
Journal of

Biology
Developmental

Article

A Synthetic Peptide, CK2.3, Inhibits RANKL-Induced
Osteoclastogenesis through BMPRIa and ERK
Signaling Pathway

John Nguyen , Semaj Kelly, Ryan Wood, Brian Heubel and Anja Nohe *

Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; njohn@udel.edu (J.N.);
shkelly@udel.edu (S.K.); ryanwood@udel.edu (R.W.); brianph@udel.edu (B.H.)
* Correspondence: anjanohe@udel.edu

Received: 15 June 2020; Accepted: 7 July 2020; Published: 9 July 2020
����������
�������

Abstract: The skeletal system plays an important role in the development and maturation process.
Through the bone remodeling process, 10% of the skeletal system is renewed every year. Osteoblasts
and osteoclasts are two major bone cells that are involved in the development of the skeletal system,
and their activity is kept in balance. An imbalance between their activities can lead to diseases such as
osteoporosis that are characterized by significant bone loss due to the overactivity of bone-resorbing
osteoclasts. Our laboratory has developed a novel peptide, CK2.3, which works as both an anabolic
and anti-resorptive agent to induce bone formation and prevent bone loss. We previously reported
that CK2.3 mediated mineralization and osteoblast development through the SMAD, ERK, and
AKT signaling pathways. In this study, we demonstrated the mechanism by which CK2.3 inhibits
osteoclast development. We showed that the inhibition of MEK by the U0126 inhibitor rescued the
osteoclast development of RAW264.7 induced by RANKL in a co-culture system with CK2.3. We
observed that CK2.3 induced ERK activation and BMPRIa expression on Day 1 after stimulation with
CK2.3. While CK2.3 was previously reported to induce the SMAD signaling pathway in osteoblast
development, we did not observe any changes in SMAD activation in osteoclast development with
CK2.3 stimulation. Understanding the mechanism by which CK2.3 inhibits osteoclast development
will allow CK2.3 to be developed as a new treatment for osteoporosis.
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1. Introduction

The skeletal system plays an important role in the development and maturation processes
of vertebrates. It plays roles in many biological processes such as movement, support, blood
cell production, calcium storage, and endocrine regulation [1]. The development of the skeletal
system involves two major types of bone cells: osteoblasts and osteoclasts. Osteoblasts are
cuboidal-shape-like cells that develop from mesenchymal stem cells (MSC). The development of
osteoblasts is regulated by several signaling pathways including the bone morphogenetic protein
(BMP) signaling pathway [2]. The development of osteoblasts is regulated by transcription factors such
as runt-related transcription factors 2 (RUNX2), distal-less homeobox 5 (Dlx5), and osterix (OSX) [3,4].
Osteoclasts are developed from hematopoietic stem cells (HSCs) [5,6]. Under the stimulation of stem
cell factor (SCF), interleukin (IL)-3, and IL-6, HSCs give rise to common myeloid progenitors (CMPs).
Then, granulocyte/macrophage colony stimulating factor (GM-CSF) promotes the differentiation of
CMPs into granulocyte/macrophage progenitors (GMPs). Macrophage colony stimulating factor
(M-CSF) further promotes GMP differentiation into the monocyte/macrophage lineage, which is
considered to be osteoclast precursors [6]. The development of osteoclast precursors is supported by
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osteoblasts. Two important differentiation factors for osteoclasts, M-CSF and receptor activator of
nuclear factor kappa-β ligand (RANKL), are secreted by osteoblasts [7–13]. The receptor for M-CSF on
osteoclast precursors is the colony-stimulating factor-1 receptor (c-fms) [14]. Activated c-fms induces
the activation of the tyrosine kinase domain, which transphosphorylates specific tyrosine residues
on the cytoplasmic tail to increase its affinity for SH2 domain-containing signaling residues [6,15].
For example, phosphorylated Y559 and Y721 interact with proto-oncogene tyrosine-protein kinase
Src (c-Src) and phosphoinositide 3-kinase (PI3K), respectively, resulting in the activation of the AKT
signaling pathway [6,16–18]. By contrast, the phosphorylation of Y697 and Y974 recruits Grb2 and
subsequently activates the ERK signaling pathway [6,19]. The receptor for RANKL is receptor activator
of nuclear factor kappa-β (RANK). Activated RANK recruits TNF receptor associated factor 6 (TRAF6)
to form a signaling complex containing c-Src, TAK1, TAB1, and TAB2, which subsequently activate the
AKT, NF-κB, and MAPK signaling pathways [12,20–22].

The skeletal system is maintained and repaired by the bone remodeling process. Every year, about
10% of the skeletal system is replaced by the process [23]. The balance between osteoclast activity and
osteoblast activity is highly regulated during bone remodeling. This balance is kept until the peak
of skeletal development at around 25 years of age. Due to the aging process, the balance is shifted
toward bone resorption more than bone formation [24]. As a result, the skeletal system becomes
deteriorated, and bone mass declines with age. Osteoporosis (OP) is characterized by a significant loss
of bone mineral density (BMD) that will eventually result in bone fractures. There are no symptoms
for osteoporosis. Thus, OP often progresses without being noticed until patients experience the first
fracture. The mortality rates after a hip fracture within a year are 30% and 32.7% for women and men,
respectively [25]. The estimated treatment cost for osteoporotic fractures by 2025 is 27 billion USD [26].

Bone morphogenetic protein 2 (BMP2) has been identified as an important factor in bone formation
and skeletal development. Studies on BMP2 show that BMP2 is essential for the process of bone repair
and fracture healing [27–30]. BMP2 signaling is mediated through BMP receptor type 1a (BMPRIa) and
BMP receptor type 2 (BMPRII) [31–33]. The osteogenic ability of BMP2 has been shown to be mediated
by both SMAD and non-SMAD signaling pathways [34]. BMP2 was approved by the FDA to treat
spinal fusion and open tibia fractures [35]. However, treatment with BMP2 is not without risks [36–38].
Our research focuses on fine tuning the BMP2 signaling transduction to improve its potential to treat
bone fractures. Our research first identified casein kinase 2 (CK2) as an activator of BMP2 signaling
transduction [39,40]. We designed a novel peptide CK2.3 to mimic the bone morphogenetic protein
receptor type Ia (BMPRIa) binding site (amino acids 213–217) for CK2, allowing it to bind to CK2 to
block the interaction between BMPRIa and CK2 [39]. CK2.3 was shown to promote bone formation and
suppress osteoclast development in vivo [40–42]. It was suggested that CK2.3 induces mineralization
in myoblast C2C12 cells though the activation of ERK [43]. Similarly, an elevated activation of ERK
was observed in the femurs of 8-week-old mice injected with CK2.3 [41]. The underlying mechanism
of CK2.3’s suppression of osteoclast development is still unknown.

