a different sampling
time.

Results and discussion
The budding yeast cell cycle model by Chen et al. is
described in the paper and at the authors' website [19],
from which it is also possible to download files contain-
ing the model's equations and parameters that are ready
to use with a simulator developed by G. Bard Ermentrout
[20].

Chen et al. first created a literature-based wiring diagram
for the cell cycle control mechanism in budding yeast (i.e.
a graphic representation of the cellular components
involved in the cell cycle and the reactions between
them), then used the diagram to derive a mathematical
model. Applying the general principles of biochemical
kinetics, they converted the diagram into a set of 36 differ-
ential equations, plus some algebraic equations, which
determine how the state of the control system (i.e. the vec-
tor of the concentrations of all its components) evolves
over time, simulated the mathematical model, and
showed that the solutions agree well with experimental
data relating to various mutant strains of budding yeast.
Almost all of the 36 variables represent protein concentra-
tions (expressed using an arbitrary scale as the absolute
concentrations of most of the proteins in the mechanism
were not known at the time of publication), but some are
auxiliary variables representing the mass and timing of
cell cycle events. As the kinetic rates in the equations are
low, the dynamics of the variable profiles are slow and
comparable with those of gene expression temporal pro-
files. Using the nomenclature of Bayesian networks, the
"parents" of each of the 36 variables are defined as the var-
iables that appear in the differential equation describing
its dynamics.

We simulated the data in the case of wild-type cells (using
an integration step of 0.1 minutes) and sampled the val-
ues every five minutes, from time 0 to 100 min (about one
cell cycle length). Our simulated dataset thus consists of
36 variables measured at 21 time points, a realistic
number with respect to that typically used in temporal
microarray experiments. The temporal profiles of each
variable were standardized in order to have a mean value
of zero and a standard deviation equal to one. The first
validation was performed assuming noiseless sampling;
the effect of the presence of noise on the simulated data
was considered subsequently.

The aim of our study was to assess the ability of Gaussian
networks in reverse engineering this differential equation
model, which realistically describes the complex dynam-
ics of a biological system. In particular, we were interested
in comparing the traditionally used linear model with our
proposed nonlinear generalization. In the former model,
the conditional mean of a variable at time t + 1 is a linear
regression of the parent values at time t (see Equation (4)
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in Methods); in the latter, the parent values are first trans-
formed by means of the hyperbolic tangent function Φ(x)
= tanh(αx) (see Equation (5) in Methods). Thus, this
model is nonlinear with respect to the parent values, but
it is still linear in the regression parameters. We examined
different values for the parameter α, namely α = {0.4, 0.6,
0.8, 1, 1.2, 1.4, 1.6, 1.8, 2, 2.5, 3, 3.5, 4, 6, 8, 10}.

We first examined the fitting and parsimony of the
inferred models. For each model, the goodness of fit is
represented by the root mean squared error (RMSE), calcu-
lated as the average of the root mean squared errors relat-
ing to each variable (RMSEi). Given v variables and T time
points, we have:

where yit is the observed (in this case: simulated) value for

variable i at time t, and it is the corresponding predicted

value, assumed to be equal to the expected value of Yi

given the parent values at the previous time point. Parsi-
mony is represented by the average of the number of par-
ents inferred for each variable. Figure 1 shows how the
RMSE and average number of parents vary in relation to

the values of α in the nonlinear model (continuous blue
curves). The dashed red curves represent the results for the
linear regression model. The linear model seems to be
characterized by a better goodness of fit (the RMSE is
smaller) and to be more parsimonious (the average
number of parents is lower). However, it is necessary to
note that the fitting is satisfactory for all the examined
models: for example, Figure 2 shows the observed and fit-

ted profiles of two variables in the cases α = 0.6 and α = 2.
Moreover, the parsimony of the nonlinear models is com-
parable with that of the differential equation model used
to simulate the data: in this model, the total number of
parent-child relationships is 119, which corresponds to an
average of 3.3 parents per variable.

