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A B S T R A C T

Objective: This study aimed to develop and validate a machine learning-based risk prediction model for catheter-
related bloodstream infection (CRBSI) following implantation of totally implantable venous access ports (TIVAPs)
in patients.
Methods: A retrospective cohort study design was employed, utilizing the R software package mlr3. Various al-
gorithms including logistic regression, naive Bayes, K nearest neighbor, classification tree, and random forest
were applied. Addressing class imbalance, benchmarks were used, and model performance was assessed using the
area under the curve (AUC). The final model, chosen for its superior performance, was interpreted using variable
importance scores. Additionally, a nomogram was developed to calculate individualized risk probabilities,
enhancing clinical utility.
Results: The study involved 755 patients across both development and validation cohorts, with a TIVAP-CRBSI rate
of 14.17%. The random forest model demonstrated the highest discrimination ability, achieving a validated AUC
of 0.94, which was consistent in the validation cohort.
Conclusions: This study successfully developed a robust predictive model for TIVAP-CRBSI risk post-implantation.
Implementation of this model may aid healthcare providers in making informed decisions, thereby potentially
improving patient outcomes.
Introduction

The totally implantable venous access port (TIVAP) is a catheter de-
vice that is utilized for patients who require long-term, recurring intra-
venous infusion.1 Its primary purpose is to provide safe and reliable
central venous access for the administration of various substances,
including chemotherapeutic agents, blood products, and parenteral
nutrition solutions.2 This device is especially important for patients with
solid tumors and hematological malignancies that require prolonged
vasotoxic drug treatment.3 Repeated punctures and infusions of strong
medications can cause damage to the peripheral veins in these patients.4

To prevent this, a central venous catheter such as the TIVAP is necessary.
The TIVAP has gained widespread use in clinical practice due to its
numerous advantages. It offers a secure and dependable method for
catheterization, reducing the need for frequent catheter maintenance and
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minimizing the risk of complications related to the catheter.5 The
implementation of TIVAP has greatly improved the care of patients
requiring long-term intravenous treatments. Its use has not only
enhanced the safety and efficiency of drug administration, but also
alleviated the discomfort and complications associated with repeated
venous punctures. Overall, the TIVAP has become an indispensable tool
in clinical settings, providing a convenient and reliable means of central
venous access for patients undergoing long-term intravenous therapies.6

Catheter-related bloodstream infection (CRBSI) is a significant
complication that can arise from the use of TIVAP.7 CRBSI is character-
ized by the presence of bacteremia or fungemia in patients with intra-
vascular catheters, or within 48 hours of catheter removal, without any
other apparent source of infection.1 Tsuruta's study indicates that CRBSI
is the primary reason for unplanned port removal.8 In Lebeuax et al.'s
study,9 approximately 18% of patients with port CRBSI went on to
).

cology Nursing Society. This is an open access article under the CC BY-NC-ND

mailto:2218819834@qq.com
mailto:2218819834@qq.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apjon.2024.100546&domain=pdf
www.sciencedirect.com/science/journal/23475625
http://www.apjon.org
https://doi.org/10.1016/j.apjon.2024.100546
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.apjon.2024.100546


F. Wang et al. Asia-Pacific Journal of Oncology Nursing 11 (2024) 100546
develop severe sepsis or septic shock, illustrating the severity of this
complication. The occurrence of CRBSI not only increases the risk of
unplanned TIVAP removal but also can delay tumor treatment and pro-
long hospitalization, leading to poor patient outcomes.10,11 Furthermore,
it can negatively impact patient prognosis and even pose a potential
threat to the patient's life.12 Previous studies suggest that the incidence of
late CRBSI in TIVAP falls between 5.6% and 9.26%, with up to 30% of
TIVAP patients discontinuing anti-tumor chemotherapy due to systemic
infection.13,14 Unfortunately, currently, there are no clinically applicable
tools for predicting the risk of TIVAP-CRBSI. Despite its prevalence, there
is no effective way to predict the risk of TIVAP-CRBSI currently. There-
fore, there is an urgent need to develop a clinically useful risk prediction
tool to help identify patients at high risk of CRBSI and provide targeted
interventions to mitigate this potentially life-threatening complication.

The TIVAP-CRBSI risk prediction model is a valuable tool for esti-
mating the likelihood of developing CRBSI after TIVAP catheterization. It
belongs to the category of clinical prognostic risk prediction models.
However, there is currently limited research available on the develop-
ment of such a model specifically for TIVAP-CRBSI. One study conducted
in 2021 by Chen15 focused on developing a nomogrammodel for infusion
port catheter-related systemic infection in patients with digestive tract
tumors. This model incorporated four risk factors: a Karnofsky perfor-
mance score (KPS) of 60 points, parenteral nutrition support, a history of
diabetes, and the duration of butterfly needle usage. It is important to
note that this particular model is only applicable to patients with
digestive tract tumors, limiting its clinical applicability. Furthermore, the
study had a small sample size, and only logistic regression analysis was
employed, which increases the risk of overfitting the model. Given the
limited available research and the specificity of the existing model, there
is a need for further studies to develop a comprehensive and universally
applicable risk prediction model for TIVAP-CRBSI. Such a model would
greatly aid in identifying high-risk patients and allowing for targeted
preventive measures, ultimately reducing the occurrence of CRBSI and
improving patient outcomes.