As mentioned before, MAPK and NF-κB are shown to play important roles in osteoclast
development that induced by RANKL [12,20–22]. The importance of p38 MAPK in osteoclast
development is demonstrated by the inhibition of RANKL-induced osteoclast development in
RAW264.7 cells by dominant-negative forms of p38 and MKK6 [44]. The activation of ERK has
been suggested to play an important role in osteoclast development [45–49]. Erk1 knockdown in bone
marrow mononuclear cells has been shown to decrease the formation of osteoclasts [46]. Additionally,
the activation of p38 MAPK and ERK/MAPK has been demonstrated to be downstream of both
RANKL and BMP2 in osteoclastogenesis [44–46]. The role of NF-κB in the inhibition of osteoclast
development has been shown by the double knockout of p50 and p52, two important components
for NF-κB activation [50]. NF-κB activation in osteoclast development is followed by the interaction
of RANKL with RANK [51]. Additionally, crosstalk between BMP2 signaling and NF-κB signaling
has been shown through the demonstration of the interaction between the p65 subunit of NF-κB
and Smad4 [52]. Combining these findings suggests that p38 MAPK, ERK MAPK, and NF-κB play
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an important role in osteoclast differentiation mediated by osteoclast differentiation factors such as
RANKL and BMP2 (Figure 1).

Figure 1. Involvement of p38 MAPK, ERK MAPK, and NF-κB signaling pathways in osteoclast
differentiation mediated by RANKL and BMP2.

In this study, we elucidated the mechanism by which CK2.3 inhibits osteoclast development.
We showed that CK2.3 downregulated osteoclast gene markers such as TRAP, DC-STAMP, and
Cstk in the blood sera of 6-month-old retired breeder mice. We showed that the effect of CK2.3
inhibiting the osteoclast development of RAW264.7 cells could be nullified by the MEK inhibitor U0126,
suggesting that CK2.3 acted through the MEK/ERK signaling pathway. This was further confirmed by
immunofluorescence and Western blotting, which showed that CK2.3 upregulated ERK activation in
the femurs of 6-month-old retired breeder mice and in RAW264.7 cells, respectively. We also showed
that CK2.3 at 2.3 µg/kg, the concentration that we showed to be the most beneficial, was stable in the
femurs for up to 4 weeks [42]. These results were the first to demonstrate the mechanism by which
CK2.3 inhibits osteoclast development and could further advance the development of CK2.3 as a new
treatment for osteoporosis.

2. Materials and Methods

2.1. Animals and Ethical Approvement

Retired breeder female C57BL/6 (B6) mice that were 6 months old were obtained from the Jackson
Laboratory (Bar Harbor, ME). The mice were injected in the tail vein once a day for five consecutive
days with CK2.3 (GeneScript) at 2.3 µg/kg or 50 µL of phosphate-buffered saline (PBS). Wild-type B6
mice, 6 months old, were a gift from Dr. Lachke’s laboratory at the University of Delaware. This study
was approved by the Institutional Animal Care and Use Committee (University of Delaware, Newark,
DE, USA) and has the following approval number: AUP#1194.

2.2. Cell Culture

Monocyte/macrophage RAW264.7 cells were obtained from the American Type Culture Collection
(Manassas, VA, USA). The RAW264.7 cells were plated on a 6-well plate at 1.8 × 104 cell/cm2 in
Dulbecco’s Modified Eagle Medium (DMEM) (Krackeler Scientific, Cat# 23-90-013-PB) supplemented
with 1.8 g/L of sodium bicarbonate, 2 mM l-Glutamine (Gemini Bio-Products (West Sacramento, CA,
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USA), Cat# 400-106), 1 mM sodium pyruvate (Cellgro (Herndon, VA, USA), Cat# MT-25-000-Cl), and
100 U/L of penicillin and 0.1 mg/L of streptomycin (Gemini Bio-Products, Cat# 400-109). After plating,
the cultured plate was kept in the incubator at 37 ◦C with 5% CO2 for 24 h. Then, the osteoclast
differentiation factor RANKL at 10 ng/mL (Sino Biological (Beijing, China), Cat# 11682-HNCH) and
different concentrations of CK2.3 (50 nM, 100 nM, 500 nM, or 1000 nM) were added into the culture
medium (Day 0). The culture medium with fresh RANKL and CK2.3 added was changed on Day 3.
Stimulation was terminated on Day 5. The cells were fixed with 4% paraformaldehyde for 20 min at
room temperature and stained for tartrate resistant acid phosphatase (TRAP) using an Acid Phosphatase
Leukocyte (TRAP) kit (Sigma-Aldrich (St. Louis, MO, USA), Cat# 387A-1KT). Osteoclasts were stained
purple when observed under a brightfield microscope and counted in each treatment.

2.3. Inhibitor Treatment

RAW264.7 cells were plated on a 6-well plate at 1.8 × 104 cell/cm2 in DMEM supplemented with
1.8 g/L of sodium bicarbonate, 2 mM l-Glutamine, 1 mM sodium pyruvate, and 100 U/L of penicillin
and 0.1 mg/L of streptomycin. After plating, the cultured plate was kept in the incubator at 37 ◦C
with 5% CO2 for 24 h. Then, the RAW264.7 cells were serum starved. After 18–20 h of starvation, the
cells were treated with the MEK inhibitor U0126-EtOH (U0126) at 1 µM, NF-κB inhibitor caffeic acid
phenethyl ester (CAPE) at 1 µM, or p38 inhibitor SB202190 at 10 µM or left untreated. After 2 h of
inhibitor pre-treatment, the medium was changed. The cells were treated as follows: RANKL, RANKL
+ inhibitor (U0126, CAPE, or SB202190), RANKL + CK2.3, RANKL + CK2.3 + inhibitor (U0126, CAPE,
or SB202190), RANKL + BMP2, RANKL + BMP2 + inhibitor (U0126, CAPE, or SB202190), untreated,
and untreated + inhibitor (U0126, CAPE, or SB202190). The concentration of each reagent was as
follows: RANKL, 10 ng/mL; CK2.3, 100 nM; BMP2, 40 nM; U0126, 1 µM; CAPE, 1 µM; and SB202190,
10 µM. All the inhibitors were purchased from Selleck Chemicals (Houston, TX, USA).