The other aim of our study was to make a quantitative
assessment of the ability of Gaussian networks to learn the
causal interactions between the analyzed variables. To this
end, we compared the "true parents" of each variable (i.e.
its parents in the differential equation model) with the
parents found using the DBN algorithm by calculating the
recall (R) and the precision (P):

TP (true positives) is the number of inferred parents that
are "true parents", FP (false positives) the number of erro-
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Goodness of fit and parsimony of the inferred modelsFigure 1
Goodness of fit and parsimony of the inferred mod-
els. Plots of the RMSE (a) and average number of parents per 
variable (b) for the nonlinear models, as a function of the 
parameter α of the hyperbolic tangent function (continuous 
blue curves); the dashed red curves refer to the RMSE and 
average number of parents for the linear regression model. 
The dash-dotted green curve in (b) represents the average 
number of parents in the differential equation model (i.e. the 
average number of true parents). Further analyses showed 
that, for α → + ∞, the RMSE saturates at 0.247, and the aver-
age number of parents saturates at 3.4.
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neously inferred parents, and FN (false negatives) the
number of "true parents" that are not recovered. R there-
fore corresponds to the fraction of "true parents" correctly
inferred by the DBN algorithm, while P is the fraction of
inferred parents that are also "true parents".

R and P can be summarized using their harmonic mean,
called F-measure (F), which tends to be closer to the mini-
mum between the two:

Two other commonly used measures to assess an algo-
rithm's performance are sensitivity (which coincides with
recall) and specificity:

TN (true negatives) is the number of "negatives" (or miss-
ing interactions between the analyzed variables) that are
also not present in the inferred network. We chose to use
precision instead of specificity because the very high
number of "negatives" makes specificity an unsuitable
measure of performance, as also pointed out in [21].
Assuming that we are analyzing N variables, the total
number of possible binary interactions is N2, but the
actual number k of interactions is normally much lower
than N2 because of the sparsity of cellular networks. Thus,
the denominator of specificity (i.e. the total number of
"negatives" [FP + TN = N2 - k]) is very high and even slight
differences from 1 in specificity correspond to a large
number of false positives. Precision also has the advan-
tage that it can be interpreted as the "expected success rate
in the experimental validation of predicted interactions"
[21].

Figure 3 shows how R, P and F vary in relation to the val-
ues of α for the nonlinear model (continuous blue
curves). Once again the dashed red curves represent the
results of the linear model.

It is important to underline that the R and P (and there-
fore F) of the networks learned with the DBN algorithm
are significantly higher than those obtainable if the net-
work structures are randomly created. This can be clearly
seen in Figure 4, which shows the histogram of the R, P
and F values for 104 networks created by assigning at ran-
dom 120 links (the number of parent-child relationships
in the true model) of the possible 362.

Alternatively, in order to assess the significance of the
inferred networks, it is also possible to calculate their p-
values as proposed by Dojer et al. [17]: the p-value of a net-
work with h true out of M inferred edges is defined as the
probability of finding at least h true edges when choosing
M edges at random. This probability can be calculated
using hypergeometric distribution and, in our case, the p-
values were all less than 10-9.
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It is interesting to look at the best network model in terms
of goodness of fit, and the best model in terms of its abil-
ity to recover the causal relationships between variables.
The former (i.e. the model with the lowest RMSE [0.196])
corresponds to α = 0.6, and has F = 0.321; the latter (i.e.
the model with the highest F [0.351]) corresponds to α =
1.8 and has RMSE = 0.227. Different α values can thus
slightly favor the goodness of fit or accuracy of the
inferred models.

Moreover, comparison of the linear regression and non-
linear model showed that the latter performs better at
recovering the causal connections between variables (R is
higher, and so is F). For example, the recall of the above
model corresponding to α = 1.8 is 43% higher than that
of the linear model (0.336 vs. 0.235): this corresponds to
40 out of 119 true links recovered, instead of 28. In addi-
tion, its precision is 15% higher (0.367 vs. 0.318), thus
leading to a 30% improvement in F (0.351 vs. 0.271).

Sensitivity analysis in the presence of noise

When dealing with experimental data such as gene expres-
sion measurements from DNA microarrays, the presence
of a certain level of noise is unavoidable. As mentioned
above, one advantage of the Bayesian network approach is
that it can naturally take into account the effect of the
presence of noise on the data, but it is nonetheless inter-
esting to assess the robustness of the results quantitatively.
To this end, we added noise with a constant coefficient of
variation (CV) to the simulated profiles. In particular, for
every profile at each time point, we added a random vari-
able extracted from a Gaussian distribution with zero

mean and standard deviation σ = CV abs( ) to the simu-

lated value . The values considered for the coefficient of

variation were CV = {0.05, 0.1, 0.2, 0.3}, which means
that the standard deviation of the noise was respectively 5,
10, 20 and 30% of the simulated values. The noisy profiles
were analyzed using both the linear regression and the
nonlinear model, and their performances were assessed as
described above by considering the RMSE and average
number of parents on one hand, and recall, precision and
F-measures on the other.

