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INTRODUCTION 
 

Since the beginning of 2020, a newly emerging 

coronavirus (CoV), known as Severe Acute Respiratory 

Syndrome CoV-2 (SARS-CoV-2), has spread rapidly 

among human beings all over the world, leading to a 

disease called coronavirus disease 2019 (COVID-19). 

SARS-CoV-2 not only causes acute, highly lethal 

pneumonia, but also infects many other systems, 

including the immune, cardiovascular, digestive, 

urinary, and nervous systems. 

 

As of Jan 2020, only 24 articles on COVID-19 can be 

found through PubMed/MEDLINE, however, the 

number of papers increased exponentially over the next 

few months (Figure 1A). By Oct 31, 2020, over 64,000 

articles on COVID-19 can be retrieved, indicating that 

the pandemic of COVID-19 has aroused great public 

concerns. Among the published data, 57.7% are related 

to organ involvement. The papers on the respiratory, 

immune, cardiovascular, digestive, urinary and nerve 

systems account for 28.6%, 9.4%, 5.0%, 4.5%, 3.2% 

and 3.0%, respectively. The remaining 42.3% focus 

mainly on disease prevention and treatment, virus 

structure, vaccines, epidemiological characteristics and 

so on (Figure 1B). 

 

To provide a clue for the prevention, treatment, or 

further study of COVID-19, we suggested early in Feb 

2020 that SARS-CoV-2 may have similar neuroinvasive 

potential to that of many other CoVs [1, 2]. In Feb 

2020, only two articles can be found on the neurology 

or neuroscience of COVID-19. However, by Oct 31, 

2020, more than 1900 articles on this topic can be 
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ABSTRACT 
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alterations were observed in the brainstem in 78 of 134 examined patients, and SARS-CoV-2 nucleic acid and 
viral proteins were detected in the brainstem in 16/49 (32.7%) and 18/71 (25.3%) cases, respectively. To shed 
some light on the peculiar respiratory manifestations of COVID-19 patients, this review assessed the existing 
evidence about the neurogenic mechanism underlying the respiratory failure induced by SARS-CoV-2 infection. 
Acknowledging the neurological involvement has important guiding significance for the prevention, treatment, 
and prognosis of SARS-CoV-2 infection. 
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retrieved, most of which were published after Apr 2020 

(Figure 1C). 

 

Neurological involvement in COVID-19, now called 

“COVID-19 neuroscience” or “COVID-19 neurology”, 

has attracted more and more attention [3, 4]. Elucidating 

the underlying mechanisms assist in formulating 

effective treatment strategies to reduce the mortality of 

SARS-CoV-2 infection. In this paper, we review the 

existing evidence regarding SARS-CoV-2 neuroinvasion 

and further explore its possible implications in the 

respiratory manifestations of COVID-19 patients. 

 

Evidence for the neuroinvasion of SARS-CoV-2  
 

To date, a variety of neurological manifestations have 

been documented after SARS-CoV-2 infection. 

Neurological involvement in some patients were 

supported by neuroimaging findings [5–8] and positive 

detection of SARS-CoV-2 RNA in cerebrospinal fluid 

(CSF) [9–30]. Moreover, SARS-CoV-2 RNA and/or 

viral proteins were detected in the brains of some 

patients who died from COVID-19 [31–37]. 

 

The first-hand clinical report on neurological 

manifestations associated with SARS-CoV-2 infection 

was available as a preprint in medRxiv early in Feb, 

2020, which was then published in JAMA in Apr, 2020 

[5]. According to this report, 36.4% of the patients 

presented various neurological manifestations. 

Thereafter, Romero-Sánchez et al. evaluated 841 

COVID-19 patients in Spain and found that 57.4% 

exhibited various neurological symptoms [6]. Pinna et 

al. analyzed the clinical records of 650 COVID-19 

patients in Chicago, USA, and found that 7.7% of the 

patients showed neurological symptoms [7]. Similarly, 

Karadaş et al. evaluated 239 consecutive inpatients with 

COVID-19 in Ankara, Turkey, and detected 

neurological symptoms in 83 (34.7%) patients [8]. 