Currently, traditional statistical methods such as logistic regression
analysis and COX proportional hazards regression analysis are commonly
used to develop clinical predictionmodels. However, these methods have
limitations, such as strict requirements for data types, potential over-
fitting issues, and limited capabilities in data mining.16 Machine learning
is a scientific and technical approach that utilizes computer algorithms to
learn from data and discover underlying patterns.17 With the increasing
availability of clinical informatics tools, large and complex datasets are
being generated, making it challenging to collect, store, and analyze
using traditional techniques.18 As the fields of hospital information
management and artificial intelligence merge, machine learning algo-
rithms offer efficient solutions for managing and analyzing large data-
sets.19 Previous reported studies have demonstrated the accuracy and
effectiveness of machine learning algorithms in processing clinical
data;20,21 these studies have truly proven that using machine learning
algorithms to build clinical prediction models may be the direction for-
ward for research. Therefore, the primary goal of this study is to analyze
the characteristics of the TIVAP patient cohort and employ machine
learning techniques to develop a highly applicable clinical risk prediction
model for TIVAP-CRBSI.

Methods

Source of data

The data for this study were obtained from a retrospective cohort of
patients with tumors who received TIVAP implants, and all the necessary
information for constructing the model was extracted from the medical
record system. A retrospective cohort study design was utilized, where
the observation period began at the time of TIVAP implantation in the
research participants. The primary outcome of interest was the occur-
rence of TIVAP-CRBSI. Censoring was defined as the removal of the
2

infusion port for reasons other than TIVAP-CRBSI, loss of follow-up, or
failure to complete the observation period. The cohort for this study was
observed from January 1, 2018, to December 31, 2022.

Participants

Participants for this study were selected through convenience sam-
pling. All participants were cancer patients who had undergone TIVAP
implantation at a cancer center affiliated with a medical university in
Guangzhou, Guangdong, China. The inclusion criteria were as follows:
(1) Patients diagnosed with tumors confirmed by pathological exami-
nation, (2) age � 18 years, and (3) TIVAP implantation performed in the
operating room of the center. Participants meeting the following criteria
were excluded from the study: (1) Pre-existing CRBSI before TIVAP im-
plantation, and (2) admitted after TIVAP implantation in other hospitals.
All patients underwent TIVAP implantation in the same operating room
at the center, and the operating surgeons held relevant qualifications,
ensuring a standardized approach to TIVAP implantation among all
participants.

Sample size

The sample size for this study was determined using the R software.
The “pmsampsize” package utilized the sample size calculation proced-
ure introduced by Riley in 2020 for risk prediction models.22,23 To ensure
the predictive performance of the model and avoid overfitting, the
calculation of the sample size took into account the estimated coefficient
of determination (R2) of the model the anticipated number of predictive
parameters to be included, and the shrinkage level required for internal
validation after model development. Based on an analysis of the inci-
dence data of TIVAP-CRBSI at our center over the years, the estimated
incidence rate of TIVAP-CRBSI was found to be 9.0%. It was anticipated
that 15 prediction parameters would be included in the model. Following
the guidance of Riley et al., a shrinkage level of 0.90 was set for the new
model. Consequently, a sample size of 700 cases was estimated as
necessary for the development of the model.

Data collection

Data on patient characteristics were collected through a compre-
hensive review of patient hospitalization records, nursing logs, and ex-
amination and laboratory reports. The primary aim of the predictive
model is to ascertain the risk of CRBSI during a patient's current hospital
stay. Therefore, it is the timepoint to employ the model when the
admission of patients equipped with TIVAP. To maintain the predictive
model's reliability in real-world application, a standardized data collec-
tion timeline were established: (1) For patients who were diagnosed with
CRBSI, data from the admission during which CRBSI was identified are
documented. (2) Conversely, for patients who did not experience CRBSI
by the observation's conclusion, data from their most recent admission
are recorded. This structured approach ensures the predictive model's
efficacy and consistency in clinical settings.

Outcome

The diagnostic criteria used for TIVAP-CRBSI in this study
included:10,24–26 (1) A higher number of colony-forming units (CFU) per
milliliter in the infusion port blood sample culture compared to periph-
eral blood, (2) a colony count of greater than 1000 CFU in the infusion
port blood sample culture, and (3) positive culture of the catheter tip.
Additionally, catheter tip culture after TIVAP removal was considered
clinically significant when 15 colony units were formed and when
103; CFU/mL was achieved. Since all the data used in this study were
obtained retrospectively from medical records, the outcome diagnosis
occurred prior to data collection, and the determination of predictors did
not impact the diagnosis of patient outcomes.
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Predictors

A comprehensive literature review was conducted to identify risk
factors associated with portrelated bloodstream infections. Databases
such as PubMed, Web of Science, CINAHL, Cochrane Library, AHRQ
American Guide Network, Registered Nurses' Association of Ontario
(RNAO), and Scopus were searched systematically for relevant studies
published between January 2012 and August 2022. The studies identi-
fied key risk factors associated with CRBSI related to TIVAP include
elevated levels of C-reactive protein, concurrent surgical procedures
alongside TIVAP implantation, the hospital environment, patient de-
mographics, and a history of hematologic malignancies.5,9,13,14 In addi-
tion, neutropenia, total parenteral nutrition (TPN), chronic steroid use,
invasive procedures, postoperative antibiotics, and preoperative antibi-
otics have also been confirmed as independent predictors of
TIVAP-related CRBSI.27 Based on the literature review, we expanded
some potential predictors to include three dimensions: patients' basic
conditions, TIVAP-related characteristics, and disease treatment-related
information. To ensure the validity of the predictors and avoid omis-
sions, we used the Delphi expert consultation method to revise the
candidate predictors through email inquiries. After two rounds of cor-
respondence, we identified a list of potential candidate predictors con-
taining 41 features. The results of the Delphi expert correspondence are
shown in Supplementary material 1.

