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ORIGINAL ARTICLE

Generalizability of Cardiovascular Disease Clinical 
Prediction Models: 158 Independent External 
Validations of 104 Unique Models
Gaurav Gulati , MD, MS*; Jenica Upshaw, MD, MS*; Benjamin S. Wessler , MD, MS*, Riley J. Brazil, MD, MPH;  
Jason Nelson , MPH; David van Klaveren, PhD; Christine M. Lundquist, MPH; Jinny G. Park , MPH;  
Hannah McGinnes, MPH; Ewout W. Steyerberg , PhD; Ben Van Calster , PhD; David M. Kent , MD, MS

BACKGROUND: While clinical prediction models (CPMs) are used increasingly commonly to guide patient care, the performance 
and clinical utility of these CPMs in new patient cohorts is poorly understood.

METHODS: We performed 158 external validations of 104 unique CPMs across 3 domains of cardiovascular disease (primary 
prevention, acute coronary syndrome, and heart failure). Validations were performed in publicly available clinical trial cohorts 
and model performance was assessed using measures of discrimination, calibration, and net benefit. To explore potential 
reasons for poor model performance, CPM-clinical trial cohort pairs were stratified based on relatedness, a domain-specific 
set of characteristics to qualitatively grade the similarity of derivation and validation patient populations. We also examined 
the model-based C-statistic to assess whether changes in discrimination were because of differences in case-mix between 
the derivation and validation samples. The impact of model updating on model performance was also assessed.

RESULTS: Discrimination decreased significantly between model derivation (0.76 [interquartile range 0.73–0.78]) and validation 
(0.64 [interquartile range 0.60–0.67], P<0.001), but approximately half of this decrease was because of narrower case-mix 
in the validation samples. CPMs had better discrimination when tested in related compared with distantly related trial cohorts. 
Calibration slope was also significantly higher in related trial cohorts (0.77 [interquartile range, 0.59–0.90]) than distantly 
related cohorts (0.59 [interquartile range 0.43–0.73], P=0.001). When considering the full range of possible decision thresholds 
between half and twice the outcome incidence, 91% of models had a risk of harm (net benefit below default strategy) at some 
threshold; this risk could be reduced substantially via updating model intercept, calibration slope, or complete re-estimation.

CONCLUSIONS: There are significant decreases in model performance when applying cardiovascular disease CPMs to new 
patient populations, resulting in substantial risk of harm. Model updating can mitigate these risks. Care should be taken when 
using CPMs to guide clinical decision-making.
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See Editorial by Shah et al

Clinical prediction models (CPMs) are multivariable 
statistical algorithms that produce patient-specific 
estimates of clinically important outcome risks 

based on ascertainable clinical characteristics. They are 
designed to improve prognostication and thus clinical 
decision making. CPMs are increasingly common and 
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important tools for patient-centered outcomes research 
and clinical care.

Recent reviews have demonstrated the abundance of 
CPMs in the literature but have also pointed at shortcom-
ings.1 Our own database, the Tufts Predictive Analytics 
and Comparative Effectiveness Center CPM Registry,2 
currently includes 1382 CPMs just for patients with 
cardiovascular disease (CVD), including 344 CPMs for 
patients with coronary artery disease, 195 for popula-
tion-based samples (ie, predicting incident CVD), and 
135 for patients with heart failure (HF).

How well these CPMs are likely to perform when 
tested on a new patient population is poorly understood. 
Large-scale evaluations of the model development meth-
ods have revealed that the vast majority of models do not 
follow best practice and are classified as having a high 
risk of bias.3,4 The concern that prediction models may 
fail when disseminated into clinical practice has grown 
increasingly urgent, now that models are being broadly 
distributed by vendors and influencing care at a large 
scale. Examples of model failure of clinically influential 
and widely disseminated models have recently come to 
light.5 Our prior literature review found that approximately 
60% of published CPMs have never been externally vali-
dated. Most of those that have been externally validated 
have been evaluated only once.6,7 Yet, our prior analysis 
also called into question the value of these single vali-
dations, since discriminatory performance typically var-
ies tremendously when a single model is evaluated on 
multiple databases.6

However, there are inherent limitations in literature 
reviews in understanding how well models perform 
when evaluated on external data. For example, when 

discrimination in a new database is poor, it can be due to 
model invalidity, on the one hand, or because the case-
mix in the external database is substantially restricted 
compared with the derivation database. The published lit-
erature does not distinguish between these possibilities. 
Further, when CPMs are validated, typically no clinically 
interpretable measure of calibration is reported, despite 

WHAT IS KNOWN
• Clinical prediction models (CPMs) are used routinely 

to guide clinical decision making, yet the major-
ity of published CPMs have never been externally 
validated.