 

The COVID-19-associated neurological symptoms can 

be classified into three categories: 1) central nervous 

system (CNS) involvement, including headache, 

dizziness, consciousness disorder, epilepsy, and acute 

cerebrovascular accidents; 2) peripheral nervous system 

(PNS) involvement, such as olfactory loss, hypogeusia, 

visual impairment, and neuralgia, and 3) skeletal muscle 

injury [38]. Agarwal et al. analyzed the clinical data of 

404 patients with COVID-19 in Washington, USA [39], 

and found that the most common CNS involvement was 

impaired consciousness (21.3%), followed by headache 

(20.3%) and dizziness (7.7%). The most common PNS 

involvement was muscle pain (32.4%), followed by the 

disorders of taste (6.7%) and smell (4.5%). 

Approximately 24.5% of COVID-19 patients showed 

acute neurological symptoms, of which the most 
 

 
 

Figure 1. The number of articles on COVID-19 published from Dec 01, 2019 to Oct 31, 2020. (A) Monthly changes of the number 

of articles on COVID-19. (B) Monthly changes of the number of articles on COVID-19 neurology. (C) Percentage of the published articles on 
different systems of the body. 
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common was mental state changes (21.3%), followed 

by critical illness myopathy (2.0%), stroke (0.7%), and 

seizures (0.5%) [39]. 

 

Of interest, neurological manifestations were reported 

to be the initial or the only symptom in many patients 

with COVID-19 [13, 24, 40–42], indicating that the 

nervous system may be one of the primary targets of 

SARS-CoV-2. Many neurological manifestations, 

especially those reported in critical patients with 

COVID-19, may be attributed to systemic inflammatory 

responses, hypoxemia, or multi-organ failure [43]. 

However, some special neurological manifestations, 

such as encephalitis, anosmia and hyposmia, may be 

related to the direct invasion of SARS-CoV-2 into the 

CNS. 

 

Since Moriguchi et al. [24] and Xiang et al. [30] 

provided the first evidence of SARS-CoV-2 in the CSF 

of COVID-19 patients, so far, at least 26 cases have 

been reported to show positive CSF detection of SARS-

CoV-2 [9–30]. Interestingly, in some cases SARS-CoV-

2 RNA was detected in the neural tissues, but not in the 

CSF [31, 36]. Since the CSF test is related to the time of 

CSF collection, the severity of infection, or the 

sensitivity of detection methods, the negative outcomes 

of CSF tests are not equated with the absence of SARS-

CoV-2 in the CNS [43–45]. 

 

Previous studies on some other neurotropic viruses show 

that invasion of viruses into the CNS is associated with 

the increase of intrathecal antibodies in the CSF [46–47]. 

Song et al. analyzed CSF samples from 6 COVID-19 

patients, including 3 with encephalopathy, 2 with 

intractable headache, and 1 with seizures [48]. Strikingly, 

antibodies specific for SARS-CoV-2 were observed in the 

CSF in all patients. Using an animal model expressing 

human angiotensin-converting enzyme 2 (ACE2), they 

further found that the antibodies appeared or increased in 

the CSF only when the CNS was infected. As a matter of 

fact, antibodies specific for SARS-CoV-2 have been 

found in the CSF in 30 patients with COVID-19 in 6 

case/case series reports [26, 49–53]. According to the 

results reported by Song et al. [48], the anti-SARS-CoV-2 

antibodies in the CSF in patients with intact blood-brain 

barrier are closely related to the direct invasion of the 

virus into the CNS. 

 

In support of SARS-CoV-2 neuroinvasion, Paniz-

Mondolfi et al. reported the first autopsy evidence of the 

presence of SARS-CoV-2 in the brain of one COVID-

19 patient on Apr 21, 2020 [31]. Since then, more and 

more autopsy studies show that SARS-CoV-2 can enter 

the CNS and infect a variety of brain regions [32–37]. 

To date, SARS-CoV-2 RNA and/or viral proteins have 

been detected in the olfactory mucosa/nerve/bulb [32–

33], trigeminal ganglion [32–33], medulla oblongata 

[32, 37], cerebrum [35], and cerebellum [36]. 

 

Consistent with the hypoxemic and hypercoagulable 

state in most decreased patients, cerebrovascular 

accidents [35, 48, 54–59] and/or hypoxic lesions [54, 

56, 58, 60–62] have been widely observed in the brain 

in COVID-19 patients. However, these are not 

contradictory to the neuroinvasion of SARS-CoV-2, 

since SARS-CoV-2 RNA and/or viral proteins were 

detected in the brains of patients with cerebrovascular 

diseases and/or hypoxic injury [37, 48, 54, 56, 59–60]. 

