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Abstract
Although the aging brain is typically characterized by declines in a variety of cognitive functions, there has been growing 
attention to cognitive functions that may stabilize or improve with age. We integrate evidence from behavioral, computa-
tional, and neurological domains under the hypothesis that over the life span the brain becomes more effective at predicting 
(i.e., utilizing knowledge) compared to learning. Moving beyond mere description of the empirical literature—with the aim 
of arriving at a deeper understanding of cognitive aging—we provide potential explanations for a learning-to-prediction 
shift based on evolutionary models and principles of senescence and plasticity. The proposed explanations explore whether 
the occurrence of a learning-to-prediction shift can be explained by (changes in) the fitness effects of learning and prediction 
over the life span. Prediction may optimize (a) the allocation of limited resources across the life span, and/or (b) late-life 
knowledge transfer (social learning). Alternatively, late-life prediction may reflect a slower decline in prediction compared 
to learning. By discussing these hypotheses, we aim to provide a foundation for an integrative neurocognitive–evolutionary 
perspective on aging and to stimulate further theoretical and empirical work.
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Aging populations worldwide present an urgent need to 
understand all sides of cognitive aging: losses, heteroge-
neity, and gains. Some cognitive capacities clearly suffer 
with age, at different individual rates (Cabeza et al., 2018; 
Reuter-Lorenz & Park, 2014). Notable among the vulner-
able capacities is the ability to acquire new information, 
or to learn (Reuter-Lorenz & Park, 2010). At the same 
time, the capacity to accumulate and to utilize general-
ized knowledge seems to be stable and may even improve 
(Salthouse, 2019; Spreng & Turner, 2019). This observed 
profile requires explanation. Understanding may be gained 
by merging neurocognitive descriptions of how the brain 
ages with an evolutionary understanding of why organ-
isms age as they do. In particular, merging these views can 

address both how, and why, cognitive performance can 
both decline and improve over the life span—questions that 
remain challenging for a “deficit” view of aging. We pro-
pose that (a) over the life span the human brain becomes 
more effective at generating predictions relative to learning 
and that (b) a shift from learning to prediction over the life 
span may have evolved due to prediction’s adaptive value 
or its robustness to decline.

Prediction is a neurocognitive construct that broadly re-
fers to inferring the future based on knowledge of the past 
(Bar, 2007; Bubic et al., 2010; Clark, 2013). The term “pre-
diction” is used to denote a process, synonymous with “an-
ticipation” or “projection,’’ as well as the resulting content, 
synonymous with “an expectation” (Bubic et  al., 2010). 
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The basis for prediction is memory. Prediction exploits the 
rich associations the human brain acquires and stores over 
the long term to help make sense of incoming sensory in-
formation that is missing, incomplete, coarse, or noisy (Bar, 
2007). Prediction involves retrieving long-term memories, 
comparing memory traces to incoming sensory informa-
tion, and utilizing those memory traces to infer a current or 
future state of the world that is uncertain. This process has 
been described cognitively as one of “analogy” and “associ-
ation” (Bar, 2007), where sensory information is compared 
to similar information in memory, which in turn activates 
additional associations that collectively form a prediction. 
If a listener cannot hear a word well enough to identify 
it, she can guess the word based on what it sounded like. 
She can also guess that the words she will hear next will 
be related in meaning to the words she has already heard 
(Obleser & Kotz, 2010). Neurologically, prediction may be 
related to signal flow from neural networks for long-term 
associative memory (such as the default-mode network) 
to networks that more directly receive sensory input from 
the environment (such as subcortical and primary sensory 
regions; Bar, 2007; Bubic et  al., 2010; Turner & Spreng, 
2015). Prediction may improve, or provide a viable alter-
native to learning, as long-term memories accumulate, and 
knowledge becomes more extensive and generalizable (ab-
stracted) over the life span (Moran et  al., 2014; Spreng, 
Lockrow, et al., 2018).

