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The class B G protein-coupled receptors (GPCRs) represents a small sub-family
encompassing 15 members, and are very promising targets for the development of drugs
to treat many diseases such as chronic inflammation, neurodegeneration, diabetes, stress,
and osteoporosis. The VPAC1 receptor which is an archetype of the class B GPCRs
binds Vasoactive Intestinal Peptide (VIP), a neuropeptide widely distributed in central and
peripheral nervous system modulating many physiological processes including regulation
of exocrine secretions, hormone release, foetal development, immune response . . . VIP
appears to exert beneficial effect in neurodegenerative and inflammatory diseases. This
article reviews the current knowledge regarding the structure and molecular pharmacology
of VPAC1 receptors. Over the past decade, structure–function relationship studies have
demonstrated that the N-terminal ectodomain (N-ted) of VPAC1 plays a pivotal role
in VIP recognition. The use of different approaches such as directed mutagenesis,
photoaffinity labeling, Nuclear Magnetic Resonance (NMR), molecular modeling, and
molecular dynamic simulation has led to demonstrate that: (1) the central and C-
terminal part of the VIP molecule interacts with the N-ted of VPAC1 receptor which is
itself structured as a � Sushi � domain; (2) the N-terminal end of the VIP molecule
interacts with the first transmembrane domain of the receptor where three residues
(K143, T144, and T147) play an important role in VPAC1 interaction with the first histidine
residue of VIP.
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INTRODUCTION
Vasoactive Intestinal Peptide (VIP) discovered by Said and Mutt
(1970) is an ubiquitous 28-aminoacid neuropeptide that is widely
distributed in central and peripheral nervous system. During
the past 10 years, VIP was also identified in the immune sys-
tem where it plays the role of a “cytokine-like peptide” (Delgado
et al., 2004). VIP plays an important role in human physiology
(Table 1) such as in development, growth, immune responses,
circadian rhythms, neuronal and endocrine control, neuropro-
tective actions, and in the functions of the digestive, respira-
tory, reproductive, and cardiovascular systems (Laburthe et al.,
2007). Associated to its large distribution and biological func-
tions, VIP may also play a role in various pathologies (Table 1).
It has been identified as a very promising agent in the treat-
ment of inflammatory and neurodegenerative diseases (Gozes
et al., 2003; Delgado et al., 2004). Indeed, VIP appears to
be a very potent anti-inflammatory peptide in animal models
of Crohn disease (Abad et al., 2003), rheumatoid polyarthri-
tis (Delgado et al., 2001), or septic shock. This neuropeptide
belongs to the structural-related peptide named secretin/VIP
family (Table 2) encompassing VIP, pituitary adenylate cyclase

List of non-standard abbreviations: VIP, Vasoactive Intestinal Peptide; PACAP,
Pituitary Adenylate Cyclase Activating Peptide; VPAC, VIP and PACAP receptor;
Bpa, Benzophenone; N-ted, N-terminal ectodomain; ITF, Intrinsic Tryptophan
Fluorescence.

activating peptide (PACAP), secretin, growth hormone releasing
factor (GRF), peptide having an histidine residue in N-terminal
position and an isoleucine residue in C-terminal position (PHI
and its human homolog PHM), helodermin, glucagon, gastric
inhibitory polypeptide (GIP), glucagon-like peptide 1 and 2
(GLP-1 and GLP-2).

VIP A POTENTIAL THERAPEUTICAL AGENTS
Few years ago, VIP emerged as a potential therapeutic agent for
various diseases including asthma (Groneberg et al., 2006), sexual
impotence (Fahrenkrug, 2001), brain strokes (Dogrukol-Ak et al.,
2004), chronic inflammation (Delgado et al., 2004), neurodegen-
erative disorders (Dejda et al., 2005), and cancers (Moody et al.,
2011). Recently, a lot of reports have focused on the role of VIP
and its receptors in chronic inflammation and neurodegenerative
diseases.

VIP has been identified as a very promising agent in treat-
ment of inflammatory diseases (Delgado et al., 2004). Indeed,
VIP appeared to be a very potent anti-inflammatory peptide
in animal models of various chronic inflammatory diseases
(Couvineau and Laburthe, 2012a,b). The VIP anti-inflammatory
effect has been widely studied (Delgado et al., 2004). These studies
showed, in homeostasis condition, innate and adaptive immu-
nity, that VIP can help to preserve the equilibrium between
pro-inflammatory and anti-inflammatory response. In chronic
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Table 1 | Major physiological and pathophysiological actions of VIPa.