The medium was changed after 3 days, and fresh stimulation reagents were added again as
indicated above. On Day 5, the cells were fixed with 4% paraformaldehyde for 20 min at room
temperature and stained for tartrate resistant acid phosphatase (TRAP) using an Acid Phosphatase
Leukocyte (TRAP) kit (Sigma-Aldrich, Cat# 387A-1KT). Osteoclasts were stained purple when observed
under a brightfield microscope and counted in each treatment.

2.4. Immunofluorescence

Mouse femurs were fixed in 10% neutral buffered formalin for 48 h and decalcified in 14%
ethylenediamine tetraacetic acid (EDTA) for 3–4 weeks. Chemical endpoints were tested with
ammonium hydroxide/ammonium oxalate (1:1 v/v). Paraffin embedding and sectioning were performed
by the Histochemistry and Tissue Processing Core at Nemours/Alfred I. DuPont Hospital for Children
(Wilmington, DE, USA). Sectioned samples were deparaffinized in two changes of 100% xylene. Then,
they were rehydrated in a series of 100% ethanol, 96% ethanol, and 70% ethanol for 5 min each, and
deionized water for 30 s. Antigen retrieval was performed by incubation with testicular hyaluronidase
(Sigma-Aldrich, Cat# H3884-100MG) at 37 ◦C for 30 min. Then, they were incubated in 3% BSA/0.1%
Saponin for 1 h at room temperature to block nonspecific binding. p-Erk1/2 was fluorescently labeled
with the primary p-Erk1/2 (mouse) antibody (Santa Cruz Biotechnology (Dallas, TX, USA), sc-7383)
at a 1:100 dilution (in 1% BSA/0.1% saponin) for 1 h at room temperature. Additionally, a section
sample designated as the “secondary control” was also incubated in 1% BSA/0.1% saponin. After 1 h of
incubation in p-Erk1/2 antibody or 1% BSA/0.1% saponin, the section samples (including the secondary
control sample) were incubated with the secondary antibody Alexa Fluor 488 donkey anti-mouse
(Molecular Probes (Eugene, OR, USA), Cat# A21202) at a 1:1000 dilution (in 1% BSA/0.1% saponin)
for 1 h at room temperature. Afterward, nuclei were stained with Hoechst 3342 (Fisher Scientific
(Hampton, NH, USA), Cat# H1399) at a 1:5000 dilution (in deionized water) for 5 min. Another set
of sectioned samples were labeled for Antennapedia Homeodomain (HD) using the same procedure
as above. The primary antibody was HD antibody (mouse) (Developmental Studies Hybridoma
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Bank (Iowa City, IA, USA), Cat# 4C3) and used at a 1:100 dilution (in 1% BSA/0.1% Saponin), and
the secondary antibody was Alexa Fluor 568 donkey anti-mouse (Invitrogen (Carlsbad, CA, USA),
Cat#A10037) and used at a 1:1000 dilution (in 1% BSA/0.1% saponin). Finally, images were taken on a
Zeiss Axiophot (Zeiss, Oberkochen, Germany) at 200× total magnification.

The following procedure was followed for the immunofluorescence of RAW264.7 cells. RAW264.7
cells were plated on coverslips in a 6-well plate at 1.8 × 104 cell/cm2 in DMEM supplemented with
1.8 g/L of sodium bicarbonate, 2 mM l-Glutamine, 1 mM sodium pyruvate, and 100 U/L of penicillin
and 0.1 mg/L of streptomycin. After plating, the cultured plate was kept in the incubator at 37 ◦C with
5% CO2 for 24 h. Then, the RAW264.7 cells were serum starved for 18–20 h before being treated with
RANKL at 10 ng/mL, RANKL + CK2.3 at 100 nM, or RANKL + BMP2 at 40 nM. After 24 h of treatment,
the coverslips were removed from the 6-well-plate and fixed/permeabilized in methanol/acetone for
10 min and 1 min, respectively, at −20 ◦C. Then, they were incubated in 3% BSA/0.1% saponin for 1 h at
room temperature to block non-specific binding. p-Erk1/2 was fluorescently labeled with-p-Erk1/2
(rabbit) antibody (Cell Signaling (Danvers, MA, USA), Cat#9101) at a 1:100 dilution (in 1% BSA/0.1%
saponin) for 1 h at room temperature. The secondary control coverslip was incubated in 1% BSA/0.1%
saponin instead of the primary antibody. After 1 h of incubation in p-Erk1/2 antibody or 1% BSA/0.1%
saponin, the coverslips were incubated with the secondary antibody Alexa Fluor 488 donkey anti-rabbit
(Invitrogen, Cat# A21206) at a 1:1000 dilution (in 1% BSA/0.1% saponin) for 1 h at room temperature.
Subsequentially, BMPRIa rabbit was fluorescently labeled with BMPRIa (rabbit) antibody (Santa Cruz
Biotechnology, Cat# sc-20736) at a 1:100 dilution (in 1% BSA/0.1% Saponin) for 1 h at room temperature.
The secondary control coverslip was incubated in 1% BSA/0.1% saponin. After 1 h of incubation
in BMPRIa antibody or 1% BSA/0.1% saponin, the coverslips were incubated with the secondary
antibody Alex Fluor 647 goat anti-rabbit (Life Technologies (Carlsbad, CA, USA), Cat#A21245) at a
1:1000 dilution (in 1% BSA/0.1% saponin) for 1 h at room temperature. Afterward, nuclei were stained
with Hoechst 3342 at 1:5000 (in deionized water) for 5 min. Images were taken on an LSM710 confocal
microscope (Zeiss, Oberkochen, Germany) at 400× total magnification.

The following procedure was followed for the immunofluorescence of primary osteoclasts. Femurs
were isolated from 6-month-old B6 mice (donated by Dr. Lachke’s laboratory). Bone marrow was
flushed out of the femurs and plated in alpha-Medium Essential Medium (α-MEM) (Calsson Labs
(Smithfield, UT, USA), Cat# MEL08-500ML) (supplemented with 100 U/mL of penicillin, 100 µg/mL of
streptomycin, 250 ng/mL of amphotericin B with 85 mg/L of NaCl, and 2 mM L-Gln) with 30 ng/mL
of M-CSF (Novus Biologicals (Littleton, CO USA), Cat# NBP2-59586-50ug) overnight. The next day,
non-adherent cells were collected and plated on coverslips in a 6-well-plate in the medium described
above with the addition of 10 ng/mL of RANKL for 24 h. Afterward, p-ERK1/2 was fluorescently
labeled with p-ERK1/2 (rabbit) antibody and Alexa Flour 488 donkey anti-rabbit using a protocol
similar to that described above.