In addition, many autopsy studies observed severe 

microgliosis and/or lymphocytic infiltration in specific 

brain regions [35, 54, 58], especially in the brainstem 

[37, 54, 56–57, 62–63]. 

 

The extensive presence of SARS-CoV-2 in the CNS, as 

well as the distinctly different neuropathological 

changes, is well consistent with the broad spectrum of 

neurological dysfunctions documented in patients with 

COVID-19. 

 

The neuroinvasion of SARS-CoV-2 is associated 

with respiratory manifestations in COVID-19 

patients 
 

Respiratory failure is a major cause of high mortality 

induced by SARS-CoV-2 infection [64]. Approximately 

10% of COVID-19 patients who developed respiratory 

failure had to be transferred to intensive care unit (ICU) 

for ventilatory support, and up to 79% of them died 

[65–66]. Therefore, clarifying the underlying 

mechanism is urgently needed to make a reasonable 

treatment plan to save patients' lives. 

 

Based on the clinical and experimental data available 

for CoVs, we previously suggested that the 

neuroinvasive potential of SARS-CoV-2 may play a 

role in the acute respiratory failure of some COVID-19 

patients [1, 2]. In this section, we discuss the peculiar 

respiratory manifestations of COVID-19 patients and 

further assess the existing evidence of the neurological 

involvement in the respiratory failure induced by 

SARS-CoV-2 infection. 

 

Lung injury alone cannot explain the respiratory 

performance of all the patients with COVID-19 

 

Radiographic studies show that most hospitalized 

patients with COVID-19 showed bilateral multiple 

peripheral ground-glass opacities at chest computerized 

tomography (CT) examination [65, 67]. The 

development of lung lesions on chest CT is generally 

consistent with the clinical time course of COVID-19 

progression [68]. 
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According to a study by Wang et al., the extent of lung 

lesions was similar in all 138 COVID-19 patients, 

whether mild or severe [69]. This finding was further 

confirmed by several other studies [65, 70–71]. 

Surprisingly, asymptomatic patients were reported to 

show similar imaging abnormalities without a significant 

difference from those in symptomatic patients [72]. 

 

Despite obvious lung abnormalities, most COVID-19 

patients showed only mild flu-like symptoms. 

Approximately 37.8 ~ 67.8% of patients presented 

cough [73–74, 71], but most of them did not have 

sputum production. The productive cough was present 

only in 12.1 ~ 35.9% of mild patients and 22.2 ~ 48.8% 

of severe patients [69, 73–75]. However, hypoxemia 

may develop in both mild and severe patients with 

COVID-19 [70, 76–77]. Of interest, 29.4 ~ 62.4% of 

severe patients and 74.4 ~ 84.9% of mild patients did 

not present dyspnea [73–75]. 

 

Many patients with SARS-CoV-2 infection came to 

hospitals with severe hypoxemia so that they should 

have lost consciousness or be close to organ failure. 

Surprisingly, they denied any difficulty with breathing, 

and showed no signs of using auxiliary respiratory 

muscles. This unusual clinical presentation has been 

termed as “silent hypoxia”, and is defying the current 

basic biology [78]. In some COVID-19 patients, the 

“silent” hypoxemia might last for a long time after 

receiving symptomatic support treatment, which gave 

medical staff an illusion of improvement. However, 

hypoxemia in some cases suddenly progressed and 

worsened from 10 ~ 14 days after infection so that these 

patients rapidly developed acute respiratory distress 

syndrome, respiratory failure, multiple organ failure and 

even death [65]. 

 

More than half of the patients with dyspnea are bound 

to develop to severe cases requiring intensive care [65, 

67, 69]. However, many critical patients failed early 

attempts at weaning from invasive mechanical 

ventilation so that the time of ICU stay appeared to be 

very long [65, 79]. This is surprising since most of them 

have recovered from pneumonia. 

 

Several researchers also noticed that more than 50% of 

ICU patients exhibited dissociation between the 

mechanical characteristics of the respiratory system and 

the severity of hypoxemia [80–81]. In these patients, the 

compliance of the respiratory system and the amount of 

gas in the lung were both in the normal range. This is 

strange and has rarely been reported in other forms of 

acute respiratory distress syndrome [80–81, 82]. 

 

Respiratory viral infection can cause inflammatory 

changes and stimulate the sensory receptors located in the 

respiratory system, and hypoxemia can stimulate the 

glomus cells in the carotid and aortic bodies. The resultant 

impulses in these sensory structures are transmitted to and 

processed through the respiratory center located in the 

brainstem. The accommodative demands from the 

brainstem are then transmitted down to the phrenic nerves 

and diaphragm and cause increased ventilation. 