• How well these models perform on new populations, 
as well as how likely these models are to improve 
clinical decision making, is unknown.

WHAT THE STUDY ADDS
• In this collection of cardiovascular CPMs, discrimi-

nation and calibration decrease substantially when 
models are validated on external databases, with 
the largest decrease when derivation and validation 
cohorts are the most dissimilar.

• The majority of CPMs had the potential to motivate 
harmful clinical decisions, particularly when decision 
thresholds were far from the population average risk.

• Model updating can reduce the risk of harm and 
should be performed before widespread clinical 
use of a CPM.

Nonstandard Abbreviations and Acronyms

ACCORD  Action to Control Cardiovascular Risk 
in Diabetes trial

ACS acute coronary syndrome
ALLHT-HTN  Antihypertensive and Lipid-Lowering 

Treatment to Prevent Heart Attack
ALLHAT-LLT Lipid-Lowering Therapy trial
AMIS Aspirin-Myocardial Infarction Study
BEST Beta Blocker Evaluation of Survival trial
BioLINCC  Biological Specimen and Data 

Repository Information Coordinating 
Center

CPM clinical prediction model
CVD cardiovascular disease
DIG Digitalis Investigation Group trial
EAVG Harrell’s E-statistic measure of the mean
E90  Harrell’s E-statistic measure of the 

90th percentile
ENRICHD  Enhanced Recovery in Coronary 

Heart Disease trial
EVEREST  Efficacy of Vasopressin Antagonism 

in Heart Failure Outcome Study with 
Tolvaptan trial

HEAAL  Heart Failure evaluation of Angioten-
sin II Antagonist Losartan trial

HF heart failure
HF-ACTION  Heart Failure: A Controlled Trial 

Investigating Outcomes of Exercise 
Training trial

IQR interquartile range
MAGIC Magnesium in Coronaries trial
MB-c model-based C-statistic
SCD-HeFT  Sudden Cardiac Death in Heart Fail-

ure trial
SOLVD  Studies of Left Ventricular Dysfunc-

tion trial
TIMI-II  Thrombolysis in Myocardial Infarction: 

phase II trial
TIMI-III  Thrombolysis in Myocardial Ischemia 

trial
TOPCAT  Treatment of Preserved Cardiac 

Function Heart Failure with an Aldo-
sterone Antagonist trial

WHI Women’s Health Initiative trial
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the fact that it is known that poor calibration can lead 
to harmful decision making. Finally, there is no widely 
accepted criteria by which one can claim that a model 
has been validated, since models are assessed for sta-
tistical accuracy, but scant attention is paid to whether 
models can improve the quality of decisions.

Given these limitations, it is difficult to understand the 
quality of CPMs reported in the literature, and how they 
might influence decision-making if widely disseminated. 
Thus, we sought to perform a large scale and systematic 
external validation on published CPMs, using both con-
ventional and novel measures of model performance to 
address some of the above limitations. In particular, we 
sought to examine both discrimination and calibration, to 
examine the proportion of decreased performance that 
might be due to model invalidity versus case-mix, and 
to examine the influence that predictions might have on 
decisions through the use of decision curve analysis. 
We were especially interested in evaluating when CPMs 
might lead to harmful decision making. We also evalu-
ated the effect of simple updating procedures.

METHODS
Source of Models
The Tufts Predictive Analytics and Comparative Effectiveness 
Center CPM Registry is a registry of CPMs published between 
January 1990 and December 2015 that predict outcomes 
in patients at risk for or with known cardiovascular disease. 
Detailed methods for development of the registry have been 
reported previously.2,8 Briefly, for inclusion in the registry, arti-
cles must (1) develop a CPM as a primary aim, (2) contain at 
least 2 outcome predictors, and (3) present enough information 
to estimate the outcome probability for an individual patient. For 
this analysis, we selected from the registry all CPMs predicting 
outcomes for 3 index conditions: (1) acute coronary syndrome, 
(2) HF (both preserved and reduced ejection fraction), and (3) 
healthy patients at risk for CVD (primary prevention or popula-
tion sample). Some data and materials for this analysis have 
been made publicly available and can be accessed at www.
pacecpmregistry.org, and other data are available from the cor-
responding author upon reasonable request. The Tufts Health 
Sciences Institutional Review Board (IRB) approved this study.