Learning and prediction can be seen as separate cogni-
tive processes: in learning, sensory information is used to 
change long-term memory (Barron et al., 2015; but see de 
Houwer et al., 2013). Conversely, in prediction, long-term 
memory is used to interpret sensory information or decrease 
uncertainty about future states (Bar, 2007). Prediction and 
learning are necessarily linked: learning changes predic-
tions, and prediction changes learning (Clark, 2013). For 
instance, if a prediction is inaccurate, detecting this inaccu-
racy may initiate learning in order to change, and improve, 
the previous prediction (Clark, 2013). The above defin-
itions of learning and prediction parallel the behavioral 
exploration–exploitation distinction (Hills et  al., 2015). 
Exploration refers to seeking new resources with uncer-
tain outcomes, which can be seen as integral to the learning 
process (see Spreng & Turner, 2021). Exploitation refers 
to utilizing existing resources with more certain outcomes 
(Hills et al., 2015; Spreng & Turner, 2021): prediction can 
therefore be seen as a process of exploitation (specifically, 
exploiting knowledge resources). We argue that aging may 
improve or increase reliance on prediction as learning de-
clines, analogous to a proposed exploration–exploitation 
shift across the life span (see Gopnik, 2020; also see Spreng 
& Turner, 2021), and we discuss potential explanatory hy-
potheses for this shift.

We here review recent empirical work in neurocognitive 
aging and link this evidence to evolutionary theory in order 
to assess the hypothesis that aging is not characterized by 
deterioration alone (Reuter-Lorenz & Park, 2014; Spreng 

& Turner, 2019). Notably, evolutionary principles are par-
ticularly well-suited to provide answers to why-questions 
about phenomena: in this case, why human-typical aging 
is marked by specific patterns of cognitive change (e.g., 
Bateson & Laland, 2013). Applying this interdisciplinary 
perspective, we first argue that the evidence to date ten-
tatively suggests that aging brains become effective at 
predicting (i.e., exploiting long-term memories) compared 
to learning. We then offer several explanations which ex-
plicitly draw from evolutionary theory. We end by sug-
gesting avenues for further work and discussing limitations. 
First, we review evidence for a learning-to-prediction shift 
at the behavioral, computational, and neurological levels.

From Learning to Utilizing Acquired 
Knowledge: A Neurocognitive Hypothesis

Cognitive Changes: Increased Reliance on 
Previously Acquired Knowledge

A common thread in cognitive aging appears to be the 
increasing difficulty with acquiring novel information from 
the environment. Cognitive aging is typically associated 
with decline in episodic encoding—that is, acquiring mem-
ories for events that include details about the context in 
which they were embedded (Naveh-Benjamin et al., 2003). 
Older adults show impairment relative to younger adults 
when encoding novel associations, such as combinations of 
items or the context in which information is presented, but 
they show less impairment when remembering individual 
items (which should be familiar; Chalfonte & Johnson, 
1996; de Chastelaine et al., 2016; Naveh-Benjamin et al., 
2003; Old & Naveh-Benjamin, 2008). Older adults also 
have trouble relearning or “unlearning” recently acquired 
associations that are no longer relevant. This type of in-
terference, termed “proactive interference,” has been asso-
ciated with aging in a variety of tasks, and it is at least 
partially distinguishable from aging effects on proc-
essing speed, working memory, and inhibition (Friedman 
& Miyake, 2004; Matamales et al., 2016; Pettigrew & 
Martin, 2014).