Missing data handling

When processing missing data, cases with a missing data rate greater
than 20% were initially excluded from the analysis. To address the
remaining missing values, we used predictive mean matching (PMM) for
multiple imputation. Missing values in the dataset were replaced by the
average of the five imputed values generated through multiple
imputations.

Construction of machine learning-based risk prediction model

Data processing
The researchers began by preprocessing the data, which involved

applying logarithmic transformation to features with asymmetrical dis-
tributions. Afterward, all features were standardized. In this research, we
applied the Z-score normalization technique to standardize select
continuous variables. This method transforms raw data into standardized
scores by recalibrating data points of varying magnitudes or distributions
to a uniform scale, characterized by a mean of 0 and a standard deviation
of 1. Through this process, each data point is recalculated to indicate the
number of standard deviations it deviates from the mean of the original
dataset. Z-score normalization facilitates equitable comparisons across
data measured on different scales, rendering the data suitably formatted
for analysis with machine learning algorithms.

Candidate predictor screening
Since most of the data included in this study are clinical data, mul-

ticollinearity between variables is likely to exist. To effectively identify
predictors with significant predictive power for the target variables, the
least absolute shrinkage and selection operator (LASSO) regression
analysis was used in the training cohort for multivariate analysis. During
the implementation of the LASSO regression analysis, all potential
explanatory variables were first standardized to eliminate the effects of
different dimensions. Then, the optimal regularization parameters
(i.e., penalty coefficient) were determined by cross-validation to balance
the bias and variance of the model, allowing for the selection of the most
critical independent screening indexes for model prediction.

Learner selection
To construct the prediction model, the R software package “mlr3”was

used, utilizing built-in algorithms such as logistic regression, naive Bayes,
3

K nearest neighbor, classification tree, and random forest. Each algorithm
was applied to the preprocessed and standardized dataset to build the
respective prediction models. The hyperparameter tuning strategies
employed in the construction of our machine learning models are
detailed in Supplementary material 2.

Benchmarks
First, we address the class imbalance issue by employing an over-

sampling technique, which increases the number of minority class sam-
ples to achieve balanced classes. Specifically, the “class balancing”
adjustment technique is utilized to oversample the minority class sam-
ples. This oversampled dataset is then applied to each learning algorithm,
creating a collection of models trained specifically on the balanced data.
To evaluate the performance of these models, we use stratified 5-fold
cross-validation as the external sampling technique. This approach en-
sures that samples from both the minority and majority classes are
included in each of the five folds, thereby reducing bias in performance
evaluation. Finally, we compare the performance of the different models
to assess their respective predictive abilities.

Performance evaluation
The constructedmachine learningmodel can be utilized to predict the

data in the validation set. From these predictions, the receiver operating
characteristic (ROC) curve can be drawn. This curve plots the true pos-
itive rate (sensitivity) against the false positive rate for various classifi-
cation thresholds. To evaluate the prediction performance of different
learners, we used indicators such as the area under the curve (AUC),
sensitivity, specificity, misclassification rate, and false positive rate. The
AUC reflects the overall performance of the model, with higher values
indicating better discrimination ability. Sensitivity measures the model's
ability to correctly identify positive cases, while specificity measures its
ability to correctly identify negative cases. The misclassification rate and
false positive rate provide additional insights into the model's overall
accuracy and capacity to correctly classify negative cases. By comparing
the performance of different learners using these indicators, the model
with the highest performance can be selected as the final model.

Feature selection
To perform feature selection in the final model, a hyperparameter

search algorithm was utilized. This algorithm would include a Tuning
Instance Single Crit instance, which generates importance scores for all
predictors. From these scores, the top 15 predictors can be selected to
build the final prediction model. By using this feature selection process,
only the most important predictors are included in the final model. This
can help improve the model's performance and reduce overfitting.

Model interpretation
To interpret the constructed final prediction model and understand its

impact on the data, we utilize the “iml” package in R. This package offers
tools for interpreting machine learning models, visualizing feature ef-
fects, and assessing feature importance. Using the “iml” package, we
compute feature importance scores, which indicate the relative signifi-
cance of each predictor in the model's decision-making process.

Build a nomogram
After selecting the top important predictors, as mentioned before, we

can build a nomogrammodel to further improve the clinical applicability
of the model. A nomogram is a graphical representation of a prediction
model that can be used to calculate the probability of a specific outcome
for an individual patient.28 By utilizing top predictors, the nomogram can
provide a personalized and clinically relevant tool that can be used to
predict patient outcomes. The predictive performance of the nomogram
model can be reported by evaluating its discrimination and calibration
capabilities.Discrimination refers to the ability of themodel to distinguish
between individuals whowill have the outcome of interest and those who
will not. It can bemeasured by calculating the c-statistic, or the area under
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the ROC curve. Calibration, on the other hand, refers to the agreement
between the predicted probabilities from the model and the actual
observed outcomes in the sample data. Calibration can be assessed by
visually inspecting the calibration plot or calculating the Hos-
mer–Lemeshow goodness-of-fit statistic. By building a nomogram model
and reporting its predictive performance metrics, we can improve the
clinical applicability of themodel and provide clinicianswith a useful tool
for predicting patient outcomes. A flow diagram illustrating the
model-building approach is presented in Fig. 1.