Source of Validation Cohorts
Deidentified patient-level data from clinical trials were 
obtained from the National Heart, Lung, and Blood Institute 
via application to the Biologic Specimen and Data Repository 
Information Coordinating Center (BioLINCC). For the Acute 
coronary syndrome index condition, we used the AMIS9 
(Aspirin-Myocardial Infarction Study), TIMI-II10 (Thrombolysis 
in Myocardial Infarction: phase II), TIMI-III11 (Thrombolysis in 
Myocardial Ischemia), MAGIC12 (Magnesium in Coronaries), and 
ENRICHD13 (Enhanced Recovery in Coronary Heart Disease) 
trials. For the HF index condition, we used the TOPCAT14 
(Treatment of Preserved Cardiac Function Heart Failure with 
an Aldosterone Antagonist), HEAAL15 (Heart Failure evaluation 

of Angiotensin II Antagonist Losartan), HF-ACTION16 (Heart 
Failure: A Controlled Trial Investigating Outcomes of Exercise 
Training), EVEREST17 (Efficacy of Vasopressin Antagonism in 
Heart Failure Outcome Study with Tolvaptan), SCD-HeFT18 
(Sudden Cardiac Death in Heart Failure), BEST19 (Beta Blocker 
Evaluation of Survival), DIG20 (Digitalis Investigation Group), and 
SOLVD21 (Studies of Left Ventricular Dysfunction) trials. For the 
primary prevention index condition, we used the ACCORD22 
(Action to Control Cardiovascular Risk in Diabetes), ALLHAT-
HTN23 (Antihypertensive and Lipid-Lowering Treatment 
to Prevent Heart Attack), ALLHAT-LLT24 (Lipid-Lowering 
Therapy), and WHI25 (Women’s Health Initiative). Details of the 
trials have been reported previously and are summarized in 
Tables S1 through S3.

CPM-Dataset Matching Process
To identify which clinical trial dataset could be used to validate 
which CPMs, we employed a hierarchical matching procedure. 
First, each CPM was compared with each dataset by non-
clinical research staff to identify pairs that had grossly simi-
lar inclusion criteria and outcomes, which were then reviewed 
for appropriateness by clinical experts. Potential pairs passing 
these screening steps were carefully reviewed at a granular 
level, and only pairs where sufficient patient-level data existed 
in the trial dataset such that the CPM could be used to gen-
erate a predicted outcome probability for each patient were 
included in the analysis. Observed outcomes in the patient-
level data were defined using the CPM outcome definition and 
prediction time horizon. A list of CPMs included in this analysis 
is shown in Table S4.

Measuring CPM Performance
The performance of CPMs in external cohorts was evaluated 
with measures of discrimination, calibration, and net benefit 
when applied to external validation cohorts. For all model vali-
dations, observed outcome events that occurred after the pre-
diction time horizon were censored. For time-to-event models, 
the Kaplan-Meier estimator was used for right-censored follow 
up times. For binary outcome models, unobserved outcomes 
(ie, due to loss-to-follow up before the prediction time horizon) 
were considered missing and excluded from analyses. For each 
CPM-database pair, the linear predictor was calculated for 
each patient in the dataset using the intercept and coefficients 
from the published CPM. Model discrimination was assessed 
using the C-statistic. The percent change in a CPM’s dis-
crimination from the derivation cohort to the validation cohort 
was calculated as [(Validation C-statistic—0.5)−(Derivation 
C-statistic—0.5)]/(Derivation C-statistic—0.5)×100.26 If the 
C-statistic at model derivation was not reported, the model 
was excluded from the assessment of decrement in C-statistic 
relative to derivation.

Since changes in case-mix between derivation and valida-
tion population will affect the C-statistic in the validation popu-
lation even without any change in measured effects, change in 
discrimination was also compared relative to the model-based 
C-statistic (MB-c). The MB-c is the C-statistic that would be 
obtained in the validation database under the assumption 
that the CPM is perfectly valid in the validation database and 
depends only on the distribution of the linear predictors in the 
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validation database.27 For example, even a model with no inva-
lidity would have both a C-statistic of 0.5 and an MB-c of 0.5 
in a validation cohort if all patients in that cohort were identical 
with respect to their covariates. Thus, any difference between 
the derivation C-statistic and the validation MB-c reflects differ-
ences in case-mix, while the difference between the validation 
MB-c and the C-statistic in the validation cohort reflects model 
invalidity. Because calculation of the MB-c depends entirely on 
the validation cohort, MB-c could be calculated for all pairs.