2.5. Image Analysis

Immunofluorescent images were analyzed by utilizing ImageJ (NIH, Bethesda). First, the images
were converted into 8-bit image type, to allow the images’ thresholds to be adjusted. The threshold of
the secondary control image was adjusted first. The upper threshold level was set at 255, while the
lower threshold level was adjusted until the particle intensity was barely shown. Then, other images’
thresholds were adjusted using the same threshold levels used for the secondary control images. The
original particle intensity of each image was measured with the “Histogram” function. Additionally,
the particle intensity of a background area of each image was measured and subtracted from the
original particle intensity of the same image to obtain the final particle intensity of that image.

2.6. Western Blot

RAW264.7 cells were plated on a 6-well plate at 1.8 × 104 cell/cm2 in DMEM supplemented with
1.8 g/L of sodium bicarbonate, 2 mM l-Glutamine, 1 mM sodium pyruvate, and 100 U/L of penicillin
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and 0.1 mg/L of streptomycin. After plating, the cultured plate was kept in the incubator at 37 ◦C with
5% CO2 for 24 h. Then, RAW264.7 cells were serum starved for 18–20 h before being stimulated with
RANKL at 10 ng/mL, RANKL + CK2.3 at 100 nM, or RANKL + BMP2 at 40 nM. After 24 h, 48 h, and 72 h
after stimulation, the cells were lysed with RIPA lysis buffer supplemented with phenylmethylsulfonyl
fluoride (PMSF), protease inhibitor, and phosphatase inhibitors, freshly added. The cells were lysed in
lysis buffer for 1 h on ice while shaking. Cell debris was pelleted and discarded. The supernatant was
recovered as the cell lysate.

The cell lysate was mixed with Laemmli sample buffer to a 1× final concentration and heated
up to 95 ◦C for 5 min. Then, protein separation was performed on a 10% polyacrylamide gel at
90 V for 1.5 h. After the separation, the proteins were transferred from the gel to a PDVF membrane
by blotting using the Trans-Blot SD Semi-Dry Transfer Cell (Bio-Rad, Hercules, CA, USA) at 15 V
for 50 min. Then, the blot was incubated in 3% BSA for 1 h at room temperature on a shaker to
block non-specific binding. Phospho Erk1/2, BMPRIa, and GAPDH were detected in the cell lysates
by incubation with anti-phospho Erk1/2 (rabbit), anti-BMPRIa (rabbit), and anti-GAPDH (mouse)
antibodies (Novus Biologicals, Cat#NB300) at 1:1000 dilutions (in 1% BSA) overnight at 4 ◦C on a
shaker. This was followed by incubation with the secondary antibody HRP anti-rabbit at a 1:5000
dilution (in 1% BSA). Lastly, the blot was incubated in Chemiluminescent FemtoMax Super Sensitive
HRP Substrate (Rockland (Pottstown, PA, USA), Cat# Femtomax-110) for 2 min. Protein bands were
detected with a Chemidoc Imaging System (Bio-Rad, Hercules, CA, USA).

2.7. Primary Preosteoclast Isolation and Differentiation

Spleens were isolated from mice 2 weeks after the first injection. Primary cells were flushed out of
the spleens with primary culture medium (Alpha Minimum Essential Medium (a-MEM) supplemented
with 10% FBS, 100 U/L of penicillin, and 0.1 mg/L of streptomycin). Then, he cells were centrifuged
and pelleted. The cell pellet was resuspended in primary culture medium with 50 ng/mL of RANKL
and 30 ng/mL of M-CSF for 7 days. RNA extraction and real-time polymerase chain reaction (RT-PCR)
then followed.

2.8. RNA Extraction and Real-Time Polymerase Chain Reaction (RT-PCR)

Cells were lysed with TRIzol Reagent (Life Technologies, Cat# 15596018) at 1 mL per 1 × 106

cells for 5 min at room temperature. Then, chloroform was added at 0.2 mL per 1 mL of TRIzol used,
and the mixture was shaken for 15 s, followed by incubation for 3 min at room temperature, then
centrifugation at 12,000× g for 15 min at 4 ◦C. The clear top aqueous layer that contained the RNA
was collected. Isopropanol was added to the collected aqueous layer at 0.5 mL per 1 mL of TRIzol
used then vortexed, followed by incubation for 10 min at room temperature, then centrifugation at
12,000× g for 10 min. The pellet was collected and suspended in 75% ethanol at 1 mL per 1 mL of
TRIzol used then vortexed. Centrifugation was performed at 7500× g for 5 min at 4 ◦C to collect the
pellet. After air drying, the RNA pellet was resuspended in nuclease-free water.

Two-step RT-PCR was performed to examine the expression of osteoclast marker genes. cDNA
synthesis was performed using the ImProm-II Reverse Transcription System (Promega (Madison,
WI, USA), Cat#A3800) according to manufacturer’s protocol. RT-PCR was performed using the Fast
SYBR Green Master Mix (Applied Biosystems (Foster City, CA, USA), Cat# 4385612) according to the
manufacturer’s protocol. The primers for osteoclast marker genes and GAPDH are listed in Table 1.

2.9. Statistical Analysis

The results are shown as the mean ± standard error (STE). Statistical analysis was performed
using One-Way ANOVA followed by Fisher’s Least Significant Difference post-hoc test. From left
to right, each bar on the graph is ordered alphabetically (a, b, c, . . . ), and (a) denotes a significant
difference from the first bar, while (b) denotes a significant difference from the second bar, and so on.
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Table 1. Primers for osteoclast marker genes and GAPDH.