In contrast to deficits in acquiring and updating mem-
ories, older adults have shown stable or improved perfor-
mance in tasks that utilize long-term memories. Compared 
to younger adults, older adults demonstrate similar or en-
hanced performance on tests of semantic memory, some-
times called “crystallized knowledge” (Craik & Bialystok, 
2006), which refers to long-term knowledge that is gen-
eralized and abstracted from the context in which it was 
learned (Allen et  al., 2002; Luo & Craik, 2008; Nyberg 
et al., 1996; Spaniol et al., 2006; Spreng, Lockrow, et al., 
2018). Large-scale cross-sectional and longitudinal studies 
of cognitive performance over the life span demonstrate a 
highly consistent pattern of loss and gain: while episodic 
memory declines steadily over the life span, crystallized 
knowledge such as vocabulary increases steadily throughout 
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adulthood, levels off around age 60, and modestly declines 
around age 70 (Salthouse, 2014, 2019). This knowledge ac-
cumulation itself may impair learning, by interfering with 
novel information. For example, simulated word-pair asso-
ciation learning showed that increasing levels of individual 
linguistic experience, independent of age, predicted declines 
in novel associative learning (Ramscar et al., 2017). On the 
other hand, accumulated knowledge may help older adults 
learn information that aligns with their existing knowl-
edge, possibly enabling them to continue acquiring knowl-
edge (such as vocabulary) into late life (Salthouse, 2019). 
For instance, learning new words in one’s native language 
should be easier than learning a new language. Although 
older adults showed reductions in word retrieval, they also 
tended to produce words that were more common and 
semantically related to each other (Taler et  al., 2020). In 
addition, differences between older and younger adults in 
episodic memory performance reduce or disappear when 
new information is supported by familiar semantic in-
formation (for a review, see Spreng & Turner, 2019). For 
instance, older and younger adults remembered pairs of 
words with similar accuracy when the words were related 
in meaning or syntax (Badham et al., 2012; Castel, 2005). 
As a whole, this evidence suggests that older adults utilize 
their long-term knowledge, particularly semantic knowl-
edge, more effectively than they learn new information. 
This proposal aligns with the idea of a shift from explor-
ative to exploitative cognitive modes over the life span 
(Spreng & Turner, 2021). Similarly, we expect aging to 
increase reliance on strategies that exploit existing knowl-
edge, while decreasing strategies involved in learning (e.g., 
novelty seeking). Exploitation of long-term knowledge may 
additionally offer an alternative strategy to compensate for 
learning declines (Reuter-Lorenz & Park, 2014).

Computational Changes: Unreliable Sensation 
and Reliable Knowledge

Older adults may rely on prediction as sensory signals 
become less reliable. Computational work suggests that 
memory and sensation are weighted according to their sali-
ence and stability (Clark, 2013; Feldman & Friston, 2010; 
Wolpe et al., 2016). The more salient and stable the sen-
sation, the more likely it will be to override contradictory 
expectations (Feldman & Friston, 2010). Likewise, highly 
stable memory traces may persist despite contradictory 
sensory signals (Clark, 2013). There is ample evidence that 
sensation becomes less acute with age, presumably due to 
decline in peripheral sensory organs and reduced sensitivity 
in the central nervous system (Guerreiro & Van Gerven, 
2011; Lin et  al., 2011; Pichora-Fuller & Singh, 2006; 
Voytek et  al., 2015). Older adults show reduced cortical 
electrical responses to stimulus changes and repetitions 
(Cheng et al., 2013; Kisley et al., 2005; Moran et al., 2014; 
Ruzzoli et al., 2012), and they adjust their movements less 
and more slowly in response to sensory feedback (Buch 

et al., 2003; Seidler, 2006). Deficits in sensation or sensori-
motor adaptation could contribute to deficits in encoding 
or updating information (Bernard & Seidler, 2014; Li & 
Lindenberger, 2002). Sensory deficits may relate to reliance 
on prediction. For instance, older adults showed reduced 
tactile acuity, which correlated with greater attenuation 
(presumably overprediction) of self-generated tactile feed-
back (Wolpe et al., 2016). Sensory impairments may con-
tribute to learning deficits and/or a greater reliance on 
prediction.

Older adults may also rely on prediction as their memory 
traces undergo both quantitative and qualitative changes 
over time. Quantitatively, memory traces should become 
more extensive and cover a wider range of information 
over the life span, as suggested by increases in crystallized 
knowledge from early adulthood to middle age (Salthouse, 
2014). This quantitative change may improve prediction ac-
curacy. Qualitatively, memory traces may grow more stable 
and generalizable with repeated retrieval and consolida-
tion (Figure 1A), which should enable prediction efficiency. 
A similar idea is that memories become abstracted over time 