Model calibration was assessed by converting the linear 
predictor to a predicted probability (including a specified time 
point if Cox proportional hazards modeling was used). From 
the predicted probabilities, calibration slope and Harrell’s EAVG 
and E90 statistics were calculated. Harrell’s EAVG and E90 sta-
tistics measure the mean and 90th percentile, respectively, of 
the absolute difference between the predicted and observed 
event probabilities, where observed probabilities are estimated 
nonparametrically using locally weighted scatterplot smoothing 
curves. For this analysis, EAVG and E90 values were standard-
ized by dividing by the outcome rate in the validation cohort to 
improve comparability between CPM-validation pairs. If point 
estimates of outcome incidences at similar time points in the 
CPM derivation cohort and paired validation cohort were not 
able to be calculated with published information, that pair was 
excluded from analysis of calibration.

Finally, decision curve analysis28 was used to estimate the 
net benefit of each model in each paired validation dataset. 
Decision curve analysis presents a comprehensive assessment 
of the potential population-level clinical consequences of using 
CPMs to inform treatment decisions by examining misclassifica-
tion of patients across a relevant range of decision thresholds, 
while weighting the relative utility of false-positive and false-
negative predictions as implicitly determined by the threshold. 
As each model could be used to guide many different decisions, 
each with a unique threshold probability, we assessed whether 
each model resulted in a positive net benefit (above the best 
default strategy of treat all or treat none) or negative net ben-
efit (below the best default strategy) first at 3 threshold prob-
abilities spanning a broad range of plausible thresholds: half the 
outcome incidence, outcome incidence, and twice the outcome 
incidence, and then over the entire range of threshold prob-
abilities from half the outcome incidence to twice the outcome 
incidence. A range centered around the outcome incidence 
was also chosen because model net benefit is most likely to 
differ from that of the default strategy at thresholds close to 
the outcome incidence. Models with negative net benefit were 
considered harmful, while models with positive net benefit were 
considered not harmful. We used standardized net benefit29 to 
make results comparable across validations by controlling for 
variation in the incidence of the outcome.

Stratification by Relatedness
To explore sources of variability in model performance in exter-
nal validation, we categorized each CPM-dataset pair based 
on the relatedness of the underlying study populations. Study 
populations were reviewed in detail by clinical experts on the 
basis of key clinical characteristics, such as inclusion/exclusion 
criteria, patient demographics, outcome, enrollment period, and 
follow-up duration. These characteristics were index condition-
specific and are detailed in Tables S5 through S7). Pairs were 

categorized as related when there were no clinically relevant 
differences in inclusion criteria, exclusion criteria, recruitment 
setting, and baseline clinical characteristics. Any matches with 
clinically relevant differences in any criterion were categorized 
as distantly related. Clinical experts scoring relatedness were 
blinded to the derivation C-statistic of the CPM and outcome 
rates in the derivation and validation cohorts.

Model Updating
We assessed the impact of model updating on discrimination, 
calibration, and net benefit. Models were updated using data 
from each paired validation dataset in a sequential fashion: (1) 
by updating the model intercept using the observed outcome 
rate in the validation cohort (recalibration-in-the-large); (2) by 
updating the intercept and rescaling all the model coefficients 
by the calibration slope; and (3) by re-estimating all regression 
coefficients using data from the validation database (but main-
taining the predictors from the original model).30

Statistical Analysis
Differences in various model performance measures were 
assessed using the Wilcoxon rank-sum test. All analyses were 
performed in R version 3.5.3 (R foundation for statistical com-
puting, Vienna, Austria).

RESULTS
CPM-Validation Cohort Matching
From a set of 674 potential CPMs across all 3 index con-
ditions, 548 (81%) were screened as potential matches 
based on title and abstract review and underwent granu-
lar review to assess for sufficient patient level variable 
and outcome data within the publicly available clinical 
trial databases. We matched 104 (15%) CPMs to at 
least one database, yielding 158 CPMs-database pairs 
across the 3 index conditions (Figure 1). The matching 
success frequency varied by index condition, from 6% 
(23 of 344) for acute coronary syndrome to 32% (59 
of 195) for primary prevention. Details about the CPMs 
used in this analysis are summarized in Table S4.