Comparison of the results of the linear model and those
in the noiseless case revealed slight variations in the parsi-
mony of the inferred models (average number of parents),
but a worse goodness of fit. As could be expected, the
RMSE increased in proportion to the increasing levels of
noise (higher CV). In terms of the ability to recover true
connections, recall slightly decreased in the case of CV =
0.05 and CV = 0.1, but significantly worsened in the case
CV = 0.3. The precision for every CV value was less than in

y

y

Comparison of the inferred connections and true relation-ships between the analyzed variablesFigure 3
Comparison of the inferred connections and true 
relationships between the analyzed variables. Plots of 
recall (a), precision (b) and F-measures (c) of the nonlinear 
models as a function of the parameter α of the hyperbolic 
tangent function (continuous blue curves). The dashed red 
curves refer to the recall, precision and F-measure of the lin-
ear regression model. Further analyses showed that, for α → 
+ ∞, recall saturates at 0.27, precision at 0.26, and the F-
measure at 0.26.
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the noiseless case and, consequently, so was the F-meas-
ure. These results are summarized in Figure 5, which
shows that F is around 24% for CV = {0.05, 0.1} and
becomes 16% for CV = 0.3.

The results of the nonlinear model showed that, in corre-
spondence with every value of the parameter α, its parsi-
mony is comparable with that of the noiseless case. As
with the linear model, the RMSE increased constantly as
CV increased. With a few exceptions, the recall corre-
sponding to each α value tended to decrease as the CV
increased, as did precision and, therefore, the F-measure.
However, in general, F remained about 30% or more for
CV = {0.05, 0.1}, and was not less than 23% even when
CV = 0.3. The decrease in performance thus seems to be
less significant than that relating to the linear model. Fig-
ure 6 shows the results for α = 1.8, which is the value with
the best F (F = 0.351).

Sensitivity analysis varying the sampling interval
Previous biological knowledge of the length of the cell
cycle in the examined system allowed us to restrict our
analysis to this time frame. We expected that the more
time points we collected (i.e. the smaller the chosen sam-
pling interval), the better the performance of our reverse
engineering algorithm would be. However, experimental
measurements are often expensive and/or difficult and
this is the main reason why biological temporal profiles
usually contain few time points. Thus, it is interesting to
make a quantitative assessment of the extent to which the
performance of the algorithm depends on the sampling
interval in order to have some indications concerning the
minimum number of time points necessary to obtain sat-
isfactory results.

Our previous analyses had always used a sampling inter-
val of five minutes and so, once again using the simulated
data from time 0 to 100 min (about one cell cycle length)
in the case of wild-type cells, we sampled values at inter-
vals s = {1, 2, 10} minutes, thus producing datasets with
respectively {101, 51, 11} time points. This enabled us to
examine how the results vary with a larger or smaller
number than our baseline of 21 points.

The results for the linear regression model, considered
together with those obtained with our baseline of s = 5,
showed that the average number of parents decreases as s
increases. This is probably due to the fact that the addition
of parents does not significantly improve the fitting for
higher values of s, and so the Bayesian score does not
improve. The RMSE was very low at s = {1, 2}, and
increased constantly as s increased, whereas recall and pre-
cision constantly decreased: F went from 44% at s = 1 to
27% at s = 5, and there was a sharp decline in performance

Random networksFigure 4
Random networks. Histograms of recall (a), precision (b) 
and F-measures (c) for 104 random networks containing 120 
links (equal to the number of parent-child relationships in the 
true model).
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at s = 10, when F was about 11%. The results are summa-
rized in Figure 7.

In the case of the nonlinear model, and considering each
value of α, the average number of parents also decreased
as s increased. The RMSE was very low at s = {1, 2}, and
became higher with longer sampling intervals. Recall
decreased as s increased, while precision was greatest at s

= 5 (in most cases) or s = 2 (two cases). There thus seems
to be a compromise between recall (best values at s = 1)
and precision. With α < 2, F is more than 27% (most fre-
quently more than 30%) at s = {1, 2, 5}, and becomes 17
– 20% at s = 10. With α ≥ 2, F is always more than 20%.
Figure 8 shows the results for α = 0.8, the value with the
best F (F = 0.359).