Figure 1. Improved predictive capacity and increased access to memory 
traces in aging. (A) This panel illustrates hypothesized knowledge stability 
and abstraction increases over the life span. Stability is illustrated as the 
strength of input/output connections in a hypothetical network. Over time, 
higher connection weights (thicker lines) among nodes (dots) result in 
fewer but highly efficient activation patterns. Abstraction is illustrated as 
a hypothetical knowledge distribution that acquires a “simpler” unimodal 
shape (Moran et al., 2014). (B) This panel illustrates hypothesized neural 
changes which may contribute to increased utilization of knowledge over 
the life span: subcortical–cortical communication decreases and default-
executive coupling (synchrony) increases (Spreng & Turner, 2019). In the 
upper brain, the lighter color (“+”) indicates increased activation in the 
executive network, and the darker color (“−”) indicates decreased activa-
tion in the default network, during a task. In the lower brain, the color in 
between light and dark (between “+” and “−”) indicates reduced task mod-
ulation in the executive and default networks. Solid arrows indicate in-
creased connectivity, and dashed arrows indicate decreased connectivity.
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as they lose contextual detail (“semanticization”), and these 
abstracted memories may be more efficiently retrieved than 
contextualized (episodic) memories (Spreng, Lockrow, et al., 
2018; Spreng & Turner, 2019). Abstracted knowledge can 
also be described computationally as a “simpler” predictive 
model of the world, which, compared to more precise or 
contextualized models, should enable efficient prediction by 
accommodating a wide range of information in a variety of 
contexts (Moran et al., 2014; Figure 1A). Over time, being 
able to generate accurate and efficient predictions with a 
given knowledge base should further increase reliance on 
that knowledge, because knowledge successfully utilized is 
likely to be maintained and reused (Clark, 2013). In late life, 
prediction may improve, or become a useful alternative to 
learning, as more extensive knowledge can be utilized in a 
generalizable way.

Neural Systems Changes: Altered Subcortical–
Cortical Networks

Studies are now showing that aging changes the functional 
organization of large-scale neural networks (Zonneveld 
et  al., 2019), as evidenced, for instance, by the tendency 
of older adults to engage different or additional networks 
to perform the same tasks as younger adults (Cabeza, 
2002; Park & Reuter-Lorenz, 2009; Reuter-Lorenz & 
Cappell, 2008; Reuter-Lorenz & Park, 2014). A reorgan-
ization that may underlie a learning-to-prediction shift is 
captured by the Default-Executive Coupling Hypothesis 
of Aging (DECHA; Turner & Spreng, 2015). This hy-
pothesis proposes that aging increases the interaction be-
tween a cognitive control, or executive control, network 
(“executive network”) comprising lateral frontal–parietal 
regions (Cole et al., 2013) and the default-mode network 
(“default network”). The default network includes lateral-
temporal and medial frontal–temporal–parietal regions, 
including the hippocampus (Buckner et  al., 2008), and 
it is thought to be involved in memory retrieval (e.g., re-
trieving learned associations between objects or concepts) 
and memory-driven processes such as self-reflection and 
imagining the future (Buckner et al., 2008; Raichle, 2015; 
Spreng, Madore, et  al., 2018; Spreng & Turner, 2019). 
Thus, it is also conceptualized as a network for prediction 
(Bar, 2007). Younger adults typically show greater exec-
utive network activity and less default network activity 
while focused on a task (Andrews-Hanna et al., 2014), and 
this anticorrelation increases as tasks become more diffi-
cult (e.g., increased working memory load; Kennedy et al., 
2017; Rieck et  al., 2017). Compared to younger adults, 
older adults show less disengagement of the default net-
work, and more default-executive synchrony, when per-
forming difficult tasks (Grady et al., 2016; Turner & Spreng, 
2015). Older adults also show less modification of execu-
tive network activity as task difficulty changes (Kennedy 
et al., 2015, 2017; for a review, see Spreng & Turner, 2019; 
see Figure 1B). The DECHA hypothesis suggests that 
default-executive synchrony reflects increased utilization of 

acquired knowledge to guide goal-directed behavior, and 
it may reflect an exploration-to-exploitation shift over the 
life span (Spreng & Turner, 2019, 2021). Similarly, default-
executive synchrony could reflect a learning-to-prediction 
shift. Networks involved in guiding goal-directed behavior 
(executive network) may increasingly rely on generaliz-
able knowledge (via the default network) to solve current 
tasks, compared to learning new information. In line with 
this idea, greater spontaneous default-executive synchrony 
in older adults correlated with a greater proportion of se-
mantic compared to episodic content in autobiographical 
recall (Spreng, Lockrow, et al., 2018).