Meanwhile, the enhanced activity of respiratory center is 

transmitted up to the cerebral cortex, producing a 

subjective feeling of shortness of breath [83–84]. As an 

important warning signal of self-awareness, the incidence 

of dyspnea is significantly lower in COVID-19 patients 

than that in patients infected with many other respiratory 

viruses, such as Middle East Respiratory Syndrome 

(MERS)-CoV (69%), respiratory syncytial virus (95%), 

and influenza virus (82%) [85–86]. 

 

Autopsy studies show that the lungs of COVID-19 

patients are characterized by diffuse alveolar damage 

with hyaline membrane formation, pneumocyte 

activation, microvascular thrombi, lymphocytic 

inflammation, and proteinaceous edema [87–88]. The 

exudation and fibrosis in terminal bronchioles and 

alveolar walls may lead to poor diffusion of oxygen 

across the alveolar barrier, while the increased 

thrombogenesis in pulmonary microvessels may 

aggravate hypoxemia. However, no evidence shows that 

these changes can cause blunting of dyspnea [84]. 

According to a case series study reported by Guan et al., 

among 1099 COVID-19 patients requiring hospital care 

or ICU admission, 23% and 12% had normal chest 

radiographic observations, respectively [74]. Moreover, 

some patients with acute respiratory distress did not 

show any evidence of pulmonary thromboembolism 

[23]. These data indicate that the acute respiratory 

failure induced by SARS-CoV-2 infection cannot be 

explained only by the pulmonary changes [89]. 

 

Respiratory failure may be caused by disturbance of any 

part of the respiratory movement, including the 

respiratory center, nerves, muscles, thorax, airways, and 

lungs. As discussed in detail below, increasing evidence 

shows that either or both PNS and CNS are involved in 

the respiratory failure of COVID-19 patients. 

 

Neuromuscular dysfunction is associated with 

respiratory manifestations in some COVID-19 patients 

 

Involvement of the PNS after SARS-CoV-2 infection 

includes anosmia, dysgeusia, Guillain-Barré Syndrome 

(GBS), myasthenia gravis myositis, myalgia, 

rhabdomyolysis, muscle wasting, and critical-ill 

myopathy [4, 43]. Rifino et al. performed a 

retrospective study on 137 COVID-19 patients with 

neurologic manifestations, and found that patients with 

PNS involvement more frequently developed severe 
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acute respiratory distress syndrome compared to 

patients with altered mental status or cerebrovascular 

disease [26]. There exists strong evidence supporting 

that respiratory nerves and/or muscles are involved in 

the acute respiratory failure of COVID-19 patients. 

 

The diaphragm is the main inspiratory muscle, whose 

abnormalities affect coughing and expectoration, and 

result in a significant decrease in respiratory volume 

[90]. Phrenic nerves originate from spinal motoneurons 

at the levels of C3 ~ C5, which are regulated by spinal 

descending pathways crossing the levels of C1 ~ C2. 

Damage to the neural circuit controlling the diaphragm 

causes rapid deterioration of respiratory mechanics [91]. 

In support of this, Maurier et al. reported a 58-year-old 

female with COVID-19 who showed fever, dysgeusia 

and anosmia at the onset and rapidly developed 

progressive dyspnea due to phrenic paralysis [92]. Of 

note, this patient did not show any cardiac, pleural, 

parenchymal or pulmonary abnormalities, and 

creatinine phosphate kinase levels were also normal. 

Borroni et al. reported two COVID-19 patients with 

focal diaphragmatic myoclonus [93]. 

Electroencephalogram (EEG) showed no structural 

damage in the CNS in case 1, but revealed lateralized 

periodic discharges in the brain in case 2. Interestingly, 

the periodic discharges were closely correlated with the 

diaphragmatic myoclonic movements in this patient. 

 

Diaphragmatic weakness has been widely described in 

COVID-19 patients with GBS, among whom quite a 

few developed severe respiratory failure [94]. Rajdev et 

al. reported a 36-year-old man who was diagnosed with 

COVID-19-associated GBS [95]. Although chest 

imaging showed that the lung lesions were recovering, 

he developed acute respiratory failure due to 

neuromuscular weakness caused by bulbar palsy. 