CPM Discrimination in Independent External 
Validations
Of the 158 total CPM-database pairs, there were 111 
pairs in which the CPM reported a C-statistic at model 
derivation. Among these, the median C-statistic in the 
derivation cohorts was 0.76 (interquartile range [IQR], 
0.73–0.78) and the median C-statistic at model valida-
tion was 0.64 (IQR, 0.60–0.67, P<0.001; Table 1). Dis-
criminative ability decreased by a median of 49% (IQR, 
29%–64%). Approximately half the loss in discrimina-
tory power was attributable to a decrease in case-mix 
heterogeneity, while half was attributable to model inva-
lidity. When stratified by relatedness, 57 (36%) pairs 
were graded as related and 101 (64%) were graded 
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as distantly related. CPM-trial pairs that were related 
had significantly higher MB-c and validation C statistics 
than pairs that were distantly related (Table 1). Median 
percentage decrement in discrimination among related 
pairs was 30% (IQR, 16%–45%), of which approxi-
mately two-thirds was due to a decrease in case-mix 
heterogeneity and one-third due to model invalidity. In 
contrast, CPM-trial pairs that were distantly related had a 
median percentage decrement in discrimination of 55% 
(IQR, 40%–68%, P<0.001 versus related pairs), approxi-
mately half of which was due to case-mix heterogeneity 
and half due to model invalidity.

CPM Calibration in Independent External 
Validations
Of the 158 total CPM-database pairs, there were 132 
pairs in which the validation was assessed for calibra-
tion. The median calibration slope in the external vali-
dations was 0.64 (IQR, 0.48–0.84). Median calibration 
slope among related pairs was 0.77 (IQR, 0.59–0.90), 
significantly higher than the median calibration slope 
among distantly related pairs (0.59, IQR, 0.43–0.73, 
P=0.001). Median EAVG and median E90 standardized to 
the outcome incidence among all pairs was 0.53 (IQR, 

Figure 1. Flowchart of clinical prediction model-database matching process.
ACS indicates acute coronary syndrome; and HF, heart failure.

Table 1. Discriminative Ability of Clinical Prediction Models in Derivation and Validation Cohorts Stratified 
by Cohort Relatedness

 Cohort relatedness

All validations Related Distantly related

Related vs distantly 
related, P Value

N=76 models N=30 models N=53 models

N=158 validations N=57 validations N=101 validations

Derivation c-statistic* 0.76 (0.73–0.78) 0.76 (0.71–0.78) 0.77 (0.74–0.79) NA

Validation MB-c 0.68 (0.61–0.71)† 0.69 (0.65–0.75)† 0.68 (0.66–0.70)† 0.2

Validation c-statistic 0.64 (0.60–0.67)†‡ 0.67 (0.64–0.71)†‡ 0.62 (0.59–0.66)†‡ <0.01

Derivation and validation cohorts were classified as related or distantly related using an index condition-specific rubric (see Methods and 
Tables S5 through S7 for more details). Values are presented as median (IQR). MB-c indicates model-based c-statistic; and NA, not applicable.

*Twenty-eight of the 104 unique models did not report c-statistic. Sum of related and distantly related models is > 76 as some models were 
validated in related and distantly related pairs.

†P<0.01 vs derivation.
‡P<0.01 vs MB-c.
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0.38–0.72) and 0.95 (IQR, 0.62–1.25), respectively and 
did not differ significantly between related and distantly 
related pairs (Table 2).

Net Benefit
When we assessed net benefit at 3 thresholds (half the 
outcome incidence, outcome incidence, and twice the 
outcome incidence), the vast majority of models (110 of 
132, 83%) were harmful when used in their paired data-
base at one or more threshold. Even more models (120 
of 132, 91%) were harmful at some point within the 
range of thresholds between half and twice the outcome 
incidence. However, when we considered each threshold 
individually, models were much less likely to be harmful 
at a threshold equal to the outcome incidence than at 
either of the more extreme thresholds. In particular, only 
10 of 132 (8%) of models were harmful at a threshold 
equal to the outcome incidence, while 72 (55%) were 
harmful at half the outcome incidence and 58 (44%) 
were harmful at twice the outcome incidence (Table 3). 
When exploring the likelihood of a model being harm-
ful at any point within the range of thresholds explored, 
we found that 97% (103/106) of models with a vali-
dation C-statistic below 0.7 were potentially harmful at 
some threshold, while only 65% (17/26) of those with a 
validation C-statistic above 0.7 were potentially harmful. 
Similarly, we found that 96% (106/111) of models with 
a standardized EAVG above 0.3 were potentially harmful, 
while only 67% (14/21) of models with a standardized 
EAVG below 0.3 were potentially harmful (Figure 2).