Working from this network-reorganization hypothesis, it 
may be informative to additionally consider the cerebellum 
and basal ganglia (multiple nuclei including the striatum), 
given their well-established roles in age-vulnerable cogni-
tive capacities, including associative learning, updating pre-
viously learned associations, and cognitive control (Bernard 
& Seidler, 2014; Bostan & Strick, 2018; Caligiore et  al., 
2017; Matamales et al., 2016; Schwartze & Kotz, 2013). 
These subcortical regions are densely connected to the ce-
rebral cortex via reciprocal subcortico–thalamo–cortical 
loops (for reviews, see Bostan & Strick, 2018; Caligiore 
et al., 2017), and they show connectivity with default and 
executive networks, among others (Bernard et  al., 2012; 
Gordon et al., 2021). Transneuronal tracing in nonhumans 
and human neuroimaging also show disynaptic path-
ways between the cerebellum and basal ganglia (Bostan & 
Strick, 2018; Milardi et al., 2016; Pelzer et al., 2013). It is 
also apparent that these nodes, along with their cortical 
and mutual connections, are vulnerable to aging. Human 
neuroimaging shows gray and white matter volume reduc-
tion in these regions as a function of age, paralleling cor-
tical volume declines (Barrick et al., 2010; Bernard et al., 
2015; Crivello et  al., 2014; Fjell et  al., 2013; Gellersen 
et  al., 2021; Han et  al., 2020; Raz et  al., 2005; Resnick 
et al., 2003; Tamnes et al., 2013). In addition, spontaneous 
(resting state) subcortico–cortico connectivity reduces 
with age, including cerebellar–cortical (Bernard et  al., 
2013, 2021; Ferreira et al., 2016), and striatal–prefrontal 
(Bo et  al., 2014; Su et  al., 2018) connectivity. Striatal– 
prefrontal white matter shows age-related microstructure 
declines (Samanez-Larkin et  al., 2012; Vik et  al., 2015; 
Webb et  al., 2020; Ystad et  al., 2011), which correlate 
with reduced executive function performance (Webb et al., 
2020), and with reduced cue–reward association learning 
with age (Samanez-Larkin et  al., 2012). Finally, cere-
bellar–striatal resting state connectivity has been shown 
to reduce with age (Bernard et al., 2013, 2021; Bo et al., 
2014; Hausman et al., 2020) and to correlate with working 
memory performance (Hausman et al., 2020).

Given these cerebellar–striatal–cortical declines, we spec-
ulate that there may be a potential link between reduced 
cerebellar–striatal–cortical communication (Bernard et al., 
2013; Hausman et al., 2020; Webb et al., 2020) and increased 
default-executive synchrony (Spreng & Turner, 2019). An 
emerging concept of an integrated cerebellar–striatal system 
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is that it adjusts and updates cortical routines on comple-
mentary timescales: the basal ganglia determines relevant 
goals through reinforcement learning, and the cerebellum 
determines how to attain those goals through error correc-
tion and fine-tuning (Bostan & Strick, 2018; Caligiore et al., 
2017). In this view, the cerebellar–striatal system is crucial 
for optimally updating cortical processes at coarse (striatal) 
and fine-grained (cerebellar) levels, based on new informa-
tion (“tutoring” the cortex; Caligiore et al., 2017, p. 210). 
If this model is applied to the aging brain, it could be fur-
ther hypothesized that the executive network relies less on 
cerebellar–striatal updating (e.g., learning) and more on the 
default network’s knowledge resources enabling prediction 
(see Figure 1B). This change may occur as (a) novel sensory 
inputs become less frequent, salient, or relevant, and/or (b) 
generalizable knowledge resources (a range of cortical rep-
ertoires and routines) provide sufficient flexibility to solve 
current tasks without sensory-guided adjustments (Spreng 
& Turner, 2019). In line with this idea, a meta-analysis sug-
gested that older adults may underrecruit the cerebellum 
in working memory tasks compared to younger adults 
(Bernard et al., 2020). Alternatively (or in parallel), reduced 
cognitive control over the life span (Spreng & Turner, 2021), 
notably associated with declining striatal–frontal networks 
(Buckner, 2004), may be a determining factor in a learning-
to-prediction shift. We speculate that an underused cere-
bellar–striatal system may contribute to declines in learning 
and a shift toward prediction.