Patients with GBS usually have concomitant 

diaphragmatic weakness, which leads to atelectasis in 

the base of the lung, resulting in decreased lung 

compliance and increased intrapulmonary shunt. These 

changes, together with pulmonary infection, might 

induce a severe decline in lung volume and rapid 

deterioration of hypoxemia in COVID-19 patients [94]. 

 

The diaphragm was also frequently affected in ICU 

patients due to critical illness and mechanical 

ventilation [96–97]. Although required for many 

patients with acute respiratory failure, invasive 

mechanical ventilation can partially or completely 

unload respiratory muscles and silence the respiratory 

centers in the brainstem, leading to the inactivity of the 

diaphragm [98–99]. 

 

To date, a large amount of clinical data show that 

SARS-CoV-2 infection is often associated with acute 

neuromuscular dysfunction [5, 38]. Furthermore, 

neuromuscular dysfunction has been reported to be an 

important cause of acute respiratory distress syndrome 

in COVID-19 patients with minimal chest imaging 

findings [100]. 

 

Damage to the respiratory-related neural loops is 

associated with respiratory manifestations in some 

COVID-19 patients  

 

Anosmia and dysgeusia are the most common PNS 

symptoms [43], indicating that SARS-CoV-2 infection 

may reduce the sensitivity of chemosensory reflexes 

[101–102]. Carotid/aortic bodies and 

bronchopulmonary C-fibers play a pivotal role in 

monitoring CO2, H
+
 and O2

+
 in the blood, and therefore 

damage to these structures has been suggested to be 

responsible for the absence of the sensation of dyspnea 

[103]. 

 

Carotid and aortic bodies are specialized sensory 

structures in arteries, where the cellular receptor for 

SARS-CoV-2, ACE2, is also present [104]. SARS-

CoV-2 may directly invade the glomus cells in the 

carotid and aortic bodies or indirectly damage their 

sensory function due to the systemic inflammatory 

response and/or hypercoagulable condition in the blood. 

However, less than 1% of COVID-19 patients exhibited 

a detectable level of SARS-CoV-2 in the blood [105, 

106], and the infection of carotid/aortic bodies has not 

yet been confirmed [58]. 

 

The affection of bronchopulmonary C-fibers has 

previously been reported to contribute to the respiratory 

failure induced by other respiratory viruses by 

abrogating the sensory transmission from lungs and 

respiratory airways [103, 107–108]. However, it is 

unclear whether this happens during SARS-CoV-2 

infection. 

 

Mechano- and chemoreceptors play a monitoring role in 

the lung and lower respiratory airways, while the 

respiratory reflex is triggered and controlled primarily by 

the respiratory center located in the brainstem. The 

brainstem is comprised of many important structures, 

which are essential for breathing, heart rate, blood 

pressure control, digestion, etc. These anatomical 

connections make the brainstem an easily accessible CNS 

target for SARS-CoV-2 from peripheral infection sites [1, 

109]. In support of this, Lukiw et al. reported that the 

expression level of ACE2 was the highest in brainstem 

among 21 different brain regions in humans [110]. 

 

The brainstem has been reported to be highly infected 

with SARS-CoV [111] and MERS-COV [112]. In 

animal experiments, SARS-CoV and human CoV OC43 
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have been shown to enter the olfactory bulb after 

exposure to the nasal route and subsequently invade the 

CNS, including the brainstem [111, 113]. Considering 

the high similarity between SARS-CoV and SARS-

CoV-2, we previously proposed that the potential 

infection of the brainstem may play a role in the acute 

respiratory failure of patients with COVID-19 [1–2]. 

 

Clinical evidence for involvement of the brainstem in 

COVID-19  
 

In line with possible involvement of the brainstem, a 

case series study on COVID-19 patients younger than 

18 years with neurological symptoms reported 

brainstem signs such as dysarthria or dysphagia in 2 

cases (2/18) [114]. Similar findings were reported in 

some old patients [32, 35, 37]. However, absent or 

impaired brainstem reflexes are more common in severe 

patients who have been diagnosed with COVID-19-

associated encephalomyelitis or encephalopathy [28, 50, 

115]. 

 

Involvement of the brainstem was supported with 

neuroimaging findings in some COVID-19 patients. 

Wong et al. reported a 40-year-old man in England, 

who developed acute brainstem dysfunction after 

SARS-CoV-2 infection [116]. MRI scans revealed 

inflammatory changes in the brainstem in this case. 