Gene Reverse/Forward Sequence

ATP6v6d02
Reverse GTG CCA AAT GAG TTC AGA GTG ATG

Forward TCA GAT CTC TTC AAG GCT GTG CTG

NFATc1
Reverse CGT ATG GAC CAG AAT GTG ACG G

Forward GGT GCC TTT TGC GAGCAG TAT C

Cstk
Reverse GCT GGC TGG AAT CAC ATC TT

Forward AGG GAA GCA AGC ACT GGA TA

TRAP
Reverse GAG TTG CCA CAC AGC ATC AC

Forward CGT CTC TGC ACA GAT TGC A

BMPRIa
Reverse TGA GTC CAG GAA CCA GTG CCT TT

Forward CAG AAT CTA GAT AGT ATG C

DC-STAMP
Reverse TGG CAG GAT CCA GTA AAA GG

Forward GGG CAC CAG TAT TTT CCT GA

GAPDH
Reverse TAC TCA GCA CCA GCA TCA CC

Forward TGA CCC CTT CAT TGA CCT TC

3. Results

3.1. Effect of CK2.3 Concentration on Viability of RAW264.7 Cells

A concentration curve of CK2.3 was generated to determine the concentration at which CK2.3
would not affect the viability of RAW264.7 cells during RANKL-induced osteoclast development
(Figure 2). We observed no changes in cell population between control and RANKL stimulation. At a
50 nM concentration of CK2.3, a decrease in the cell population was observed. However, at a 500 nM
concentration of CK2.3, we observed an increase in the cell population. Additionally, there were no
changes in the cell population at 100 nM and 1000 nM concentrations of CK2.3.

Figure 2. Effect of CK2.3 on RAW264.7 cell growth. RAW264.7 cells were stimulated with different
concentrations of CK2.3 for 5 days. Cell growth was affected by CK2.3 at 50 nM and 500 nM. However,
it was not affected at 100 nM and 1000 nM. a: denotes significant differences from Control, b: denotes
significant difference from RANKL at 10 ng/mL, c: denotes significant difference from RANKL + CK2.3
at 50 nM, d: denotes significant difference from RANKL + CK2.3 at 100 nM, e: denotes significant
difference from RANKL + CK2.3 at 500 nM, and f: denotes significant difference from RANKL + CK2.3
at 1000 nM.
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3.2. MEK Inhibitor U0126 Abolished the Effect of CK2.3 as an Antagonist of RANKL-Induced
Osteoclastogenesis of RAW264.7 Cells

We wanted to identify the potential signaling pathway(s) that are involved in CK2.3’s suppression
of the RANKL-induced osteoclast development of RAW264.7 cells. We previously showed that CK2.3
activated the ERK signaling pathway in C2C12 cells during osteoblast development [53]. Additionally,
the p38 and NF-κB signaling pathways have been shown to be important for osteoclastogenesis for
the development of the skeletal system [44,50]. Thus, we investigated the effect of the MEK inhibitor
U0126, p38 inhibitor SB202190, and NF-κB inhibitor CAPE on the antagonistic effect of CK2.3 on
RANKL-induced osteoclastogenesis (Figures 3–5, respectively). First, we generated a concentration
curve for each inhibitor vs. cell viability to determine the working concentration of each inhibitor
(Figure 3A, Figure 4A, and Figure 5A). The highest concentration at which the cell viability was
not affected was chosen. We observed that the MEK inhibitor U0126 abolished the effect of CK2.3
as an antagonist of the RANKL-induced osteoclastogenesis of RAW264.7 cells (Figure 3B). U0126
restored the RANKL-induced osteoclastogenesis of RAW264.7 cells that were cocultured with CK2.3
(Figure 3B). The p38 inhibitor SB202190 and NF-κB inhibitor CAPE, on the other hand, showed no
effect on CK2.3’s ability as an antagonist of the RANKL-induced osteoclastogenesis of RAW264.7 cells
(Figures 4B and 5B, respectively).

Figure 3. MEK inhibitor, U0126, abolished the antagonistic effect of CK2.3 on RANKL-induced
osteoclastogenesis. (A) Concentration curve for U0126 to determine the working concentration. a:
denotes significant difference from Control, b: denotes significant difference from 10 µM, c: denotes
significant difference from 1 µM, d: denotes significant difference from 500 nM, e: denotes significant
difference from 250 nM, f: denotes significant difference from 100 nM, and g: denotes significant
difference from 50 nM. (B) The effect of U0126 on the antagonistic effect of CK2.3 on RANKL-induced
osteoclastogenesis. a: denotes significant difference from Control without inhibitor, b: denotes
significant difference from Control with inhibitor, c: denotes significant difference from RANKL at
10 ng/mL without inhibitor, d: denotes significant difference from RANKL at 10 ng/mL with inhibitor,
e: denotes significant difference from RANKL + CK2.3 at 100 nM without inhibitor, and f: denotes
significant difference from RANKL + CK2.3 at 100 nM with inhibitor.
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Figure 4. p38 inhibitor, SB202190, did not affect the antagonistic effect of CK2.3 on RANKL-induced
osteoclastogenesis. (A) Concentration curve for SB202190 to determine the working concentration.
(B) The effect of SB202190 on the antagonistic effect of CK2.3 on RANKL-induced osteoclastogenesis. a:
denotes significant difference from Control without inhibitor, b: denotes significant difference from
Control with inhibitor, c: denotes significant difference from RANKL at 10 ng/mL without inhibitor,
d: denotes significant difference from RANKL at 10 ng/mL with inhibitor, and e: denotes significant
difference from RANKL + CK2.3 at 100 nM without inhibitor.

Figure 5. NF-κB inhibitor, caffeic acid phenethyl ester (CAPE), did not affect the antagonistic effect of
CK2.3 on RANKL-induced osteoclastogenesis. (A) Concentration curve for CAPE to determine the
working concentration. a: denotes significant difference from Control, b: denotes significant difference
from 10 µM, c: denotes significant difference from 1 µM, d: denotes significant difference from 500 nM,
e: denotes significant difference from 250 nM, f: denotes significant difference from 100 nM, and g:
denotes significant difference from 50 nM. (B) The effect of CAPE on the antagonistic effect of CK2.3 on
RANKL-induced osteoclastogenesis. a: denotes significant difference from Control without inhibitor,
b: denotes significant difference from Control with inhibitor, c: denotes significant difference from
RANKL at 10 ng/mL without inhibitor, d: denotes significant difference from RANKL at 10 ng/mL with
inhibitor, and e: denotes significant difference from RANKL + CK2.3 at 100 nM without inhibitor.