Learning or Utilizing Acquired Knowledge: 
Evolutionary Perspectives
Based on the observed cognitive, computational, and neu-
rological changes that occur during healthy aging, we 
argue that the aging brain shifts from learning to predic-
tion. The aging brain may become more adept at exploiting 
the outcomes of previous learning. Drawing from evolu-
tionary principles, we offer two adaptive explanations and 
one “by-product” explanation for a life-span learning-to-
prediction shift. The two proposed adaptive explanations 
explore whether the occurrence of a learning-to-prediction 
shift can be explained by (changes in) the fitness effects of 
learning and prediction over the life span. The first hypoth-
esis is that prediction may optimize the allocation of lim-
ited resources across the life span. The second hypothesis 
is that prediction may have prolonged positive fitness ef-
fects by contributing to social learning. Lastly, according 
to a “by-product” hypothesis, a learning-to-prediction shift 
may be explained as a mere by-product of the mechanisms 
of human senescence. We briefly explore each hypothesis.

Adaptationist View: Optimal Cognitive Aging 
Under Resource Constraints

Evolutionary theory predicts that traits and activities are fa-
vored by selection insofar as they contribute to fitness. We 

define fitness as the combined direct and indirect effects of 
traits and activities on germline survival (reproductive suc-
cess), known as inclusive fitness (Gardner & West, 2014). 
As a general principle, to be a fitness-maximizing organism 
requires putting sufficient resources into three life-span ac-
tivities: growing (e.g., developing physiological and psycho-
logical functions), maintaining the soma (e.g., repair and 
immune functions), and reproduction (e.g., mating, gesta-
tion, and parenting). Life history theory (Del Giudice et al., 
2016; Hill, 1993; Nettle & Frankenhuis, 2020; Stearns, 
2000) describes optimal allocation of limited resources to 
the various fitness-relevant activities of organisms. A crit-
ical premise in the life history framework is that no or-
ganism can invest unboundedly in growth, maintenance, 
and reproductive efforts (Hill, 1993; Kirkwood & Rose, 
1991). To reproduce, organisms need first to grow and then 
maintain a functional soma, which requires resources such 
as time, effort, and energy. Ubiquitous external sources of 
mortality (e.g., cumulative likelihood of illness, accidents, 
predation over time) provide the key constraint to do so 
on a strategic time schedule (Williams, 1957). Biological 
systems thus need to allocate finite resources (e.g., time and 
energy) to traits in ways that maximize fitness over the life 
span (Kirkwood & Rose, 1991). Investing time and ener-
getic resources in one task (e.g., a protracted development 
of the brain) comes at the expense of other activities (e.g., 
age of first reproduction). Overall, life history theorists as-
sume that natural selection favors biological systems that 
strategically allocate their limited resources to development 
(i.e., growth), somatic maintenance, and reproductive ac-
tivities (Stearns, 1989, 2000).

These ideas are also foundational to the disposable 
soma theory of senescence (Kirkwood, 1977; Kirkwood 
& Rose, 1991). Senescence occurs in most sexually repro-
ducing life-forms. Disposable soma theory suggests that 
because organisms have a limited resource pool, perfect 
and indefinite somatic maintenance comes at too large 
an expense to reproductive activities (Kirkwood, 1977; 
Kirkwood & Austad, 2000; Kirkwood & Rose, 1991). Or 
conversely, reproductive functions consume resources that 
would be needed for indefinite somatic maintenance and 
repair. Senescence then, rather than an inevitable negative 
consequence of being, is viewed as a by-product of natural 
selection prioritizing reproduction over longevity of the 
soma (Kirkwood & Rose, 1991; Stearns, 2000; Williams, 
1957). In sum, life history theory and the disposable soma 
theory imply that—all else being equal—costly growth and 
maintenance activities will be kept at a pragmatic min-
imum by natural selection, depending on their contribution 
to overall fitness. Learning can be seen as one such costly 
“growth” activity (Del Giudice et al., 2016; Gopnik, 2020).