Short-term Neurotransmition, exocrine secretions (water, ions),
hormone release (prolactin, luteinizing hormone, growth
hormone, insulin...), muscle relaxation (vasodilator,
bronchodilator, gastro–intestinal motility), metabolism

Long-term Circadian rhythms, learning and behavior, growth
regulator of whole fetuses and embryonic brain

Other effects Neuroprotection, suppression of inflammation,
immunomodulation, effects on cell proliferation in cancer

aReviewed in Gozes et al. (2003); Dickson and Finlayson (2009); Delgado and

Ganea (2011); Moody et al. (2011); Harmar et al. (2012).

Table 2 | Sequence alignments of class B GPCR ligandsb .

a b

aBlack boxes represent sequence identity and light gray boxes represent

sequence homology.
bNumbers indicate the length of the peptides.

inflammatory diseases (Crohn disease, rheumatoid polyarthritis,
hepatitis, encephalomyelitis. . . ) a modification of this equilib-
rium can be induce by various stimuli such as pathogenic agents,
auto-immunity, environment, genetic background. . . which lead
to the stimulation of production of pro-inflammatory cytokines
(IL-17, IL-1, IFNγ, TNFα. . . ) by macrophages and lymphocytes
T (Th1 and Th17). Conversely, the anti-inflammatory response
mediated by anti-inflammatory cytokines (IL-10, IL-4, IL-13,
TGFβ. . . ) secreted by lymphocytes T (Th2 and Treg), was strongly
inhibited. The VIP anti-inflammatory effect involves a “rebal-
ancing” of immune system (Firestein, 2001) by inhibition of
pro-inflammatory response (Th1 and Th17) and stimulation
of anti-inflammatory response mediated by Th2 and Tregs. In
parallel, VIP induces an inhibitory effect on innate immunity
by inhibition of production of pro-inflammatory cytokines and
chemokines secreted by macrophage. Moreover, VIP is able to
strongly inhibit the production of reactive oxygen species (ROS)
induced by fMLP in monocytes (personnal data). Moreover,
various reports clearly demonstrate that VIP promotes toler-
ance by inducing expansion of Treg cells (Leceta et al., 2007).
Whereas, some reports reveal that VIP-deficient mice are resistant
to the development of induced-encephalomyelitis or induced-
endotoxemia indicating that in these conditions VIP plays unex-
pected permissive and/or pro-inflammatory actions (Abad et al.,
2010, 2012). Despite this effect, VIP represents a potential

anti-inflammatory agent that could be used in human thera-
peutic treatment, although the VIP anti-inflammatory effects
have been mainly described in animal models (Couvineau and
Laburthe, 2012a,b). Whereas, the major obstacle to the use of
VIP in clinic therapies is its high sensitivity to protease degra-
dation. Indeed, removing of the first residues by peptidases,
such as dipeptidyl peptidase IV (DPPIV), induces a drastic
loss of affinity of VIP peptide family (Lambeir et al., 2001).
To circumvent these labile properties, VIP can be modified to
increase its resistance to degradation by N-acylation of the pep-
tide N-terminal end or by substitution of residues involved in
proteolytic consensus sequences (dibasic doublets). Recent data
indicate that PACAP N-terminal modifications confer resistance
to DPPIV (Bourgault et al., 2008). In the same way acetylation
of the VIP N-terminal end increase its stability in the pres-
ence of human serum (personal data). Other strategies consist
to protect peptide against degradation by insertion of VIP into
micelles or nanoparticles (Fernandez-Montesinos et al., 2009;
Onyüksel et al., 2009). Despite these limitations, VIP has been
tested in a phase I clinical trial for the treatment of acute
respiratory distress syndrome and sepsis (id: NCT00004494,
http://www.clinicaltrials.gov).