Virhammar et al. described a 55-year-old female with 

acute necrotizing encephalopathy [28]. The CSF sample 

from this patient was positive for SARS-CoV-2. MRI 

scans revealed abnormal changes in several brain 

regions, including the brainstem. To date, abnormal 

imaging changes of the brainstem have been widely 

documented in COVID-19 patients with GBS [117], 

necrotizing encephalopathy [10, 28], and 

encephalomyelitis [118–121]. 

 

As stated earlier, it is difficult for many ICU patients 

with COVID-19 to withdraw invasive mechanical 

ventilation, even if their pulmonary infections have 

recovered [65, 80–81]. Related to this, Koutroumanidis 

et al. found that 5 of 13 ICU patients with COVID-19-

associated encephalopathy had alpha coma EEG pattern 

[122]. Alpha coma is typically associated with the 

lesions located in the brainstem reticular formation 

[123]. Therefore, the relatively high incidence of alpha 

coma in severe patients with COVID-19 indicates that 

brainstem injury may be an important reason why they 

were difficult to get rid of invasive mechanical 

ventilation [122]. 

 

As a possible mechanism, the nerve endings within the 

olfactory neuroepithelium have been considered an 

entry point for SARS-CoV-2 to infect the brainstem 

[106]. Consistently, the mechanism underlying COVID-

19-related olfactory dysfunction was reported to be 

obviously different from patients in acute colds, and 

may reflect, at least to some extent, a specific 

involvement at the level of CNS [124]. 

 

Eliezer et al. reported a female with COVID-19 who 

presented an acute loss of olfactory function without 

nasal obstruction. In this patient, CT and MRI analysis 

showed bilateral inflammatory obstruction in the 

olfactory clefts [125]. In a postmortem brain MRI study, 

Coolen et al. reported asymmetric olfactory bulbs in 4 

of 19 patients with COVID-19 [126]. 

 

In a retrospective cohort study, Lin et al. reported that 

among 51 COVID-19 patients with MRI examinations 

26 (51%) displayed acute or subacute findings in the 

CNS, including cranial nerve abnormalities (6) and 

critical illness-associated microbleeds (3). Of note, four 

patients displayed abnormally increased olfactory bulb 

signals suggesting olfactory neuritis, which might be 

related to the anosmia experienced by these patients 

[127]. 

 

In a prospective study, Lu et al. used MRI to evaluate 

the brains of 60 patients who had recovered from 

SARS-CoV-2 infection, and found that the volume of 

olfactory cortices was significantly increased in these 

patients [52]. Of note, 41 patients (68.33%) showed 

neurological symptoms during SARS-CoV-2 infection, 

and 30 (50%) still had neurological symptoms even 

though they had recovered 3 months after infection. 

 

Autopsy evidence for involvement of the brainstem 

in COVID-19  

 

Convincing evidence for involvement of the brainstem 

after SARS-CoV-2 infection has recently been reported 

in postmortem studies [44]. Among the published 

autopsy studies, neuropathological alterations were 

observed in the brainstem in 78 of 134 examined 

patients, including 18 with vascular accidents in the 

brainstem [54–55, 58, 128, 129–130], 15 with hypoxic 

injury in the brainstem [37, 54, 56, 63], and 65 with 

microgliosis/lymphocytic infiltration in the brainstem 

[36–37, 56–57, 62–63]. Among these cases, some had 

two or more types of these neuropathological changes. 

SARS-CoV-2 RNA and viral proteins were detected in 

the brainstem in 16/49 (32.7%) and 18/71 (25.3%) cases, 

respectively. The positive detection of SARS-CoV-2 

was much higher in patients who showed microgliosis 

and/or lymphocytic infiltration in the brainstem, relative 

to patients with vascular accidents or hypoxemic lesions 

in the brainstem [32, 37, 54, 56, 60–61, 131]. 

 

The first autopsy study on the brainstem was published 

online on May 13, 2020 by Bulfamante et al. [131]. In 
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this study, a 54-year-old man who died from COVID-19 

was observed to have severe degeneration in the neural 

tissues along the pathway from the olfactory nerve to 

the brainstem. Thereafter, von Weyhern et al. performed 

a more detailed postmortem study on the brainstem in 6 

COVID-19 patients in Apr, 2020 [63], and they found 

that neuronal degeneration was extensively present in 

the brainstem in all 4 examined cases. Although no 

detection of SARS-CoV-2 was performed in the neural 

tissues in the two studies, the predominant involvement 

of the brainstem could not be attributed to only 

hypoxemia or hemorrhages. 