Ethical considerations

This research was approved by the ethical review agency of Affiliated
Cancer Hospital and Institute of Guangzhou Medical University,
Guangzhou, China (ID: GYZL-2023-ST05). During the study, we adhered
to the Declaration of Helsinki and obtained written informed consent
from all participants or their guardians.

Results

Participant characteristics

During the data collection stage, a total of 837 patients were initially
included in the cohort. However, 82 patients had to be excluded from the
analysis due to missing data exceeding 20%. As a result, the final cohort
consisted of 755 patients. Table 1 provides a comparison of general in-
formation of patients in the training set and validation set. In this study,
the average length of TIVAP catheter use was found to be 581.47 days.
Regarding the outcome event rate, 107 patients in the cohort developed
CRBSI, resulting in an overall incidence rate of 0.244/1000 catheter days.
This indicates that 14.17% of the patients experienced this outcome.

Candidate predictor screening

To scrutinize the pool of potential predictors, we integrated them into
a LASSO regression analysis. The cross-validation outcomes of this
analysis are depicted in Fig. 2A, illustrating the correlation between the
binomial deviance of the LASSO regression model and the log-
transformed regularization parameter λ (Log(λ)). This figure employs
cross-validation to assess model error, where each lambda's cross-
validation error is marked by a red dot, and the error's standard devia-
tion is represented by a red line. The dotted vertical line on the left
Figure 1. Flow diagram of the model-building approach. AUC, area under the cur
characteristic; DCA, curve of nomogram.
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signifies the λ value that minimizes the model's binomial deviance to
0.0014 [log(λ) ¼ �6.58]. Conversely, the dotted line on the right in-
dicates a λ value that results in a binomial deviance one standard error
above the minimum, at 0.0143 [log(λ) ¼ �4.27]. We opted for the λ that
corresponds to the lowest binomial deviance as our regularization
parameter. As illustrated in Fig. 2B, at λ¼ 0.0143, 28 variables have non-
zero regression coefficients and are thus retained in the model for the
subsequent construction phase.
Machine learning model selection

The “mlr3” package was employed to build five different prediction
models, including logistic regression, naive Bayes, K nearest neighbor,
classification tree, and random forest. These models were then subjected
to a benchmark test to compare their prediction performance. Table 2
presents the results of the benchmark test, displaying various perfor-
mance metrics such as AUC (area under the ROC curve), sensitivity,
specificity, misclassification rate, and false positive rate for each model.
Fig. 3 showcases the ROC curves and precision-recall (PRC) curves for the
five different models, providing a graphical representation of their pre-
dictive capabilities. To determine the best-performing model, the AUC
values were used as the criterion, and the models were sorted accord-
ingly. After conducting the benchmark test, it was found that the model
generated by the random forest algorithm achieved the highest predic-
tion performance (AUC¼ 0.94). Therefore, the random forest model was
selected as the final model.
Model explanation and final model development

Furthermore, we have also analyzed and explained the importance of
each variable within the model. The importance of ranking features is
shown in Table 3. The top 15 features with the highest feature selection
scores were identified and incorporated into the final model. This
ranking allows for a clear understanding of the relative importance of
each variable in predicting the outcome. These variables include pro-
calcitonin level (PCT), catheter day, receive parenteral nutrition treat-
ment (TPN), nutritional risk screening (NRS)-2002 score, neutrophil
count levels (NEUT), and so on. These variables played a crucial role in
the model's ability to predict the outcome accurately. The final random
forest model consisted of 500 trees and exhibited an AUC of 0.983, an
accuracy (ACC) of 0.964 and a cross entropy (CE) of 0.036.
ve; FNR, false negative rate; FPR, false positive rate; ROC, receiver operating



Table 1
General information of patients in training set and validation set.

Variables Total
n ¼ 755

Training set
n ¼ 529

Validation set
n ¼ 226

P value

Gender
Female 489 (64.8%) 349 (66.0%) 140 (61.9%) 0.289
Male 266 (35.2%) 180 (34.0%) 86 (38.1%)

Age (year) 53.12 � 11.94 53.27 � 12.05 52.78 � 11.83 0.607
Cancer stage
Unstaged 17 (2.3%) 14 (2.6%) 3 (1.3%) 0.238
Stage I 141 (18.7%) 95 (18.0%) 46 (20.4%)
Stage II 154 (20.4%) 116 (21.9%) 38 (16.8%)
Stage III 154 (20.4%) 111 (21.0%) 43 (19.0%)
Stage IV 289 (38.3%) 193 (36.5%) 96 (42.5%)

Combined hypertension 79 (10.5%) 59 (11.2%) 20 (8.8%) 0.344
Combined diabetes 51 (6.8%) 32 (6.0%) 19 (8.4%) 0.237
BMI (kg/m2) 22.45 � 3.54 22.58 � 3.60 22.16 � 3.39 0.133
ADL score 95.42 � 13.76 95.06 � 14.20 96.26 � 12.69 0.250
NRS-2002 score 1.70 � 1.30 1.71 � 1.30 1.69 � 1.29 0.801
RBC (1012/L)
< 3.8 329 (43.6%) 222 (42.0%) 107 (47.3%)
3.8–5.1 370 (49.0%) 265 (50.1%) 105 (46.5%) 0.345
> 5.1 56 (7.4%) 42 (7.9%) 14 (6.2%)