In the mid-1980s, the first report of VIP neuroprotection,
demonstrated that this peptide is able to prevent neuronal
death associated with electrical blockade induced by tetrodotoxin
(TTX) addition to primary spinal cord cultures (Brenneman
and Eiden, 1986). Further studies have demonstrated that VIP
plays a neuroprotective effects in various neurodegenerative dis-
eases developed in animal models including Alzheimer’s disease
(Gozes et al., 1996), Parkinson’s disease or encephalomyelitis
(Gonzalez-Rey et al., 2005; Tan and Waschek, 2011). Some of
these VIP neuroprotective actions were associated with glial
cells possessing VPAC receptors. Clearly, VIP induced, on glial
cells, a secretion of various trophic molecules having neuro-
protective properties such as IL-1, IL-6, protease nexin-1, the
chemokine RANTES and MIP (Dejda et al., 2005). Moreover,
VIP inhibits the production of pro-inflammatory cytokines as
TNFα and/or IL-1β secreted by activated microglia which is
involved in neuroinflammation observed in Parkinson’s dis-
ease or brain trauma models (Delgado et al., 2004). VIP also
induces neuroprotective effect by increasing the secretion of
activity-dependent neurotrophic factor (ADNF) and/or activity-
dependent neurotrophic protein (ADNP) (Gozes et al., 2003).
These two protective proteins, which belong to the heat shock
protein family, are able to prevent the neuronal death (Dejda
et al., 2005) and represent one of the most potent neuroprotec-
tive agents secreted by astroglia in response to VIP. Recently, it
was suggested that the VPAC2 receptor, which binds VIP and/or
PACAP with the same affinity, could be a potential target for
the development of anti-psychotic drugs. Effectively, the VPAC2
receptor gene has been found to be duplicated in schizophre-
nia (Vacic et al., 2011). Although VIP is able to cross the brain
blood barrier (Dogrukol-Ak et al., 2004), no clinical trials in
humans were developed to evaluate its neuroprotective role in
brain diseases. However, some human clinical trials based on
VIP vasoactive properties on cerebral arteries and hemodynam-
ics have been performed (id: NCT00272896 and NCT00255320
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http://www.clinicaltrials.gov) to evaluate its role in development
of headache/migraine.

VPAC RECEPTORS, A REPRESENTATIVE MEMBERS OF
CLASS B GPCR
Biological responses induced by VIP are triggered by interaction
with two receptors, VPAC1 and VPAC2, which are mainly coupled
to the G-protein, Gs, resulting in the stimulation of cell adenylyl
cyclase (Couvineau et al., 2010). Furthermore, some groups have
reported the ability of VIP to increase calcium levels in different
cells (Dickson and Finlayson, 2009). Moreover, VPAC1 recep-
tor is able to interact with RAMP (Receptor Activity-Modifying
Proteins) proteins, in particular RAMP2, inducing a signifi-
cant enhancement of agonist-mediated inositol triphosphate pro-
duction but do not modify the coupling to adenylate cyclase
(Christopoulos et al., 2002). VPAC1 and VPAC2 receptors bind,
with the same affinity, VIP and another neuropeptide named
PACAP. It should be noted that VIP interacts also with the spe-
cific PACAP receptor (PAC1) but with a lower affinity (Couvineau
and Laburthe, 2012a). Previous report indicate that VPAC1 recep-
tor is able to homo-dimerize and hetero-dimerize with VPAC2 or
secretin receptors (Harikumar et al., 2006). However, the relation
between receptor oligomerization and the ability to VPAC1 recep-
tor to interact with RAMPs remains unclear.