3.3. CK2.3 Induced ERK Activation in RAW264.7 Cells and Primary Osteoclasts 24 h after CK2.3 Stimulation

Since the MEK inhibitor U0126 nullified the effect of CK2.3 of suppressing the RANKL-induced
osteoclast development of RAW264.7 cells, we wanted to confirm that CK2.3 regulated ERK
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activation, a downstream target of MEK, in RAW264.7 cells. We observed that CK2.3 increased
the phosphorylation of Erk1/2 (p-Erk1/2) after 24 h of stimulation in RAW264.7 cells, as determined
by Western blotting (Figure 6A) and immunofluorescence (Figure 6B). Furthermore, a CK2.3-induced
increase in p-Erk1/2 was verified in primary osteoclasts isolated from 6-month-old mice, as determined
by immunofluorescence (Figure 6C).

Figure 6. Cont.
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Figure 6. Effect of CK2.3 on p-Erk 1/2 in RANKL-induced osteoclastogenesis. CK2.3 increased
p-Erk 1/2 after 24 h of stimulation in RAW264.7 cells, as determined by (A) Western blotting and
(B) immunofluorescence. p-Erk 1/2 was increased after 24 h of stimulation, as determined by
immunofluorescence in (C) primary osteoclast precursors of 6-month-old B6 mice. a: denotes
significant difference from Control, b: denotes significant difference from RANKL at 10 ng/mL, and c:
denotes significant difference from RANKL + CK2.3 at 100 nM.

3.4. CK2.3 Upregulated BMPRIa Expression in RAW264.7 Cells after 24 h of CK2.3 Stimulation

We designed CK2.3 as an activator of the BMP2 signaling pathway. Since it was observed that
CK2.3 increased p-Erk1/2 after 24 h of stimulation with CK2.3 (Figure 7), we investigated if CK2.3
increased p-Erk1/2 through the BMP2 signaling pathway. BMP2 signals through BMPRIa to mediate
downstream signaling pathways such as ERK [54]. It was shown that BMPRIa was also upregulated
after 24 h of stimulation with CK2.3 in RAW264.7 cells, as determined by Western blotting (Figure 7A)
and immunofluorescence (Figure 7B).
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Figure 7. Regulation of BMPRIa expression by CK2.3. Expression of BMPRIa was upregulated
in RAW264.7 cells after 24 h of CK2.3 stimulation, as determined by (A) Western blotting and (B)
immunofluorescence. a: denotes significant difference from Control, b: denotes significant difference
from RANKL at 10 ng/mL, and c: denotes significant difference from RANKL + CK2.3 at 100 nM.

3.5. CK2.3 Did Not Mediate the Canonical SMAD Signaling Pathway of BMP2 Signaling Transduction in
RAW264.7 Cells

The observation of the upregulation of BMPRIa by CK2.3 led us to investigate if the canonical
SMAD signaling pathway was also upregulated in CK2.3-mediated BMPRIa expression in RAW264.7
cells. SMAD signaling has been reported to be involved in osteoclast development [45]. However,
no changes were observed in the phosphorylation of Smad1/5 (p-Smad1/5) at either 24 h or 48 h after
stimulation with CK2.3, as determined by Western blotting (Figure 8).

Figure 8. CK2.3 did not mediate the SMAD canonical pathway downstream of the BMP signaling
pathway. The phosphorylation of Smad1 or 5 was not affected by CK2.3 after either 24 h or 48 h of
stimulation in RAW264.7 cells.
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3.6. CK2.3 Downregulated Osteoclast Marker Genes in Primary Preosteoclasts Isolated from the Spleens of
6-Month-Old Retired Breeder Mice

To demonstrate the effect of CK2.3 in suppressing osteoclast development ex vivo, we isolated
primary preosteoclasts from the spleens of CK2.3-injected 6-month-old retired breeder mice and
cultured them in RANKL for 7 days. We previously reported that the systemic injection of CK2.3
into these mice improved their bone formation [41]. Here, we observed that osteoclast markers
such as ATP6v6d02, TRAP, Cstk, DC-STAMP, and NFATc1 decreased at Week 2 at all three different
concentrations (Figure 9).

Figure 9. Analysis of osteoclast markers in primary preosteoclasts isolated from the spleens of
6-month-old retired breeder mice by RT-PCR. Primary preosteoclasts were differentiated to osteoclasts
with RANKL for 7 days. Osteoclast markers were downregulated at Week 2 after the first injection of
CK2.3. a: denotes significant difference from PBS, and b: denotes significant difference from CK2.3.

3.7. CK2.3 Uptake into the Femurs of 6-Month-Old Retired Breeder Mice Was Detected at Week 2 after
Injection Followed by Upregulation of p-Erk1/2 in the Femur

Because it was observed that osteoclast marker genes were decreased in RANKL-induced primary
osteoclasts isolated from the spleen ex vivo at Week 2 after CK2.3 injection, we sought to investigate
whether the presence of CK2.3 was still detectable at Week 2 in the bone. CK2.3 peptide was designed
to contain an antennapedia homeodomain to facilitate the cellular uptake of CK2.3 [55]. At the same
time, we could also trace CK2.3 in the cell with an antibody against the antennapedia homeodomain.
It was shown that CK2.3 uptake was detected in the femur at Week 2 after the injection (Figure 10A).
Additionally, it was observed that p-Erk1/2 was increased in the femur at Week 2, as determined by
immunofluorescence (Figure 10B).

Figure 10. Cont.
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Figure 10. Uptake period and regulation of p-Erk1/2 by CK2.3 in the femurs of 6-month-old retired
breeder mice. (A) 2 weeks after the injection, CK2.3 uptake was detected in the femurs of 6-month-old
retired mice by immunofluorescence. (B) Increased p-Erk1/2 was detected by immunofluorescence in
the femurs of 6-month-old retired breeder mice at Week 2 after the injection. a: denotes significant
difference from PBS, and b: denotes significant difference from CK2.3 100.

4. Discussion

Bone remodeling is a dynamic process and important for the development and maintenance of
the skeletal system. However, aging tends to decrease the efficiency of the bone remodeling process,
which results in the decline of bone mass [24]. Osteoporosis is a disease characterized by significant
bone loss. Osteoporosis typically occurs in the population aged 50 or older. On the other hand,
idiopathic juvenile osteoporosis has an earlier onset at childhood and interferes with the development
of the skeletal system. Regardless of the age of onset, osteoporotic patients have low bone mineral
density and are at high risk of experiencing bone fractures. Our laboratory designed a novel peptide,
CK2.3, as a novel treatment for osteoporosis [39–42]. CK2.3 induced bone formation through the BMP2
signaling pathway [39,40]. CK2.3 induced bone formation by enhancing osteoblast development while
suppressing osteoclast development [41,42]. It was shown that CK2.3 enhanced osteoblastogenesis
through activating the ERK signaling pathway [41,53]. In this study, we demonstrated that CK2.3 also
acted through the ERK signaling pathway to mediate the suppression of osteoclast development. CK2.3
activated the ERK signaling pathway both in vitro (Figure 6) and in vivo (Figure 10) and downregulated
osteoclast marker genes such as ATP6v6d02, TRAP, Cstk, DC-STAMP, and NFATc1 ex vivo (Figure 9).