 

Direct invasion of SARS-CoV-2 into the brainstem was 

reported in three autopsy studies in Jun, 2020 [32, 60–

61]. Meinhardt et al. performed an autopsy study on 32 

COVID-19 patients in Berlin, Germany, and detected 

SARS-CoV-2 RNA in the brainstem in 4 of 23 cases 

[32]. Menter et al. performed an autopsy study on 21 

COVID-19 patients in Switzerland, and found SARS-

CoV-2 RNA in the brainstem in all 4 cases examined 

[60]. Solomon et al. performed an autopsy study on 18 

patients in Boston, USA, and found SARS-RNA in the 

brainstem in 3 of 18 cases [61]. 

 

On Oct 5, Matschke et al. published an autopsy study on 

the brainstem in 43 COVID-19 patients in Lancet 

Neurology [37]. Among the patients, 37 (86%) showed 

abnormal changes, including astrogliosis and/or 

microgliosis, in all assessed brain regions, but 

microglial activation and lymphocytic infiltration were 

the most severe in the brainstem and cerebellum. 

SARS-CoV-2 RNA was detected in the brains of 21 

(53%) of 40 tested patients including the brainstem 

from 4 patients. Immunohistochemical staining revealed 

that the nucleocapsid protein of SARS-CoV-2 was 

present in neuron-like cells in the medulla oblongata 

and in the cranial nerves which originated from the 

lower brainstem. 

 

In several studies, the presence of SARS-CoV-2 in the 

CNS was confirmed with different detection techniques 

[31–32, 37]. However, in some cases, positive results 

obtained by PCR tests could not be corroborated with in 
situ hybridization or immunohistochemistry using the 

same samples [54, 61]. Interestingly, in quite a few 

patients with negative PCR tests, SARS-CoV-2 was 

detectable in the same brain areas with 

immunohistochemistry [37]. 

 

The brainstem infection with SARS-CoV-2 is also 

supported with animal experiments. Deer mice, the 

most studied and abundant mammals in North America, 

are susceptible to SARS-CoV-2 infection because their 

ACE2 receptor shares 17 of the 20 critical residues for 

SARS-CoV-2 binding. As reported in COVID-19 

patients, intranasal inoculation with SARS-CoV-2 

caused respiratory, digestive and neurological infections 

in deer mice [132]. In the CNS of infected deer mice, 

SARS-CoV-2 antigen has been detected in a variety of 

brain areas, including the olfactory bulb and brainstem. 

 

Therefore, both autopsy and animal studies indicate that 

the brainstem is one of the primary CNS targets of 

SARS-CoV-2, which may be the dominant reason for 

the unusually rapidly deteriorative respiratory function 

in some COVID-19 patients. The evidence currently 

available shows that SARS-CoV-2 can invade the 

brainstem in a retrograde manner via multiple nerve 

routes, including the olfactory, trigeminal, 

glossopharyngeal, and vagus nerves [37, 132]. 

 

The significance of acknowledging the 

neuroinvasive potential of SARS-CoV-2 
 

Ever since their discovery in the late 1960s, the ability 

of CoVs to infect humans had been neglected by the 

international medical community [133]. Although two 

unexpected COVID pandemics, triggered by SARS-

CoV and MERS-CoV, respectively, recall people’s 

interest in CoV-infections, the neuroinvasive propensity 

of CoVs has still not attracted enough attention over the 

last 20 years. Unlike SARS-CoV and MERS-CoV, the 

rapid global spread of SARS-CoV-2 has posed an 

urgent and serious threat to public health. 

 

As the counterpart of SARS-CoV-2, the pathogenesis of 

SARS-CoV infection remains poorly understood [134]. 

Similarly, a comprehensive understanding of SARS-

CoV-2 is also lacking. Therefore, understanding the 

neuroinvasive potential of SARS-CoV-2 is of great 

significance for the prevention, treatment and prognosis 

of SARS-CoV-2 infection. 

 

During the outbreak of COVID-19, the mortality of ICU 

patients with neurological problems was reported to be 

higher than that of patients without neurological 

symptoms [135]. Similarly, experimental studies show 

that the neuroinvasion of SARS-CoV-2 dramatically 

increased the mortality of infected animals [136]. Given 

this, SARS-CoV-2 infection in human beings should not 

be allowed to develop without treatment. As an example 

of the opposite, it has been reported that two-thirds of 

ICU patients in some hospitals were directly admitted 

from home [137]. 