In the nineties secretin and VPAC receptors have been cloned
(Ishihara et al., 1991, 1992; Lutz et al., 1993; Sreedharan et al.,
1993; Couvineau et al., 1994) revealing a new G protein-coupled
receptor (GPCR) sub-family termed class B GPCR. This GPCR
sub-family shares with the other GPCR classes (A, C, D, E, F)
the same general structural scheme characterized by the pres-
ence of seven-transmembrane helices denoted as TM I through
TM VII which are interconnected by extracellular and intracel-
lular loops (Fredrikson and Schiöth, 2006). The class B receptors
family is composed of 15 members including receptors for VIP,
PACAP, secretin, glucagon, glucagon-like peptide-1, glucagon-
like peptide-2, GRF, GIP, and also include receptors for parathy-
roid hormone, calcitonin, calcitonin gene-related peptide, and
corticotropin-releasing factor (CRF) (Couvineau and Laburthe,
2012b). Class B receptors display very low sequence homolo-
gies with others GPCRs (Laburthe et al., 2007) and share several
specific characteristics: the presence of a large (>120 residues)
and structured N-terminal ectodomain (N-ted) which is usu-
ally small in most class A GPCRs. The N-teds contain six highly
conserved cysteine residues connected by three disulfide bridges,
this sequence is the signature of class B GPCRs. The N-ted of
class B receptor which represents the major binding site for
its cognate natural peptide ligand, is characterized by; (1) the
presence of a signal peptide probably involved in insertion of
receptor in plasma membrane; (2) the absence of archetypical
class A GPCR motifs such as E/D-R-Y or NP-xx(x)-Y; (3) a
complex gene organization with many introns (Laburthe et al.,
2002).

Currently, no data are available regarding the full-length struc-
ture of class B receptors as compare to class A receptors (Shoichet
and Kobilka, 2012), although the structural properties of the class
B GPCR N-ted, have recently been described, representing the
first step toward better understanding of the binding receptor

site at the atomic level. Recently, six N-ted structures, includ-
ing those of the human PACAP receptor (PAC1), human PTH
receptor (PTH1R), human GLP-1 receptor (GLP-1R), human
GIP receptor (GIPR), and human type-1 and type-2 CRF receptor
(CRFR1 and CRFR2) have been elucidated by Nuclear Magnetic
Resonance (NMR) spectroscopy and X-ray crystallography in
the presence of bound antagonist or agonists (Couvineau et al.,
2010). These studies reveal the presence in the N-ted of a com-
mon core (Figure 1) formed by a Sushi domain (Parthier et al.,
2009; Pal et al., 2012). This shared structure is composed of
two anti-parallel β sheets (Figure 1) stabilized by (1) three disul-
fide bonds involving the typical six highly conserved cysteine
residues (Figure 1); (2) a putative salt bridge involving acidic and
basic residues, sandwiched between hydrophobic aromatic rings
(Figure 1). The high conservation of the Sushi domain in the N-
ted of class B GPCRs supports the idea that this structure plays a
crucial role for peptide recognition (Grace et al., 2004). A “two-
site” model for the binding of native ligands to class B GPCRs
has been postulated (Hoare, 2005). In short, the central and the
C-terminal portions of the peptide ligand are captured by the N-
ted of the class B GPCRs. This step is essential for the peptide
structuration, allowing the ligand N-terminus to interact with the
transmembrane region of the receptor (Hoare, 2005).

As mentioned above VIP belongs to the secretin/VIP/PACAP
family. The emergence of the class B GPCR has enlarged this pep-
tide family (Table 2) by including parathyroid hormone (PTH),
calcitonin, and CRF. All these natural ligands share some com-
mon properties: (1) they are all peptides with 27–44 amino acid
residues; (2) they are synthesized and released by endocrine cells,
neurons, and/or immune cells; (3) all these peptides exhibit a
marked propensity to form α-helices; (4) all these peptides con-
tain a N-Cap structure in the N-terminal part (Neumann et al.,

FIGURE 1 | Representation of generic Sushi domain core of Class B

GPCR N-ted. Common structural elements of class B GPCR N-ted are
represented by the presence of (1) a N-terminal α-helix (black ribbon);
(2) two anti-parallel β-sheets (β1-β2 and β3-β4, black ribbon). The Sushi
domain structural core is stabilized by the presence of three conserved
disulfide bonds (middle gray sticks) and represented in magnified inset an
ionic and hydrophobic interactions (light gray sticks). All figures were
obtained by using PyMOL software (http://www.pymol.org).
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2008). The presence of this structural signature which includes
a hydrophobic cluster between N-terminal hydrophobic residues
and a hydrogen bond between two polar residues (Figure 2) have
been recently confirmed (Watkins et al., 2012). All these peptides
play an important role in physiological processes and strongly
impact human physiopathology including chronic inflammation
diseases, neurodegenerative disorders, schizophrenia, diabetes,
osteoporosis, stress (Couvineau and Laburthe, 2012a).