It has been shown that p38 MAPK, ERK MAPK, and NF-κB play an important role in
RANKL-induced osteoclast development [44–46,51]. RANK is a member of the TNF family. The signal
transduction of RANK begins with the recruitment of TRAF adaptor proteins to the cytoplasmic tail of
RANK. TRAF1, TRAF2, TRAF3, TRAF5, and TRAF6 were identified as associating with RANK [11].
TRAF6 was shown to be important in osteoclastogenesis during skeletal system development. TRAF6−/−

mice developed osteopetrosis [56,57]. TAK1 is an important inducer of MAPK and NF-κB [58–62]. Two
important TAK1 adaptor proteins are TAB1 and TAB2. TAB1 associates with TAK1 within 68 C-terminal
amino acids and is an activator of TAK1 via the autophosphorylation of threonine/serine residues in
the activation loop [63,64]. Finally, TAB2 links TRAF6 and the TAK1/TAB1 complex to induce a signal
transduction cascade [20,65]. Additionally, osteoclastogenesis is also regulated by BMP2 [45,66–70].
BMP2 is reported to upregulate p-p38 during Days 1–2 of RANKL-induced osteoclast development
but not p-ERK [45]. BMP2 binds BMPRIa to recruit BMPRII to form a BMPRIa–BMPRII complex [71].
BMPRII phosphorylates BMPRIa to activate the SMAD canonical and MAPK non-canonical pathways,
which have been suggested to be expressed at distinct points in time during osteoclast development [45].
In the BMP signaling pathway, X-linked inhibitor of apoptosis (XIAP) is identified as an adaptor that
links TAB1/TAK1 to BMPRIa [72]. XIAP mediates BMPRIa and TAB1/TAK1 coupling through a ring
zinc finger domain and BIR1 motif that associate with BMPRIa and TAB1/TAK1, respectively [72,73].
The association of the TAB1/TAK1/XIAP complex with neurotrophin receptor interacting MAGE
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(NRAGE) is shown to be important for the activation of MAPK [54]. Downstream of TAK1 are MAPKK
family members such as MEK1/2 and MKK3/6 [63].

In this study, it was shown that the MEK inhibitor U0126 nullified the effect of CK2.3 as an
antagonist of osteoclast development and restored the RANKL-induced osteoclast development of
RAW264.7 cells, while the p38 inhibitor SB202190 and NF-κB inhibitor CAPE did not (Figures 4
and 5, respectively). In the presence of RANKL alone, however, U0126 inhibited the osteoclast
development (Figure 3). Thus, it was shown that the activation of ERK was still important for the
osteoclast development of RAW264.7 cells [45–49]. It was speculated that ERK played a dual role
in the regulation of osteoclast development. Looking at the time-point activation of ERK, it was
observed that the activation of ERK MAPK by CK2.3 increased 24 h after stimulation with CK2.3
in RAW264.7 cells and primary osteoclasts (Figure 6). It has been shown that the opposite effect of
estrogens on the anti-apoptotic and pro-apoptotic pathways of osteoclasts is due to the duration of
ERK MAPK activation by estrogens [74]. Estrogens have been used in hormone replacement therapy
to increase bone mass to treat osteoporosis [75]. It has been shown that transient ERK MAPK activation
(5–30 min) abolishes the anti-apoptotic effect of estrogens on osteoclasts. However, sustained ERK
activation for at least 24 h results in a pro-apoptotic effect of estrogens on osteoclasts. These results
demonstrate a dual role for ERK MAPK in the regulation of osteoclast development depending on the
transient or sustained activation of ERK MAPK. It is shown that during RANKL-induced osteoclast
development, ERK is transiently (10 min) activated [49]. Together, a hypothetical role of CK2.3 in
which the suppression of osteoclastogenesis by CK2.3 is driven by the activation of ERK MAPK at 24 h
after stimulation with CK2.3 is suggested.

Targeting the ERK MAPK signaling pathway has been employed as a therapeutic strategy to treat
cancer and neurological diseases, highlighting its importance in the regulation of these diseases [76,77].
Similarly, although there has yet to be an available therapeutic strategy that is designed to specifically
target the ERK MAPK signaling pathway to treat osteoporosis, various other strategies such as estrogen,
rhein-derived thioamide (RT), prostaglandin E2 (PGE2), and Src inhibitors, to name a few, have
mechanisms involved in the regulation of the ERK MAPK signaling pathway [74,78–82]. Estrogen and
PGE2 activate ERK to promote osteoblast differentiation, but estrogen also activates ERK to inhibit
osteoclast differentiation, as mentioned above [74,81]. RT, on the other hand, inhibits the activation
of ERK, which inhibits osteoclast differentiation. Src is an important component of the complex
that bridges RANK and TAK1, resulting in the activation of downstream signaling including that
of ERK MAPK. Thus, Src inhibitors can potentially act as an antagonist of ERK MAPK activation
in osteoclast differentiation. While RT and PGE2 are still at an investigative stage, estrogen and
the Src inhibitor Saracatinib (AZD0530) have been approved by the FDA and reached the clinical
trial stage, respectively [83]. Thus, together with our findings of the involvement of CK2.3 in the
activation of ERK MAPK to promote osteoblastogenesis and to inhibit osteoclastogenesis, it is shown
that targeting the ERK MAPK signaling pathway could potentially lead to a novel therapeutic strategy
to treat osteoporosis