WBC (109/L)
< 3.5 85 (11.3%) 60 (11.3%) 25 (11.1%)
3.5–9.5 559 (74.0%) 396 (74.9%) 163 (72.1%) 0.563
> 9.5 111 (14.7%) 73 (13.8%) 38 (16.8%)

PLT (109/L)
< 125 55 (7.3%) 39 (7.4%) 16 (7.1%)
125–350 13 (1.7%) 11 (2.1%) 2 (0.9%) 0.590
> 350 687 (91.0%) 479 (90.5%) 208 (92.0%)

HCT (%)
< 35 374 (49.5%) 264 (49.9%) 110 (48.7%)
35–45 359 (47.5%) 251 (47.4%) 108 (47.8%) 0.784
> 45 22 (2.9%) 14 (2.6%) 8 (3.5%)

NEUT (109/L)
< 1.8 45 (6.0%) 35 (6.6%) 10 (4.4%)
1.8–6.3 449 (59.5%) 313 (59.2%) 136 (60.2%) 0.505
> 6.3 261 (34.6%) 181 (34.2%) 80 (35.4%)

C-reactive protein (mg/L)
0–6 391 (51.8%) 282 (53.3%) 109 (48.2%) 0.201
> 6 364 (48.2%) 247 (46.7%) 117 (51.8%)

Serum albumin (g/L)
< 40 434 (57.5%) 302 (57.1%) 132 (58.4%)
40–55 321 (42.5%) 227 (42.9%) 94 (41.6%) 0.737

International normalized ratio
< 0.85 13 (1.7%) 10 (1.9%) 3 (1.3%)
0.85–1.2 699 (92.6%) 486 (91.9%) 213 (94.2%) 0.611
> 1.2 43 (5.7%) 33 (6.2%) 10 (4.4%)

Activated partial thromboplastin time (s)
< 24 100 (13.2%) 71 (13.4%) 29 (12.8%)
24–32 557 (73.8%) 381 (72.0%) 176 (77.9%) 0.125
> 32 98 (13.0%) 77 (14.6%) 21 (9.3%)

Procalcitonin (ng/mL)
< 0.1 632 (83.7%) 444 (83.9%) 188 (83.2%) 0.570
0.1–0.25 39 (5.2%) 24 (4.5%) 15 (6.6%)
0.25–0.5 18 (2.4%) 12 (2.3%) 6 (2.7%)
> 0.5 66 (8.7%) 49 (9.3%) 17 (7.5%)

D-dimer (ng/L) 2.50 � 4.66 2.52 � 4.33 2.45 � 5.37 0.863
Catheter day (day) 581.47 � 1706.55 605.04 � 2007.23 526.33 � 548.10 0.406
Incision infection 26 (3.4%) 17 (3.2%) 9 (4.0%) 0.596
Localized skin infection 20 (2.6%) 16 (3.0%) 4 (1.8%) 0.326
Receive chemotherapy 676 (89.5%) 473 (89.4%) 203 (89.8%) 0.866

BMI, body mass index; ADL, Activities of Daily Living; RBC, red cell count; WBC, white blood count; PLT, platelet; HCT, hematocrit; NEUT, neutrophil count levels; NRS,
nutritional risk screening.

F. Wang et al. Asia-Pacific Journal of Oncology Nursing 11 (2024) 100546
Construction and validation of nomogram

To build a nomogram model, we selected the top 5 predictors of
features (importance score > 8) to enhance the practicality of the
nomogram model, we discretized certain continuous variables based on
their clinically established normal ranges. This step was taken to simplify
the model's application in clinical settings, making it more user-friendly
5

for health care professionals by aligning variable measurements with
common clinical benchmarks. Fig. 4A showcases the constructed
nomogram model, which depicts the relative importance of each pre-
dictor in predicting the outcome. This nomogram model exhibited an
AUC value of 0.974, indicating a good predictive performance (above the
acceptable threshold of 0.7). For example, as shown in Fig. 4B, the pa-
tient had procalcitonin > 0.5 ng/ml; had a catheter for 50.3 months; was



Figure 2. LASSO regression analysis result chart. A: LASSO regression cross validation plot; B: LASSO regression coefficient path diagram. LASSO, least absolute
shrinkage and selection operator.

Table 2
Prediction performance indicators of prediction models and oversampling models built by 5 types of learners.

Learner name AUC Sensitivity Specificity FNR FPR

Classification tree 0.82 0.50 0.95 0.50 0.05
Naive Bayes 0.85 0.55 0.91 0.45 0.09
K-nearest neighbor 0.90 0.50 0.96 0.50 0.04
Logistic regression 0.92 0.67 0.94 0.33 0.06
Random forest 0.94 0.56 0.97 0.44 0.03

AUC, area under the curve; FNR, false negative rate; FPR, false positive rate.