Robustness of the linear model in the presence of noiseFigure 5
Robustness of the linear model in the presence of 
noise. Plots of the RMSE and average number of parents (a), 
and recall, precision and F-measures (b) of the linear model 
as a function of the CV of the noise. CV = 0 corresponds to 
the noiseless case.

0 0.05 0.1 0.2 0.3
0.15

0.2

0.25

0.3

0.350.35
RMSE

0 0.05 0.1 0.2 0.3
2

2.25

2.5

2.75

3

CV

Average number of parents

(a)

0 0.05 0.1 0.2 0.3
0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

CV

recall
precision
F−measure

(b)

Robustness of the nonlinear model in the presence of noiseFigure 6
Robustness of the nonlinear model in the presence of 
noise. Plots of the RMSE and average number of parents (a), 
and recall, precision and F-measures (b) of the nonlinear 
model corresponding to α = 1.8, as a function of the CV of 
the noise. CV = 0 corresponds to the noiseless case.
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The results thus show that the goodness of fit of the mod-
els worsens as the sampling interval increases, whereas the
ability of the algorithm to recover the true causal connec-
tions between variables is best at s = 2 or s = 5. Moreover,
the decline in performance at s = 10 is much less than in
the case of the linear model.

Comparison with other published simulated studies
It is interesting to compare the results obtained in our
study with those of published simulation studies of DBNs
with discrete variables.

The model used by Husmeier simulates expression time
series for a network of nine connected genes, to which

Robustness of the linear model when varying the sampling intervalFigure 7
Robustness of the linear model when varying the 
sampling interval. Plots of the RMSE and average number 
of parents (a), and recall, precision and F-measures (b) of the 
linear model, as a function of the sampling interval s (in min-
utes).

1 2 5 10
0.05

0.1

0.15

0.2

0.25
RMSE

1 2 5 10
1.5

2

2.5

3

3.5

4

sampling interval

Average number of parents

(a)

1 2 5 10
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

sampling interval

recall
precision
F−measure

(b)

Robustness of the nonlinear model when varying the sam-pling intervalFigure 8
Robustness of the nonlinear model when varying the 
sampling interval. Plots of the RMSE and average number 
of parents (a), and recall, precision and F-measures (b) of the 
nonlinear model corresponding to α = 0.8, as a function of 
the sampling interval s (in minutes).
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another 41 unconnected randomly up- or down-regulated
genes were added for a total of 50 genes. The results were
evaluated using sensitivity and complementary specificity
(1-specificity) rather than recall and precision. The high
sensitivity values obtained by the author in some trials
performed must always be carefully assessed together with
their complementary specificity because, as explained
above, even very low values of complementary specificity
(and thus high values of specificity) can correspond to a
significant number of false positives. For example, Hus-
meier himself stressed that the whole set of true connec-
tions can be recovered only at a complementary specificity
of 75%, which corresponds to an extremely high number
of spurious connections. Moreover, an example network
shown by Husmeier in relation to only the nine con-
nected nodes has a recall (sensitivity) of 36% and similar
precision: these figures are comparable to those obtained
in our study.

Yu et al. used a linear model to generate data for 10 net-
works, each containing 20 nodes. Between eight and 12
nodes are connected in each network, whereas the others
are unconnected and move in a random walk. Recall and
imprecision (1-precision) are used to assess the algo-
rithm's performance. The authors present most results for
a much higher number of data points than ours (up to
2000), and show that it is possible to obtain high values
of recall and precision only in the presence of more than
one hundred points. With 2000 points, they obtained a
recall of 90% and a precision of almost 100% (F = 95%);
for 300 points, recall decreased to about 50 – 55% and
precision to 85% (F = 67%); for 100 points, recall was still
about 50% and precision was similar (F = 50%); but with
25 points recall decreased to 30 – 35% and precision to
10% (F = 16%).

As mentioned above, our analysis concentrated on short
time series because temporal microarray experiments do
not typically contain more than a few tens of time points,
and so the results of our study should better approximate
the recall and precision obtainable when analyzing real
gene expression data. The above recall and precision val-
ues show that results obtained by Yu et al. for short time

series are not significantly different from ours, although
they simulated data using a simpler model.

Nonetheless, it is interesting to investigate the perform-
ance of our method in the presence of longer time series,
and particularly interesting to compare our results with
those of Yu et al., who kindly made the simulator they
used to generate their data available to us. This simulator
produces profiles with continuous values, which Yu et al.
need to discretize in order to apply their DBN algorithm.