CK2.3 was designed as a CK2 blocking peptide that mediated BMP2 signaling
transduction [39–41,43]. Since it was shown that ERK MAPK was activated at 24 h after stimulation
with CK2.3 in RANKL-induced osteoclast development (Figure 6), it was not a surprise that an increase
in BMPRIa expression was observed 24 h after CK2.3 stimulation (Figure 7). BMP2 has been reported
to play a positive role in osteoclast differentiation [45,67,69,70,84]. However, the expression BMPRIa
might play a different role rather than enhancing osteoclast differentiation. It is shown that the
disruption of BMPRIa in osteoclasts increased osteoclast formation but resulted in smaller and fewer
nuclei, suggesting that BMPRIa played a role in osteoclast fusion [85]. In fact, it has been shown
that the knockout of BMPRII decreases osteoclast differentiation [45]. These findings suggest that
BMPRII, rather than BMPRIa, is required for osteoclast differentiation. It has been reported that
BMPRII expression is gradually increased from Day 1–5 in RANKL-induced osteoclast differentiation,
while BMPRIa expression only begins to be detected from Day 2–5 [69]. Thus, we speculated that
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BMPRII bound to a partner other than BMPRIa to induce the commitment of osteoclast precursors to
osteoclasts on Day 1. BMP receptor type Ib (BMPRIb) was shown to be constantly expressed from
Day 0–5 in RANKL-induced osteoclast differentiation and had a weaker affinity (3-fold weaker) for
BMP2 than BMPRIa [69,86]. Additionally, soluble forms of BMPRIb show better inhibitory effects on
osteoclast formation in vivo than soluble forms of BMPRIa [87]. Thus, it was speculated that BMPRII
bound to BMPRIb on Day 1 to induce the commitment of osteoclast precursors into osteoclasts. With
the expression of BMPRIa on Day 2, BMPRII switched partners to induce the fusion of osteoclasts.
Since CK2.3 induced the expression of BMPRIa on Day 1 to make it a preferred partner of BMPRII, the
osteoclast-commitment signal transduction was, therefore, inhibited.

With an increased expression of BMPRIa 24 h after CK2.3 expression (Figure 7), it was speculated
that the canonical SMAD signaling pathway was also activated. However, no changes in p-Smad1/5
expression were detected (Figure 8). Thus, it was suggested that CK2.3’s mechanism of action in
inhibiting osteoclast differentiation did not involve the SMAD canonical signaling pathway but the
non-canonical ERK MAPK signaling pathway. This showed that CK2.3 and BMP2 affected the BMP2
signaling transduction differently. It has been reported that in BMP signaling transduction, the choice
of whether the SMAD or non-SMAD signaling pathway should be activated depends on the way in
which BMP binds to the receptor complex. If BMP binds to a preformed BMP receptor type I/BMP
receptor type II complex, the SMAD signaling pathway is expressed [88]. On the other hand, if BMP
binds to BMP receptor type 1 or BMP receptor type II to recruit the other, the non-SMAD signaling
pathway is expressed [71,89]. It is reported that BMP2 binds to BMPRIa to recruit BMPRII, which leads
to caveola-mediated internalization and the activation of the non-SMAD signaling pathway [89]. We
previously reported that CK2.3 internalization occurred through caveola-mediated endocytosis [90].
Thus, we speculated that CK2.3’s selective activation of the ERK MAPK rather than the SMAD signaling
pathway was also due to CK2.3’s ability to mediate caveolar endocytosis.

CK2.3 was designed to contain an Antennapedia homeodomain to help with cellular uptake [55].
Additionally, it could also be used to detect the presence of CK2.3 in the cells. The ex vivo effect of
CK2.3 was shown by a decreased expression of osteoclast marker genes such as ATP6v6d02, TRAP,
Cstk, DC-STAMP, and NFATc1 at Week 2 after the first injection of CK2.3 in 6-month-old retired breeder
mice (Figure 9). Furthermore, the presence of CK2.3 was also detected in the femurs of these mice,
followed by an increase in p-Erk1/2 (Figure 10). It should be noted that in this study, each injection
of CK2.3 was administered at a 2.3 µg/kg concentration per mouse, compared to commonly used
anti-resorptive bisphosphonates, which are often used at higher concentrations (60–500 µg/kg) to show
a positive effect in mice [91].

Recent studies demonstrate that CK2 interacting protein-1 (CKIP-1) plays an important role in
the progression of osteoporosis [92]. Additionally, the CK2 inhibitor CX-4945 has been shown to
promote osteoblastogenesis and inhibit osteoclastogenesis [93]. We designed our peptide CK2.3 as a
CK2 binding peptide, and its function in the regulation of osteoblast and osteoclast differentiation was
similar to that of CX-4945 [40–42]. Thus, another hypothetical role of CK2.3 could be as an inhibitor of
CK2. This, in turn, could affect the activity of CKIP-1 and slow down the progression of osteoporosis. In
this study, we also demonstrated that CK2.3 and BMP2 affected the BMP2 signaling pathway differently.
Clinical evidence shows that rhBMP2 is less successful in the clinic due to a variety of side effects and
complications [94,95]. Furthermore, several researchers have reported unresponsiveness to the BMP2
stimulation of bone marrow stromal cells (BMSCs) isolated from osteoporotic patients [96–98]. These
reports may be related to reports on the aberrance of BMP2 signaling in osteoporotic patients [96–103].
We have also reported the unresponsiveness of BMSCs isolated from osteoporotic patients to BMP2,
but they respond to CK2.3 [104]. Thus, the different effect of CK2.3 on the BMP2 signaling pathway
compared to that of BMP2 might also contribute to the successful response of osteoporotic BMSCs to
CK2.3 [104].
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5. Conclusions

This study demonstrated the mechanism by which CK2.3 regulated osteoclastogenesis by multiple
mechanisms. CK2.3 inhibited the commitment of osteoclast precursors to osteoclasts, with the early
expression of BMPRIa on Day 1. Additionally, the upregulation of the ERK MAPK signaling pathway
resulted from the expression of BMPRIa at Day 1, the timepoint at which it has a negative impact on
osteoclast differentiation. Another important discovery of this study was that it showed that CK2.3
activated different signaling pathways downstream of BMP2 signaling transduction in osteoblasts and
osteoclasts (Figure 11). Understanding more about the mechanism of CK2.3 as an antiresorptive agent
will allow CK2.3 to be developed as a better and safer treatment to improve bone formation to combat
diseases such as idiopathic juvenile osteoporosis, which hinders bone development in childhood.

Figure 11. Differential mechanisms of CK2.3 in osteoblastogenesis and osteoclastogenesis. CK2.3
activates SMAD, AKT, and ERK, resulting in the upregulation of the osteoblastic master transcription
factor RUNX2, which promotes osteoblastogenesis. On the other hand, CK2.3 activates ERK, resulting
in the downregulation of the master transcription factor NFATc1, which inhibits osteoclastogenesis.
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