Effects of Updating
EAVG improved by a median of 56% (IQR, 23%–79%) 
across all the CPM-trial pairs with updating of the inter-
cept and by a median of 93% (IQR, 80%–99%) after 
updating the intercept and slope (Table 4). Similar results 
were seen for E90. No further improvement in calibration 
error was seen with re-estimation. Plots of harmful and 

nonharmful models across the range of validation C-sta-
tistic and standardized EAVG showed the points moving 
progressively downward (and rightward after re-estima-
tion), reflecting improved calibration (when the intercept 
and slope are adjusted) and discrimination (when the 
coefficients are re-estimated, Figure 2). Similar results 
were seen when net benefit was assessed only at the 
3 thresholds (Figure S1). Significant improvement in 
net benefit was seen with sequential model updating 
(Table 3). Updating the intercept alone reduced the likeli-
hood of model harm at any threshold in the full range 
of thresholds considered from 91% to 73% (97/132). 
Updating the intercept and slope reduced this likelihood 
further, to 53% (70/132), and complete re-estimation 
reduced the likelihood to 48% (63/132).

DISCUSSION
The major finding of this analysis is that off-the-shelf 
CPMs often perform poorly in new populations, and this 
very frequently results in potential for net harm. Indeed, 
only 12/132 (9%) of the unique evaluations we per-
formed were either beneficial or neutral in the full range 
of thresholds examined, and only 22/132 (17%) were 
either beneficial or neutral at each of the 3 thresholds. In 
contrast to what is often assumed, use of an explicit data-
driven CPM is often not likely to be better than nothing. 
Model re-updating substantially reduced the risk of harm, 
although half the evaluations showed potential harm at 
least at some threshold within the range considered even 
after re-estimation. These findings emphasize the need 
for close oversight, governance and regulation of CPMs 
as they are more broadly deployed in clinical practice.31,32

The risk of harm of using CPMs in clinical practice is 
most salient when decision thresholds depart substan-
tially from the average risk in the patient population of 
interest. For example, risk of harm would be substantial 
when trying to deselect a very low risk population for a 
test or treatment that is clearly beneficial on average, or 
when trying to select a very high risk population for a 

Table 2. Calibration Performance of Clinical Prediction Models on External Validation Stratified 
by Cohort Relatedness

 Cohort relatedness

All validations Related Distantly related

P ValueN=158 N=57 N=101

Calibration slope* 0.64 (0.48–0.84) 0.77 (0.59–0.90) 0.59 (0.43–0.73) <0.001

Standardized EAVG 0.53 (0.38–0.72) 0.53 (0.37–0.67) 0.52 (0.40–0.81) 0.5

Standardized E90 0.95 (0.62–1.25) 0.82 (0.67–1.19) 1.04 (0.56–1.28) 0.5

Derivation and validation cohorts were classified as related or distantly related using an index condition-specific rubric (see 
Methods and Tables S5 through S7 for more details). Calibration error was measured using Harrell’s EAVG and E90 statistics, stan-
dardized to the outcome incidence. For example, if the outcome incidence in a validation population was 5% and EAVG was 0.05, 
standardized EAVG=1.0. Values are presented as median (IQR). EAVG indicates Harrell’s E-statistic measure of the mean; and E90, 
Harrell’s E-statistic measure of the 90th percentile.

*Twenty-six of 158 validation pairs were not assessed for calibration. Sample size for calibration is 132 (57 related, 75 distantly 
related).
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test or treatment that is clearly not indicated for those 
at average risk. However, when the point of indifference 
lies closer to the average risk (ie, decision is unclear for 
a typical patient), CPMs seem to be more likely to yield 
net clinical benefit and to be tolerant of some miscalibra-
tion. These findings were consistent across the 3 index 
conditions we tested.