For each of the 10 networks used by Yu et al. in their study,
we simulated one dataset with 100 points and another
with 300, using a sampling interval of 5. The temporal
profiles of each variable were standardized before the
analysis with our algorithm.

Table 1 shows the recall, precision and F-measure
obtained using the linear model and the nonlinear model
corresponding to α = 1. For each number of time points
(100 or 300), the values shown are averaged over the 10
datasets simulated in correspondence with the different
network structures. As can be seen, with both 100 and 300
time points, the recall obtained with Gaussian networks is
greater than that reported by Yu et al., the precision is
comparable or slightly lower, and the synthetic F-measure
is always higher. In this case, the precision of the linear
model outperforms that of the nonlinear model using
hyperbolic tangent functions. This may be because the
simulator used by Yu et al. is based on a dynamical system
which is linear over a wide range of variable values.

It can therefore be said that Gaussian networks seem to
have advantages over discrete variable networks if a lim-
ited amount of data is available as they do not suffer from
information loss due to discretization, and are more par-
simonious than discrete models. In the case of discrete
models, the number of parameters required to describe
the dependence of a variable on its parents depends on
the number of possible combinations of the parent val-
ues: i.e. assuming a binary variable with three parents that
can each have two possible values, 23 = 8 parameters are
required. On the contrary, in Gaussian networks, each
parent corresponds to one parameter in the regression

Table 1: Recall, precision and F-measures obtained when analyzing the data generated by the simulator developed by Yu et al. [15].

Model Data Points Recall Precision F-measure

Linear 100 0.9 0.58 0.7
Nonlinear (α = 1) 100 0.91 0.42 0.57

Linear 300 0.98 0.72 0.83
Nonlinear (α = 1) 300 0.98 0.57 0.72

For each number of time points (100 or 300), the values are averaged over 10 datasets, each corresponding to a different network structure.
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equation, and so only three parameters are required for
three parents (or four if a constant parameter is also used).
The reduction in the number of required parameters
becomes more obvious as the number of parents or the
number of discretization categories increases.

Conclusion
We propose a generalization of dynamic Gaussian net-
works as a means of better capturing the nonlinearity of
the relationships between cellular variables, in which the
parent values are transformed using the hyperbolic tan-
gent function Φ(x) = tanh(αx). In order to compare the
performance of this approach with that of traditional lin-
ear Gaussian networks, we undertook a novel simulation
study using data from a differential equation model pro-
posed by Chen et al., which reproduces well the complex-
ity and nonlinearity of cell cycle control mechanisms in
budding yeast [18].

We simulated data in the case of wild-type cells by sam-
pling the values every five minutes from time 0 to 100
minutes (about one cell cycle length), thus obtaining a
dataset of 36 variables measured at 21 time points. The
results show that the linear model has a better goodness
of fit and is slightly more parsimonious, whereas the non-
linear model performs better at recovering the true under-
lying causal relationships between variables: the F-
measure (a summary of recall and precision) has a maxi-
mum value of 35% and is never less than that of the linear
model (27%). The figures for both models are signifi-
cantly higher than those obtainable if the network struc-
tures are randomly created.

We performed a sensitivity analysis in the presence of data
affected by Gaussian noise with a constant coefficient of
variation (CV), and found that the parsimony of both
models is comparable with that observed in the noiseless
case, whereas the goodness of fit worsens as the CV
increases. The ability to recover causal connections also
decreases, although the decline in the performance of the
nonlinear model is less significant than that of the linear
model: in the former, F is never less than 23% even with
CV = 0.3 whereas, in the latter, it becomes about 16%.

We also assessed the performance of the proposed models
using sampling times other that our baseline of 5 minutes,
i.e. s = {1, 2, 10} minutes, corresponding to datasets with
respectively {101, 51, 11} time points. At s = {1, 2} min,
the performance of the linear model improves in terms of
fitting accuracy and the ability to recover true relation-
ships; at s = 10 min, performance significantly decreases,
thus showing that 11 time points are too few to recover
the network of connections between the analyzed varia-
bles. On the contrary, in the case of the nonlinear model,
although fitting accuracy and parsimony improve with

more time points, the best compromise between recall
and precision often occurs at our baseline of s = 5 min.
These results indicate that, in the (unlikely) case in which
many time points are available, the linear model is better
at recovering the causal interactions between variables (F
= 44% at s = 1). However, in the presence of a number of
time points similar to that most often available in biolog-
ical time series measurements, the use of the nonlinear
model is advantageous, as seen in the case of s = 5.