Figure 3. ROC curves and precision-recall (PRC) curves for the five different models. A: ROC curves of different machine learning models; B: PRC curves of different
machine learning models. ROC, receiver operating characteristic.
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receiving parenteral nutrition, had a normal neutrophil count, and had an
NRS-2002 nutritional risk score of 1 point. As can be seen from the figure,
the total points are 128, and the corresponding predicted probability is
> 0.9, indicating that the CRBSI risk is higher, which is consistent with
the actual results. To further evaluate the predictive performance of the
nomogram, we conducted a performance test, and the results of which
are displayed in Fig. 5.
6

Discussion

Superiority of totally implantable venous access port-catheter-related
bloodstream infection risk prediction model

In this study, several different machine learning algorithms were
employed to construct the TIVAP-CRBSI prediction model, and their



Table 3
Ranking of importance of the top 15 predictor.

Rank Predictor Importance score

1 Procalcitonin level 70.293
2 Catheter day 9.393
3 Receive parenteral nutrition treatment 9.257
4 NRS-2002 score 8.289
5 Neutrophil count levels 8.024
6 Hematocrit levels 6.897
7 International standardized coagulation ratio 5.497
8 White blood cell count level 5.479
9 Localized skin infection 5.221
10 Platelet count level 5.074
11 Serum albumin levels 5.016
12 Neutrophil percentage levels 4.932
13 C-reactive protein levels 4.820
14 BMI 4.735
15 D-dimer level 4.558

BMI, body mass index; NRS, nutritional risk screening.
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performances were compared to select the best one for constructing the
final model. This approach demonstrates the scientific and rigorous na-
ture of the research method. Moreover, the study also addressed the low
interpretability of machine learning algorithms by incorporating an
importance of the explanation of predictor variables. By ranking variable
importance, the more crucial variables were identified and used to
construct a nomogram. This nomogram reduces the clinical use cost of
the TIVAP-CRBSI prediction model and increases the convenience of risk
prediction. In addition, the TIVAP-CRBSI risk prediction model built in
this study has broad applicability to all tumor patients with TIVAP,
without confining to specific types of tumors. This universality increases
the potential practical significance of the model. Applying the TIVAP-
CRBSI risk prediction model to clinical patients can assist in identifying
high-risk groups and their influencing factors and provide a reference for
medical staff to implement appropriate intervention measures. The
Figure 4. Risk prediction nomogram for TIVAP-CRBSI. PCT: procalcitonin; catheter m
2002: nutritional risk screening assessment score; NEUT: neutrophil count, normal
screening; PCT, procalcitonin level; TIVAP-CRBSI, totally implantable venous access
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TIVAP-CRBSI prediction model developed in this study has great po-
tential to improve patient safety and the quality of medical care.

The incidence of CRBSI in TIVAP varies across different studies due to
varying indications for TIVAP implantation and individual patient con-
ditions. Currently, the global incidence ranges from approximately
0.38%–12.5%.13 Late CRBSI in TIVAP occurs at a rate of 5.6%–9.26%,
and 30% of TIVAP patients discontinue anti-tumor chemotherapy due to
bloodstream infections.14 Despite the low incidence, the prevention and
treatment of TIVAP-CRBSI cannot be overlooked in clinical practice.
Although previous studies have explored the risk factors of TIVAP-CRBSI,
there is a wide variation in research findings, and no consensus has been
reached. This discrepancy may be attributed to differences in clinical
workflows, inpatient settings, and the strengths and weaknesses of study
designs. Risk factors reported in previous studies for TIVAP-CRBSI typi-
cally include elevated C-reactive protein levels, TIVAP combined with
other surgeries, hospitalization environment, patient source, and a his-
tory of hematological malignancies.29,30 The key to preventing
TIVAP-CRBSI lies in the early identification of its risk factors and prompt
intervention. By constructing a TIVAP-CRBSI risk prediction model,
clinical medical staff can have a concise and convenient tool for quickly
identifying high-risk groups and factors associated with infection. This
model provides support for early intervention to prevent TIVAP-CRBSI,
reduce infection incidence, extend catheter lifespan, and ensure effec-
tive patient treatment.

Researchers have extensively studied the risk factors, prevention, and
control strategies for CRBSI. However, there is a lack of studies focusing on
early warning models for CRBSI risk scores and even fewer specific risk
assessment tools for TIVAP patients. Currently, one of the more established
models is the Michigan Peripherally Inserted Central Venous Catheters
(PICC) related bloodstream infection scoring model (MPC).31 Erica Herc
et al. used the Cox proportional hazard model to construct the MPCmodel.
They followed a total of 23,088 patients with PICC implants and analyzed
the risk factors associatedwithPICC-CRABSI to develop theMPC score. The
research findings indicate a significant correlation between the MPC score
onth: catheter usage time, in months; TPN: receiving parenteral nutrition; NRS-
value is 1.8–6.3 � 109/L. NEUT, neutrophil count levels; NRS, nutritional risk
port-catheter-related bloodstream infection; TPN, total parenteral nutrition.