That the decision threshold emerged as a very impor-
tant determinant of the utility of applying the CPMs in 
this sample emphasizes the importance of selecting the 
right decision context for CPM application—an often 
neglected issue. Based on our results, CPMs yielding 
typical (ie, nonexcellent) performance should generally 
be reserved for applications where the decision thresh-
old is near the population average risk, particularly 
when model updating is not feasible (as it often is not). 
Intuitively, the value of risk information is the highest 
when the decision threshold is near the average risk, 
since even relatively small shifts from the average risk 
due to using a CPM can reclassify patients into more 
appropriate decisions.

Our prior literature review6 was unable to examine 
calibration because it is frequently unreported and, when 
reported, the metrics used vary from study to study and 
are largely uninformative with regard to the magnitude of 
miscalibration (eg, Hosmer Lemeshow, which yields only 
a P, which tends to be large in small samples and small 
in large samples). The validations we performed our-
selves revealed that CPM-predicted outcome rates fre-
quently deviate from observed outcome rates even when 
discrimination was good. The typical standardized EAVG 
was 0.5 (IQR, 0.4–0.7), which means that the absolute 
error is half the average risk. In exploratory analysis, we 

found that when the standardized EAVG was > 0.3 (aver-
age prediction was off by at least 30%), models were 
generally found to yield harmful decisions at least at one 
threshold within the range examined (half the outcome 
rate to twice the outcome rate). The importance of good 
calibration in guarding against harmful decision making 
has recently been emphasized.33–35 Similarly, it was very 
unusual to find models that were consistently nonharmful 
at all examined thresholds when the validation C-statistic 
dropped below 0.7.

We found that the risk of harm can be substantially 
mitigated often simply by adjusting the intercept alone. 
Indeed, updating the intercept alone resulted in 100% 
of the models yielding positive net benefit when the 
decision threshold was set at the average risk. Yet for 
the more extreme thresholds, there was still substantial 
risk of harm; 60% (79/132) of CPMs tested yielded 
harmful predictions at one or more of the extreme 
thresholds, even after intercept updating. When both the 
slope and the intercept were updated, 62/132 (47%) 
of models were consistently beneficial or nonharmful 
across all examined thresholds. This underscores the 
importance of calibration in determining the risk of 
harm—and also the importance of clear and consistent 
reporting of calibration, which is largely absent from the 
literature. Unfortunately, in many clinical settings, reca-
libration may not be possible.

Among other notable findings, we discovered that the 
vast majority of CPMs were impossible to validate on 
publicly available patient-level trial databases. The most 
common reason was a mismatch between the variables 
in the models and those collected in the publicly avail-
able databases. Among the CPMs that we were able 

Table 3. Net Benefit Analysis of Models at 3 Representative Decision Thresholds Before and After 
Sequential Model Updating

 
Net benefit relative to 
default strategy (N=132)

Half outcome  
incidence

Outcome  
incidence

Twice outcome 
incidence

Any point within 
range

Original model Positive 38 (29%) 113 (86%) 35 (26%) NA

Neutral 22 (17%) 9 (7%) 39 (30%) NA

Negative 72 (55%) 10 (8%) 58 (44%) 120 (91%)

Sequential model updating

Updated intercept Positive 52 (39%) 132 (100%) 65 (49%) NA

Neutral 16 (12%) 0 (0%) 14 (11%) NA

Negative 64 (49%) 0 (0%) 53 (40%) 97 (73%)

Updated intercept and 
slope

Positive 69 (52%) 132 (100%) 74 (56%) NA

Neutral 38 (29%) 0 (0%) 32 (24%) NA

Negative 25 (19%) 0 (0%) 26 (20%) 70 (53%)

Re-estimated Positive 90 (68%) 132 (100%) 100 (76%) NA

Neutral 19 (14%) 0 (0%) 3 (2%) NA

Negative 23 (17%) 0 (0%) 29 (22%) 63 (48%)

The 3 threshold probabilities at which net benefit was quantified were: outcome incidence in the validation cohort, half the outcome inci-
dence, and twice the outcome incidence. Net benefit was assessed as positive if it was above the default strategy at that threshold, negative 
if it was below the default strategy at that threshold, and neutral if it was equivalent to the default strategy at that threshold. We also assessed 
how many models had net benefit below the default strategy at any point within the range of half the outcome incidence to twice the outcome 
incidence. NA indicates not applicable.
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to validate, we found that discrimination and calibra-
tion deteriorated substantially when compared with the 
derivation cohorts. Interestingly, much of the decrease 
in discrimination was due to a narrower case-mix in the 
validation cohorts as well as model invalidity—although 
this varied somewhat across the different index condi-
tions. For example, in our examination of acute coro-
nary syndrome models, the median derivation C-statistic 
was 0.76. This was found to decrease on validation to 
0.70. Almost all of this decrease, however, was due to 
changes in case-mix, not model performance (median 
MB-c=0.71). In heart failure and population models, the 
decrement in discriminatory performance appeared more 
evenly due to case-mix and model invalidity.