Overall, our findings confirm that DBNs with Gaussian
models can be effectively used for the first level analysis of
data from complex cellular systems because they not only
offer a phenomenological description of the system
dynamics, but also suggest hypotheses concerning the
causal relationships between variables. However, given
the significant number of inferred false positive interac-
tions, these hypotheses need to be verified by subsequent
biological validation.

The proposed generalization of Gaussian models gener-
ally yielded models that were characterized by a slightly
lower goodness of fit than the linear model, but a better
ability to recover the true connections between variables.
This advantage was also maintained in different error
models and seemed to be particularly significant in the
presence of a limited number of time points. The results
thus suggest that, if the main objective of a study is to have
a model with good predictive ability, the simpler linear
Gaussian model is advantageous but, if the objective is to
infer causal relationships between variables, it is necessary
to move toward nonlinear functions. It is worth mention-
ing that one issue related to the use of nonlinear functions
of parent variables is that standard probabilistic algo-
rithms for inference do not apply. However, it is always
possible to perform inference using Gibbs sampling.

The proposed Gaussian network approach is a valuable
modeling tool. It is more parsimonious than discrete
models because fewer parameters need to be estimated
from the data. At the same time, thanks to the possibility
of exploiting the nonlinear functions of the parent values,
it is flexible enough to be used in a large variety of appli-
cations.

Given these promising results, we would like to extend
our investigation by evaluating the use of different non-
linear functions Φ(·). Other very interesting extensions
already pursued by some researchers include the introduc-
tion of prior knowledge in the learning process, and the
integration of different types of data [11,22-24]. Each
high-throughput technology can offer only a partial view
of the highly nonlinear dynamical processes that take
place in a cell, whereas the combination of knowledge
Page 11 of 15
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and data from different sources should lead to a more pro-
found understanding.

Methods
Gaussian networks
A DBN is defined by a directed acyclic graph in which the
nodes represent stochastic variables and the directed arcs
represent the temporal dependencies between them,
which are quantified by conditional probability distribu-
tions.

Given a database of measurements for v variables (eg.
genes or proteins) at T consecutive and equally spaced
time points, the values of the variables at time t are repre-
sented by the random variables Y(t) = {Y1(t),
Y2(t),...,Yv(t)}. In order to derive the DBN encoding the
dependencies over the random variables Y at the different
time points, it is assumed that the process under study
(the dynamics of our system) is

• Markovian [i.e. p(Y(t + 1)|Y(0),...,Y(t)) = p(Y(t + 1)|Y(t))]
and

• time homogeneous [the transition probability p(Y(t +
1)|Y(t)) is independent of t]

Given these assumptions, we only need to learn the tran-
sition network between the variables at time t and time t
+ 1 [25]. To this end, it is necessary to choose a probability
model and a search strategy.

Probability model

Linear Gaussian networks assume that the variables
Y1,...,Yv are all continuous, and that the conditional distri-

bution of each variable Yi given its parents Pa(yi) =

(Yi1,...,Yip(i)) follows a Gaussian distribution with mean μi

and conditional variance  = 1/τi [6]. The parameter τi is

called precision. The mean μi is typically the linear regres-

sion function of the parent variables and regression

parameters {βi0, βi1,...,βip(i)} as in the equation

that models the conditional mean of Yi at time t + 1 given
the parent values yij, measured at time t.

The use of linear models makes the inference process
computationally amenable even with hundreds of varia-
bles. However, traditional linear regression models may
be inappropriate when there are nonlinear relationships
between variables. In this paper we also propose a gener-
alization of the linear regression model described in Equa-
tion (4). In this generalization the dependency of each
variable on its parents is described as a linear combination
of nonlinear functions Φ(·) of the parent values:

This model is known as a nonlinear expansion of the
input data. As it is reasonable to assume that the rate of
the production/elimination of mRNA or proteins cannot
indefinitely grow, we set Φ(·) equal to the hyperbolic tan-
gent function Φ(x) = tanh(αx), where α is a predefined
parameter. Figure 9 shows the different shapes of the func-
tion for different values of α. Note that the function
approaches a step function for larger values of α. It is
important to note that the parameterization of the mean
function in Equation (5) is still linear in the regression
parameters, for known α, and so the learning process is
scalable to hundreds of variables as in the case of model
(4),