Figure 5. Predictive performance of the nomogram. A: ROC curve of nomogram; B: calibration curve of nomogram; C: DCA curve of nomogram; D: nomogram clinical
impact curve. ROC, receiver operating characteristic.
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and the risk of CRBSI (P< 0.001), and the model demonstrates an average
prediction performance with an area under the ROC curve of 0.67–0.77.
However, it is important to note that this model is specifically designed for
PICC patients and cannot be applied to TIVAP patients. Therefore, there is a
need for the development of specific risk assessment tools and models
specifically tailored to TIVAP patients. This study would provide a more
accurate and targeted approach for assessing the risk of CRBSI in this spe-
cificpatientpopulation. In2023,Gaoet al.32 reporteda systematic reviewof
CRBSI prediction models, highlighting considerable variability in target
populations, predictors, catheter types, and outcome definitions. But it also
highlights the generally high risk of bias and concerns about the suitability
of the assessment model. In Gao's study, the models included in the review
mainly used traditional regression techniques, which, although valuable,
may not fully capture the complex and dynamic relationships in clinical
data. Our model leverages advanced machine learning algorithms specif-
ically designed to address these limitations by leveraging models of com-
plex, nonlinear interactions, potentially providing a more nuanced
understanding of risk factors. This systematic review also identifies signif-
icant shortcomings of existing models, such as insufficient sample size and
inappropriate handling of missing data, which are areas to which we paid
careful attention in model development. Therefore, our machine
learning-based model not only meets the outstanding needs for methodo-
logical rigor and transparency, but also sets a newbenchmark for predictive
modeling of TIVAP-related bloodstream infections, paving the way for
improved clinical decision-making and patient outcomes.

Risk factors for totally implantable venous access port-catheter-related
bloodstream infection

In our risk prediction model for TIVAP-CRBSI, we have identified the
key variables that significantly contribute to the risk assessment. These
variables include procalcitonin level (PCT), catheter day, administration
of parenteral nutrition (TPN), NRS-2002 score, and neutrophil count
(NEUT). PCT is an important biomarker that can indicate whether the
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body is infected, making it a valuable variable in our model. Previous
research has established a correlation between PCT levels and CRBSIs,
particularly those associated with TIVAP.33 In this investigation, a PCT
level exceeding 0.1 ng/ml significantly elevates the risk of CRBSI in pa-
tients. PCT is the biomarker, it experiences elevated plasma concentra-
tions in response to severe infections caused by bacteria, fungi, and
parasites, as well as conditions like sepsis and organ failure.
Unlike autoimmune, allergic, or viral infections, PCT levels do not rise.
Additionally, localized bacterial infections, minor infections, and chronic
inflammation do not trigger an increase in PCT levels, with bacterial
endotoxins playing a pivotal role in its induction. PCT levels mirror the
systemic inflammatory response, influenced by factors such as the size
and type of the infected organ, bacterial species, inflammation severity,
and the immune response state. Vasiliki's study found that in patients
with CRBSI, PCT levels increased by more than 0.2 ng/mL within four
days prior to diagnosis, and levels exceeding 0.7 ng/mL were indicative
of CRBSI.33 A meta-analysis, including 7 studies and 347 participants
concluded that elevated PCT levels are significantly associated with
CRBSI, demonstrating the effectiveness of this biomarker in predicting
CRBSI. Pooled analysis showed that the pooled odds ratio (OR) of high
PCT levels was 23.36, with a sensitivity of 85% and a specificity of 89%,
indicating that PCT is an effective predictor of CRBSI.34 This suggests that
monitoring blood cell counts can provide insights into the risk of
TIVAP-CRBSI.35 As a biomarker, PCT not only indicates signs of infection
in patients but also guides clinicians in formulating antibiotic strate-
gies.36 Increasing evidence shows that using PCT to guide antibiotic
treatment can reduce overall antibiotic use,37 shorten treatment dura-
tion, and effectively lower the risk of death.38 In the diagnosis of CRBSI,
blood culture results are often regarded as the gold standard. However,
the long testing time and high requirements for specimen collectionmake
it challenging to confirm infections promptly, leading to delayed treat-
ment or premature removal of TIVAPs in undiagnosed cases. Inflamma-
tory biomarkers play an irreplaceable role in identifying, monitoring, and
evaluating the clinical severity and antibiotic treatment effects in
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infected patients. Therefore, in clinical practice, inflammatory bio-
markers such as PCT should be closely monitored, and early intervention
should be applied upon detecting abnormalities to avoid sepsis or septic
shock induced by TIVAPs-related CRBSI.39 Regarding the duration of
TIVAP use, our study reveals that longer TIVAP use is associated with a
higher likelihood of TIVAP-CRBSI. This may be due to the fact that the
risk of infection gradually increases with the prolongation of use. TIVAP
is most commonly used in chemotherapy and supportive treatments for
patients with various malignant tumors who face severe immune system
suppression during these treatments. As the duration of anti-tumor
treatment extends, the patient's ability to combat infections is signifi-
cantly reduced. This immunosuppressive state makes patients more
susceptible to external pathogens, thereby increasing the risk of CRBSI.
Therefore, continuous monitoring and timely feedback on patient in-
fections are essential, especially for those who have been using TIVAP for
extended periods. Medical institutions should leverage information sys-
tems to facilitate collaboration among multiple departments, jointly
manage and supervise, regularly collect and analyze CRBSI data at
infusion ports, identify problems and deficiencies in infection control,
and adjust and improve relevant measures accordingly to ensure the
safety of patient diagnosis and treatment. The NRS-2002 nutritional risk
screening score, along with the administration of parenteral nutrition,
serves as a significant predictor for CRBSI associated with TIVAP. These
elements collectively gauge the nutritional health of patients, indicating
that individuals with elevated NRS-2002 scores face an increased
malnutrition risk.36,40 The NRS-2002 Nutritional Risk Screening tool,
developed by the European Society for Clinical Nutrition andMetabolism
(ESPEN), is an objective method for assessing nutritional risk. The
NRS-2002 score predicts the risk of malnutrition, with higher scores
indicating poorer nutritional status. Typically, Total Parenteral Nutrition
(TPN) is reserved for those identified at nutritional risk or confirmed to
be malnourished, and receiving parenteral nutrition through TIVAP has
been identified as a risk factor for developing TIVAP-CRBSI, which is
consistent with previous research findings.11,41 Our study reveals that
patients with compromised nutritional status exhibit a heightened sus-
ceptibility to CRBSI. In addition, a study involving patients with
advanced solid tumors on home parenteral nutrition managed using a
standardized catheter care protocol evaluated the incidence of and fac-
tors associated with CRBSI.42 The study found that the majority of the
patient population was moderately to severely malnourished at baseline
and had received chemotherapy or radiotherapy during home parenteral
nutrition. Therefore, for tumor patients, standardized nutritional support
therapy is a crucial component of CRBSI prevention measures at infusion
ports. For patients with poor nutritional status, priority should be given
to nutritional support and improvement through reasonable dietary ad-
justments, oral nutritional supplements, or parenteral nutrition treat-
ment to enhance nutritional levels and immunity, thereby reducing the
risk of CRBSI. Additionally, for patients receiving TPN, special attention
should be paid to preventing CRBSI. Strict aseptic techniques must be
followed during parenteral nutrition therapy to ensure the safety of
nutrient solution preparation, storage, and infusion. This emphasizes the
importance of closely monitoring and implementing appropriate infec-
tion prevention measures during the administration of parenteral nutri-
tion through TIVAP to reduce the risk of CRBSI.43 Neutrophil counts
confirm and reflect the patient's immune function. Immunosuppression is
an almost unavoidable complication in antitumor therapy. Previous
studies have shown that many patients with malignant tumors inevitably
experience a decrease in white blood cells, lymphocytes, or neutrophils
after long-term chemotherapy,44 which further weakens their ability to
fight infections, particularly CRBSI. In this study, decreased neutrophil
levels were an important predictor of TIVAP-CRBSI in patients. Lower
neutrophil levels imply poorer immune function, making these patients
more susceptible to systemic bloodstream infections.45 In clinical prac-
tice, special attention should be given to patients whose immune function
is continuously suppressed due to chemotherapy or other anti-tumor
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therapies.46 Additional protective measures should be implemented to
prevent the development of CRBSI in these patients.