Cloning of the human VPAC1 receptor (Couvineau et al.,
1994) allowed its extensive studied for many years by site-directed
mutagenesis and molecular chimerism (Laburthe et al., 2007)
laying its molecular basis in terms of: (1) affinity (Couvineau
et al., 1995); (2) specificity (Couvineau et al., 1996a); (3) cellu-
lar addressing (Couvineau et al., 2004); (4) desensitization (Marie
et al., 2003); (5) association with RAMP proteins (Christopoulos
et al., 2002); (6) adenylyl cyclase coupling (Couvineau et al.,
2003). These studies have revealed that the receptor N-ted plays
a crucial role in peptide agonist binding (Couvineau et al., 2010).
In parallel, structure–function relationships analysis of VIP by
a complete alanine scanning (Nicole et al., 2000) showed that
the peptide has a diffuse pharmacophoric domain. In this study
we have demonstrated that the N-terminal 1–5 segment plays a
crucial role in receptor activation e.g., mainly adenylyl cyclase
activation.

THE VPAC1 BINDING SITE, CONTRIBUTION OF
PHOTOLABELING APPROACH
The physical interaction sites between VIP and the VPAC1 recep-
tor had remained elusive until the development of a photoaffinity
labeling strategy, which allowed the demonstration that VIP
side chains are physically in contact with the N-ted of VPAC1
(Couvineau et al., 2010). This strategy has two advantages over
structural studies of purified recombinant receptors or receptor

FIGURE 2 | NMR structure of VIP and representation of N-capping

motif. Middle gray ribbon represents the average conformation of VIP
structure. In magnified inset the N-capping motif is represented as (1) the
hydrophobic interactions between side-chain groups of N’ and N3 residues
(dashed lines); (2) the hydrogen bond between side chain of N-cap residue
and backbone atom of N3 residue. See ref. Neumann et al. (2008) for
details.

fragments: (1) the labeled ligand has an affinity for its recep-
tor in the nanomolar range, which is similar to the high affinity
measured under physiological conditions; and (2) the labeled
ligand can interact with the glycosylated native receptor expressed
in plasma membranes of eukaryotic cells. This is particularly
important, given to the critical role of glycosylation in VPAC1
expression and function (Couvineau et al., 1996b). Addition of
a benzophenone group (Bpa) to the VIP peptide has extensively
contributed to the elucidation VIP biochemistry and of its recep-
tor (Couvineau and Laburthe, 2012b). The use of photolabeling
probes has clearly demonstrated that VIP residues in position 0,
6, 22, 24, or 28 were in physical contact with different amino
acids in N-ted of the VPAC1 e.g., Gln135, Asp107, Gly116, Cys122,
and Lys127 (Figure 3), respectively (Tan et al., 2003, 2004, 2006;
Ceraudo et al., 2008, 2012). To dock VIP within the receptor
N-ted, we determined the structure of VIP by NMR (Figure 2)
and also developed a structural model of the VPAC1 receptor
N-ted (Tan et al., 2006). Determination of VIP structure by
NMR revealed that most of the 28 amino acids sequence has
an α-helice structure (sequence 7–28) with the exception of the
N-terminal 1–5 sequence, which has no defined structure in solu-
tion (Figure 2). In parallel, the structural model development of
the VPAC1 receptor N-ted, by homology with the NMR struc-
ture of the CRF 2β receptor N-ted, allowed us to localize the
VIP binding site in the N-ted. As expected, the structure con-
tains two anti-parallel β sheets that are stabilized by three disulfide
bonds between residues Cys50 and Cys72, Cys63 and Cys105, and
Cys86 and Cys122, and by a putative salt bridge involving Asp68-
Arg103, sandwiched between the aromatic rings of Trp73 and
Trp110 (Figure 3). The NMR structure of VIP has been docked
in the VPAC1 receptor N-ted giving rise to a valid model in
which, the N-ted C-terminal part, nicely accommodates the VIP
molecule at least for the 6-28 sequence (Figure 3). This model has

FIGURE 3 | The 3D-structural model of VPAC1 receptor N-ted and

docking of VIP. Ribbon representation of the VPAC1 N-ted: light gray
ribbon, main chain; white ribbon, VIP. Docking calculations showed that
Q135, D107, G116, C122, and K127 residues (middle gray sticks) present in the
N-ted were in contact (white arrows) with the side chains of F0, F6, Y22,
N24, and N28 (black sticks) of VIP residues, respectively. Figure was
obtained by using PyMOL software (http://www.pymol.org).
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been submitted to molecular dynamic simulations over 14 ns in a
water box and appears to be highly stable (Ceraudo et al., 2008).