Scoring metric
To induce the DBN from data we use the Bayesian model
selection procedure and search for the network with max-
imum posterior probability given the data. By Bayes' the-
orem, the posterior probability of a network Mh given data
D is

σ i
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p i
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Hyperbolic tangent functionFigure 9
Hyperbolic tangent function. Plot of the hyperbolic tan-
gent function y = tanh(αx) for different values of α. The func-
tion approaches a step function at increasingly high values of 
α.
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p(Mh|D)∝ p(Mh)p(D|Mh)  (6)

where p(Mh) is the prior probability of the network and
p(D|Mh) is the marginal likelihood. The marginal likeli-
hood is the solution of the integral

in which p(D|θh, Mh) is the likelihood of the data given
the model Mh and the vector of parameters θh, and
p(θh|Mh) is the prior density of the parameters. By averag-
ing out the parameters, the marginal likelihood provides
a measure of the likelihood of the model regardless of the
specific values of the parameters.

By the Local Markov Property that states each variable is
independent of its non-descendants given its parents, the
marginal likelihood p(D|Mh) can be factorized into the
product of the factors p(D|Mhi) that represent the mar-
ginal likelihood of the dependency of each variable Yi at
time t + 1 on its parents at time t:

Assuming that all of the models are equally likely a priori,
the search for the DBN with maximum posterior probabil-
ity is equivalent to searching the network with maximum
marginal likelihood. The use of Gaussian distributions
and models that are linear in the parameters makes the
computation very efficient because the marginal likeli-
hood can be calculated in closed form. Here, we show in
details the calculation of the factor p(D|Mhi).

If we have measurements at T time points (so that we
observe n = T - 1 transitions), the likelihood function for
each variable i is given by

p(Di|θhi) = (τi/(2π))n/2exp[-τi(yi - Xiβi)T (yi - Xiβi)/2]  (9)

where yi = (yi2,...,yiT)T is the n × 1 vector of observations, βi
= (βi0, βi1,...,βip(i))T is the vector of regression parameters,
Xi is the n × (p(i) + 1) matrix of regression coefficients. For
example, the row t is (1, yi1t, yi2t,...,yip(i)t) when the model
in Equation (4) is used, and it is (1, tanh(αyi1t),
tanh(αyi2t),...,tanh(αyip(i)t)) when the nonlinear model in
Equation (5) is used.

We use conjugate prior distributions for the parameters
θhi, that consist of the precision τi and the vector of regres-
sion parameters βi [6]. Therefore, we use a Gamma distri-
bution as prior for τi:

where

Conditionally on τi, the prior density of the parameter
vector βi is assumed to be multivariate Gaussian:

We set  equal to zero and Ri0 equal to the identity

matrix. This choice represents the assumptions that all the

variables are independent, and that, conditionally on τi,

the regression parameters are independent. Moreover, we

chose νi0 = 3 and  = 1 in order to have a large a priori

variance .

With this prior specifications, it can be shown that the
local marginal likelihood p(D|Mhi) is given by:

where:

αi1n = νi0/2 + n/2

νin = νi0 + n

As parameter estimates, we consider their posterior expec-
tations:

E(βi|yi) = βin

Search strategy
By the likelihood modularity described with the factoriza-
tion in Equation (8), it is possible to learn the network
structure by searching for the local regression models with
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maximum marginal likelihood. In the context of DBNs,
time imposes a natural restriction on the set of candidate
parents for each variable, because the parents are con-
strained to be the variables at the previous time point.
However, even with this restriction the space of possible
parent sets is exponential in the number of candidate par-
ents. To make the search feasible, we adapted the greedy
search strategy originally implemented in the K2 algo-
rithm [26]. The algorithm evaluates models of increasing
complexity as long as there is a gain in the marginal like-
lihood and stops when adding any extra parent to the cur-
rent best model does not increase the marginal likelihood.

In order to reduce the risk of finding suboptimal models,
we implemented a stepwise search: at each step, the old
marginal likelihood is not only compared with the mar-
ginal likelihood of the model in which the parent that
increases the likelihood most is added to the old parent
set, but also with the marginal likelihood values of the
models in which this new parent is added to the old par-
ent set with one of the old parents removed. The search
strategy is schematically illustrated in Figure 10.
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