 

Vaccination is considered the best option. However, 

before effective vaccines are available, wearing masks 

is undoubtedly a simple and effective measure against 

SARS-CoV-2 transmission [138], since it protects 

against invasion of the virus into the CNS from the 

respiratory tract and lung. 
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It is known that the virus in neurons can escape from 

the surveillance of the immune system, especially at the 

early stage of infection. The initially infected neurons 

eventually become apoptotic or are cleared by immune 

cells, prior to which virus progeny may have spread to 

other healthy neurons. The trans-neuronal transmission 

of CoVs makes it difficult to completely eliminate the 

virus from the CNS [139]. Therefore, the CNS infection 

of SARS-CoV-2 should be given antiviral treatment as 

soon as possible. 

 

Chloroquine and hydroxychloroquine, which have been 

clinically used in COVID-19 patients, were reported to 

exhibit limited CNS penetration [140]. These drugs 

interfere with the glycosylation of ACE2 and therefore 

disturb the interaction of ACE2 with the spike protein 

of SARS-CoV-2. In addition, they prevent the 

endocytosis and subsequent vesicular trafficking of 

SARS-CoV-2 by endosomal alkalization [141]. 

 

During the epidemic of COVID-19, some researchers 

noticed that the patients who had been treated with 

adamantanes did not develop clinical diseases [142]. In 

these patients, adamantanes were initially used to treat 

the underlying neurologic disorders such as multiple 

sclerosis and Parkinson's disease. Adamantanes are 

known to possess an antiviral capability by binding a 

pore formed by SARS-CoV protein E and by interfering 

with the lysosomal phase of SARS-CoV infection. Of 

note, they can penetrate the blood-brain barrier, 

therefore may be considered a candidate to protest 

against the replication of SARS-CoV-2 in the CNS. 

 

Previous studies reported that inhibition of tubulin 

polymerization hindered the retrograde axonal transport 

of poliomyelitis virus along infected peripheral nerves 

[143]. Therefore, some microtubule-associated inhibitors 

that have the capacity of penetrating the blood-brain 

barrier may be considered candidates to inhibit SARS-

CoV-2 infection in the nervous system [106]. 

 

After replication in the CNS, progeny virions were 

exocytosed from host neuronal cells, and entered the 

next-order neurons by endocytosis [144]. One of the 

treatment alternatives available for COVID-19 is 

administration of anti-SARS-CoV-2 antibodies in 

plasma. Of interest, previous studies on West Nile virus 

showed that neutralizing antibodies could prevent viruses 

from spreading from neuron to neuron [145–146]. 

 

To date, there are some candidate drugs that can be 

tested to stop the CNS infection of SARS-CoV-2 [140, 

147]. According to action sites, the drugs against 

neurotropic viruses can be divided into at least four 

kinds: blocking the invasion, transportation, replication, 

and release of viruses, respectively. With respect to the 

neurotropism of SARS-CoV-2, the CNS penetration 

ability of drugs is a critical factor for the treatment of 

brain infection. However, it should be noted that a kind 

of antiviral drugs alone may not be enough to stop the 

infection. For example, inhibiting virus transportation 

cannot alter the redistribution and replication of viruses. 

Therefore, it is recommended to combine two or more 

antiviral drugs to interfere with different stages of the 

life circle of viruses in the CNS. 

 

Experimental studies on HCoV-OC43 show that the 

presence of CoV RNAs might last for at least one year 

without being acutely toxic in the brains of infected 

mice that had survived [148]. This suggests that CoVs 

can establish a persistent infection within the CNS of 

their hosts, which significantly increases the risk of 

long-term disability [149]. Consistent with this 

hypothesis, neuropsychiatric or neurocognitive 

disorders have been reported in some patients who had 

recovered from acute SARS-CoV-2 infection [150]. It is 

noteworthy that the young Japanese man, who was 

confirmed as the first case of meningitis/encephalitis 

[24] and has recovered from COVID-19, was found to 

develop retrograde amnesia and cannot recall what 

happened to him during his own infection [151]. 

 

Since the impact of SARS-CoV-2 infection on the 

nervous system may last for a long time, it is necessary 

to follow up the neurological changes of discharged 

patients and develop appropriate neurorehabilitation 

measures. 
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