Recently, using similar strategy, we have characterized the
interaction site of the VPAC1 receptor-specific VIP antagonist,
[Ac-His1, D-Phe2, K15, R16, L27] VIP(3-7)/GRF(8-27) or PG 97-
269 (Gourlet et al., 1997). This antagonist is a chimeric peptide
between VIP (sequence 1–7) and GRF (sequence 8–27) having a
D-phenylalanine residue in position 2. The use of Bpa0-PG97-269
affinity labeling probe revealed that the N-terminal part of antag-
onist physically interacted with Gly62 residue of VPAC1 N-ted
(Ceraudo et al., 2012). These observations clearly support that the
N-terminal part of VIP (agonist) or PG97-269 (antagonist) were
recognized by two different domains present in N-ted of VPAC1
receptor.

As mentioned above, the N-ted structure of different class B
GPCRs has been obtained recently by X-ray crystallography or
NMR spectroscopy (Parthier et al., 2009). These studies seem to
indicate the existence of two different binding sites for ligands
in class B receptor N-teds (Couvineau et al., 2010). Analysis of
these structure and/or molecular models revealed that N-teds of
GIPR, PTHR, CRF1R, CRF2R, and GLP-1R interact with ligands
in regions encompassing the loop located between β1 and β2
sheets and the loop located between β3 and β4 sheets (Parthier
et al., 2009). In contrast, the N-teds of PAC1R and VPAC1R bind
peptides along β3 and β4 sheets of the sushi domain (Couvineau
et al., 2010). However, a recent report based on the X-ray crys-
tallography analysis of PAC1 receptor N-ted and the docking of
PACAP indicates that PACAP could interact with its receptor as
GIPR, PTHR, CRF1R, CRF2R, and GLP-1R (Kumar et al., 2011).
The real significance of these differences were unclear but may
be tentatively related to the following interpretations: (1) some
structural determinations were carried-out in presence of ligands
which have a low affinity (micromolar range) for the recombinant
N-ted whereas in other studies ligand affinity was higher; it also
could be hypothesized that low and high affinity binding occur
at different sites in the N-ted structure; (2) the determination of
interaction between N-teds and ligands was mainly obtained in
the presence of antagonist but it some cases in the presence of
an agonist; (3) moreover it could be hypothesized that agonists
and antagonists bind to different domains in the N-teds. Finally,
we cannot exclude the possibility that ligands can bind by two
different ways to N-ted of class B GPCR.

THE KEY ROLE OF THE FIRST TRANSMEMBRANE DOMAIN
OF VPAC1 IN VIP BINDING
VPAC1 domain interacting with the N-terminus of VIP (1–5) is
still unknown. Up to now, no data are available regarding the full-
length structure of class B receptors. To circumvent this unavail-
ability, a 3D-model of the receptor encompassing VIP/N-ted
complex and the transmembrane core of the receptor (Figure 4)
was developed (Ceraudo et al., 2012). The 3D-model of the trans-
membrane core was constructed by homology modeling based on
the recent determination of the X-ray structure of the adenosine
A2A receptor (Jaakola et al., 2008). The resulting 3D-model of
VPAC1 revealed that the central and C-terminal residues of VIP
are in contact with N-ted whereas the N-terminus of VIP lies
in a pocket formed by the extracellular side of the first, second

FIGURE 4 | Representation of global 3D-model of VPAC1 docked to VIP.