Implications for nursing practice and research

One of the main strengths of this study is the utilization of machine
learning algorithms to construct the model, which enhances the effec-
tiveness and accuracy of the predictive model. Additionally, the quality of
the data are ensured by conducting manual reviews of the data entry
process. Furthermore, adherence to the reporting recommendations out-
lined in the TRIPOD guidelines47 adds strength to the study by promoting
transparency and reducing the risk of bias. By considering the variables in
our risk prediction model, clinicians can have a more comprehensive
assessment tool to identify high-risk patients and implement timely in-
terventions to prevent TIVAP-CRBSI. Ensuring the interpretability of our
models within clinical environments is paramount, as it equips health care
professionals with practical insights. Despite the inherent complexity of
machine learning models, considerable effort has been directed towards
making their outputs accessible and pertinent for clinical decision-making.
This work involves reformulating the model's conclusions into a format
that aligns with the established workflows and decision-making processes
of clinicians. Such an approach aids in seamlessly integrating these models
into everyday clinical practice, enhancing their utility and adoption. Our
purpose in building this model is to enable clinical staff to identify the risk
of CRBSI as much as possible when the patient is hospitalized, so the time
point for assessment using the model should be when the patient is
admitted. This should be a routine medical evaluation item during the
patient's hospitalization and continues as the patient's condition changes.
In addition, the visualization of the model by the nomogram also has
significant benefits for treating, identifying, or predicting the occurrence of
CRBSI, that is, we can identify high-risk factors through implementation
assessment and make early changes.

Limitations

However, there are certain limitations that should be acknowledged.
Firstly, the lack of external validation is a limitation of this study.
Although internal validation was performed, it is important to validate
the model using data from different sources or settings to assess its
generalizability and robustness. Another limitation is that all the data
used in this study were obtained from a single cancer center, which could
introduce some limitations in terms of the diversity and representative-
ness of the study population. This may hinder the widespread application
of the model in other health care settings. While this study benefits from
the use of machine learning algorithms, manual data review, and
adherence to reporting guidelines, the lack of external validation, and the
reliance on data from a single cancer center should be considered as
limitations. Future research should focus on validating the model exter-
nally and exploring the applicability of the model in diverse health care
settings to further establish its utility.

Conclusions

In conclusion, the application of machine learning techniques has
enabled the development of a reliable and accurate predictive model for
CRBSI in cancer patients with TIVAP implants. By utilizing the predictive
model, clinicians can identify high-risk patients and tailor preventive
strategies accordingly, leading to a reduction in CRBSI rates and
improving patient outcomes. Moreover, patients can benefit from being
informed about their individual risk profiles, allowing them to actively
participate in their health care and take necessary precautions to mini-
mize the risk of CRBSI. Overall, the integration of this predictive model
into clinical practice enhances the management and care of cancer pa-
tients with TIVAP implants, leading to more effective prevention and
reduced rates of CRBSI.
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