Our analysis also showed the potential usefulness 
of the MB-c. This is the first large-scale evaluation to 
apply this rarely utilized tool. By permitting an estimation 
of the C-statistic based on the variation of predictions 

only (ie, independent of the actual outcomes), the MB-c 
permits comparison of the actual c-statistic to a more 
appropriate baseline determined by the case-mix in the 
validation sample, rather than to that in the derivation 
population. This was particularly germane for our study 
since we used publicly available clinical trials to evalu-
ate the CPMs. These databases are generally assumed 
to have a narrower case-mix than registry or real world 
populations derived from electronic health records—an 
assumption supported by our results.

Our analysis also showed a larger decrement in 
discrimination when externally validating a CPM on a 
distantly related cohort than if the cohort were more 
closely related, a result that confirms findings from our 
literature review.6 Furthermore, the proportion of dec-
rement in model discrimination attributable to model 
invalidity was somewhat higher when the cohorts were 
distantly related. Relatedness often hinged on subtle 

Figure 2. Model harm status before and after sequential model updating based on validation c-statistic and standardized 
calibration error.
A model was considered harmful if net benefit was below default strategy at any point across a range of thresholds from half the outcome 
incidence to twice the outcome incidence.
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but clinically relevant differences between cohorts, such 
as years of enrollment or the distribution of baseline 
comorbidities, which required careful review from expert 
clinicians to identify.

Limitations
Our analysis has several limitations. Models published 
after 2015 were not included, so our results may not 
generalize to more recent models in these clinical 
domains. The sample of databases used was a conve-
nience sample and this sample determined the CPMs 
selected, since many models were not compatible with 
the available databases usually because of incongru-
ence between variables required for prediction and those 
collected in the trial. The validation databases generally 
represent older therapeutic eras, as this work reflects 
databases that are currently available through BioLINCC. 
Using derivation and validation databases from different 
errors, however, might be thought to simulate the kind of 
calibration problems that models are likely to confront 
from data shifts over time and in different settings.36 
Since the database are randomized trials, we anticipate 
poorer discrimination in these samples just on the basis 
of the restricted case-mix.

Many potential CPM-validation database matches 
were not possible because of missing or differently 
defined variables in the validation databases. Given the 
small number of CPM-validation database matches, we 
were seldom able to match a CPM to > 1 validation 
database. A given CPM may perform differently when 
validated against different cohorts, and more research 
is required to understand the sources of this variation 
before validation performance can be used to grade the 
quality of a model. Our relatedness categorization was 
one such attempt, but it requires content area expertise, 
is inherently subjective, and is difficult to generalize to 
CPMs for other clinical domains.

Further, our net benefit analyses used a range of deci-
sion thresholds that may be considered clinically arbitrary 

in that they were not informed by the relative cost of over-
treatment versus under-treatment in the specific clinical 
context. However, we would anticipate that most clinically 
relevant thresholds would fall within this range, since risk 
prediction is much less likely to be useful for decision 
thresholds that are even more extreme. Nevertheless, 
considering any negative net benefit within this range 
as indicative of a potentially harmful model may provide 
an unduly pessimistic view, since many models that are 
labeled harmful may be beneficial at most thresholds, 
including the clinically most relevant ones.

CONCLUSIONS
Discrimination and calibration often decrease substan-
tially when CPMs for cardiovascular disease are tested in 
external populations, especially when validation cohorts 
are only distantly related to model derivation cohorts. This 
leads to substantial risk of net harm, particularly when 
decision thresholds are not near the population average 
risk. Model updating can reduce this risk substantially 
and will likely be needed to realize the full potential of 
risk-based decision making. Our findings underscore the 
need for more thorough model evaluation, including the 
use of novel measures assessing utility, and better model 
oversight and stewardship.
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Potentially 
harmful models

All validations Related Distantly related All validations Related Distantly related
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For EAVG and E90, percent change in statistic relative to original model is shown. A model was considered potentially harmful if net benefit was below default strategy at 
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