(A) 3D-global model of human VPAC1 based on X-ray structure of the A2A
receptor. (B) Upside view of 3D-global model of human VPAC1 displaying
side-chains of residues of the 3D-global model of the receptor (black sticks)
in close contact (distance <6Å) with the N-terminal end of VIP (white).
middle gray ribbon, transmembrane domains; black ribbon, main chain of
N-ted; white ribbon, main chain of VIP.

and seventh transmembrane domains and the second extracel-
lular loop of VPAC1 (Figure 4A). Based on distance calculation
(<6Å) between residues of VPAC1 and VIP, substitutions by ala-
nine of residues revealed that many residues are involved in the
binding affinity of VIP to VPAC1. Three of them (H112, L131, and
Q134) are present in the N-ted, and their substitution to alanine
induced an affinity modification of about 100 times as compared
to native receptor, indicating that these residues are probably
involved in the interaction between the N-ted and the central and
C-terminal parts of VIP (Ceraudo et al., 2012). Substitution to
alanine of four other residues (K143, T144, T147, and L375) located
in the extracellular side of TMI and VII, also induced a strong
modification of receptor affinity for VIP (Ceraudo et al., 2012).
Moreover site-directed mutagenesis experiments and reciprocal
exchange between K143, T144, and T147 residues of VPAC1 and
H1 of VIP, shown that this interaction with (Figure 4B) the
first histidine residue of VIP play a crucial role (Ceraudo et al.,
2012). This step is important for the adenylyl cyclase activation
(Couvineau et al., 1984). These observations were in good agree-
ment with previous results indicating that D196 present in the
second extracellular loop (Du et al., 1997), K195 and R188 in
TMII (Solano et al., 2001), N229 in TMIII and Q380 in TMVII
of VPAC1 play an important role in VIP binding and proba-
bly could interact with the D3 residue of VIP (Chugunov et al.,
2010). Thus, these results along with our data clearly indicate that
the N-terminus of VIP interacts with the extracellular side of the
VPAC1 core.

THE N-TED DETERMINES THE SPECIFICITY OF THE VPAC1
RECEPTOR
As mentioned above, VPAC1 and VPAC2 receptors do not dis-
criminate between the two neuropeptides, VIP and PACAP.
Moreover, some others VIP related-peptides are able to
bind to human VPAC1 receptor with low affinity, including
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peptide histidine methionineamide (PHM), secretin, helo-
dermin and GRF (Laburthe et al., 2007). Potency order
being VIP = PACAP>helodermin>PHM>GRF>>secretin. In
this context, the development of specific ligands for VPAC1 and
VPAC2 receptors represents a major goal. To develop a specific
VPAC1 agonist, structure-function relationships analysis of VIP
by a complete alanine scanning (Nicole et al., 2000) was used to
rationally design the most potent and specific peptide for VPAC1
receptor currently available e.g., [Ala11,22,28]-VIP (Nicole et al.,
2000). Indeed, this VIP derivative has an affinity 1000 times
higher for the VPAC1 receptor, which is mainly involved in VIP
anti-inflammatory action, than VPAC2 receptor (Delgado et al.,
2004). As mentioned above a high selective antagonist of VPAC1
receptor (PG97-269) has been developed (Gourlet et al., 1997).
Regarding VPAC2 receptor, the cyclic peptide analog of VIP
[Ac-Glu8, OCH3-Tyr10, Lys12, Nle17, Ala19, Asp25, Leu26,
-Lys27,28 -VIP(cyclo 21–25)] or Ro 25–1392 is a potent and selec-
tive agonist (Xia et al., 1997). In our opinion, there is still no
satisfactory VPAC2 receptor antagonist since PG 99–465, a VIP
analog that antagonizes VIP action on VPAC2 receptor, which
also has a significant agonist activity on human VPAC1 receptor
(Moreno et al., 2000). Since recently, two non-peptide antago-
nists specific of VPAC1 (Harikrishnan et al., 2012) or VPAC2
(Chu et al., 2010) have been developed but they display a very
low affinity for receptors.

The use of VIP photoaffinity probes associated to receptor
mapping and Edman degradation demonstrated that VIP phys-
ically interacts with the N-ted of VPAC1 receptor (Couvineau
et al., 2010). In order to get a high resolution structure of
the VPAC1 receptor N-ted, the production of large quanti-
ties of recombinant N-ted protein in bacteria was performed
(Couvineau et al., 2008). The 31–144 sequence of human VPAC1
receptor corresponding to the N-ted sequence in which the signal
peptide (Couvineau et al., 2004) has been deleted was sub-
cloned in front of 6xHis (His-tag) and behind the thioredoxin
sequence containing a thrombin cleavage site (Couvineau et al.,
2008). The construction of the thioredoxin-N-ted-6xHis (Trx-
N-ted-6xHis) fusion protein was chosen in order to increase
the solubility of recombinant proteins as previously described
for production of recombinant N-ted of mouse CRF2β receptor
(Grace et al., 2004). The soluble recombinant N-ted was puri-
fied onto Ni-NTA column and tested for its ability to bind VIP
by using the influence of VIP binding on the intrinsic trypto-
phan fluorescence (ITF) of W67, W73, and W110 residues which
are present in the N-ted sequence. Indeed, the presence of three
tryptophan residues in the N-ted Sushi domain (Couvineau
et al., 2008) represents a good fluorescent tag which can be
used to measure the interaction between VIP and recombinant
N-ted. Based to the ITF parameters, the estimation of disso-
ciation constants revealed a Kd of 0.54 μM for VIP, 0.57 μM
for PACAP, and 1 μM for PG96-269 (Couvineau et al., 2008).
It should be noted that those Kd values were close to Kd val-
ues observed for others purified N-ted such as PAC1 receptor
(Sun et al., 2007) and GIP receptor (Parthier et al., 2007).
Moreover, the Kd of truncated VIP6–28 is very similar to Kd
of native VIP (0.54 μM vs. 0.85 μM) demonstrating that the
6–28 VIP sequence is sufficient to interact with a low affinity to

Table 3 | Binding of VIP related-peptides to recombinant N-ted.

Peptides Kd (µM)a

VIP 0.54 ± 0.09

PG97–269 1.05 ± 0.50

PACAP27 0.57 ± 0.06

Helodermine 2.54 ± 0.71

PHM 8.00 ± 2.00

GRF 10.12 ± 0.98

Secretin 16.00 ± 1.00

VIP2–28 0.85 ± 0.36

VIP1–12 NDb

VIP18–28 ND

VIP1–9/21–28 ND

aThe ITF of W 67, W 73, and W110 residues from the purified N-ted was measured

in 2 ml of HEPES buffer pH 7.5 containing 1 µM purified N-ted, in absence or

presence of increasing concentration of peptides. Dissociation constants were

determined from titration curves using analytical procedure developed by Bechet

et al. (Bechet et al., 1986).
bNot detectable.

recombinant N-ted (Table 3). In contrast, the deletion of large
C-terminal (VIP1-12), central (VIP1-9/21-28) and N-terminal
(VIP18-28) part of VIP abolishes totally the ability of trun-
cated peptides to bind to recombinant N-ted (Table 3). These
data clearly indicate that recombinant N-ted is able to recog-
nize with a low affinity the central and C-terminal part of VIP
molecule. Using the same approach, the ability of VPAC1 recom-
binant N-ted to discriminate VIP related-peptides was investi-
gated (Table 3). As shown in Table 2, the estimation of Kd was
of 0.54 μM, 0.57 μM, 2.54 μM, 8 μM, 10.12 μM, and 16 μM
for VIP, PACAP, helodermin, PHM, GRF, and secretin respec-
tively, indicating that the order of potency is similar to native
receptor i.e., VIP = PACAP>helodermin>PHM>GRF>secretin
(Laburthe et al., 2007). Taken altogether these results reveal that:
(1) the recombinant N-ted is able to bind with a low affinity and
to discriminate VIP related-peptides suggesting that the VPAC1
N-ted contains residues involved in the VPAC1 specificity; (2) the
first transmembrane domain of VPAC1 contains three residues
(see above) which interact with the first residue of VIP and these
three residues are probably involved in the high affinity and the
activation of the receptor (Figure 4B).

CONCLUSION
The VPAC receptors, in particular VPAC1, are very promis-
ing targets for the development of therapeutic molecules in
various pathologies including asthma, chronic inflammation
diseases (Crohn’s disease, rhumatoid arthritis, septic shock,
multiple sclerosis. . . ) neurodegenerative disorders, schizophre-
nia. While new peptide derivatives specifically targeting VPAC
receptor sub-types are now available, however, their very short
half-life and the inconvenient related to their administration
routes make them difficult to use in human therapy. The
recent advance in the structural knowledge of the VPAC1
binding site should lead to the design of non-peptide recep-
tor agonists and/or antagonists. The development of such
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molecules will represent an important overhang in the treatment
of many human diseases.
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