For organisms to “grow” by learning they need to be 
able to adjust their internal (e.g., neural and cognitive) 
structures in response to input from the environment—that 
is, learning requires phenotypic plasticity. Phenotypic plas-
ticity can be broadly defined as “the degree to which cues 
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received during development affect an organism’s pheno-
type” (Fawcett & Frankenhuis, 2015, p. 1; see also DeWitt 
et al., 1998; Van Buskirk & Steiner, 2009). Nearly all species 
demonstrate phenotypic plasticity, from metamorphosis in 
insects to changing color pigments in plants. Phenotypic 
plasticity enables organisms to match their phenotypes to 
the environment in ways that benefit fitness (DeWitt et al., 
1998). Models have shown that the degree of plasticity 
varies between-species as well as between-individuals, but 
also within the lifetime of a single individual (Fawcett & 
Frankenhuis, 2015; Frankenhuis & Walasek, 2020). To un-
derstand the changes in plasticity over the life span, it is first 
important to note that—all else being equal—high degrees 
of phenotypic plasticity are costly relative to a fixed pheno-
type (DeWitt et al., 1998; Fawcett & Frankenhuis, 2015; 
Snell-Rood, 2013). For instance, populations of Drosophila 
flies selectively bred for high learning ability showed re-
duced reproductive success compared to those bred for low 
learning ability (Mery & Kawecki, 2003). Further among 
these costs are the energy demands of cells that can sense 
cues in the environment and implement the appropriate 
responses, and the risks incurred by acquiring unreliable 
information about the environment (DeWitt et al., 1998; 
Walasek et al., 2021). These factors constrain selective pres-
sure on plasticity (Snell-Rood, 2013). However, the benefits 
of plasticity may often outweigh its costs. When environ-
mental conditions fluctuate, developing organisms might 
risk phenotype–environment mismatch. Natural selection 
might favor plasticity to minimize such mismatch. High 
levels of plasticity are often favored when organisms have 
access to reliable cues which convey information about cur-
rent and future conditions (Fawcett & Frankenhuis, 2015; 
Frankenhuis & Walasek, 2020; Walasek et  al., 2021). In 
addition, age is itself a factor that can be expected to mod-
erate degrees of plasticity (Fawcett & Frankenhuis, 2015; 
Walasek et al., 2021). For example, a recent model found 
that plasticity likely declines across the life span, when the 
reliability of cues decreases (Walasek et al., 2021). When 
the reliability of cues increases across some portion of de-
velopment, plasticity first increases early in development, 
before decreasing. In addition, the reliability of cues may 
decrease across the life span because individuals’ sensory 
systems deteriorate with age, as discussed previously. Under 
these conditions, individuals may process cues less accu-
rately, further constraining the degree of plasticity.

Overall, given a fixed cost and decreasing fitness benefits 
of plasticity, the degree of plasticity—and hence learning—
is expected to decrease as individuals age (Fawcett & 
Frankenhuis, 2015; Frankenhuis & Walasek, 2020). Early-
life learning is also costly but it supports reproductive fit-
ness throughout the life span (see, e.g., Gopnik, 2020). The 
motoric, linguistic, and social skills gained in childhood can 
yield fitness dividends throughout adulthood, including the 
ability to find reproductive partners, provide resources, 
and care for offspring. In late life, the brain’s capacity to 
predict, or utilize knowledge, may become an increasingly 

cost-effective alternative to learning. These increased bene-
fits of prediction in late life (given fixed costs, decreasing 
benefits with age, and high initial payoffs of plasticity) may 
explain why natural selection favors minimal investment 
in late-life learning, and why it may favor prediction as a 
cost-effective alternative.

Adaptationist View: Social Learning

Based on evolutionary theories of postreproductive lon-
gevity, another plausible hypothesis is that late-life predic-
tion has adaptive value in the context of social learning. 
This hypothesis rests on the idea that postreproductive in-
dividuals whose traits can no longer influence fitness di-
rectly (by contributing to their own reproductive ability) 
can nonetheless enhance the fitness of kin, and thereby gain 
an indirect fitness advantage (Gardner & West, 2014). As a 
social species, human postreproductive longevity may have 
adaptive value for allocating resources to close kin (hence 
increasing inclusive fitness), such as caring for the young 
(e.g., grandmothering; Hawkes et al., 1998; Kirkwood & 
Austad, 2000), or transferring information via teaching 
(Gurven et al., 2020). Recent work suggests that teaching 
behavior in social species may have evolved as a cost- 
effective strategy for optimal information transfer 
across generations (Gurven et  al., 2020). Late-life 
(postreproductive) teaching behavior may have maximal 
adaptive value for conveying complex skills that take years 
to master. Teaching by older adults maximizes fitness gains 
for the next generation (for instance, by reducing learning 
costs for the younger generation), and it minimizes the 
cumulative costs of teaching behavior within the social 
group by allocating costs away from reproducing or food-
producing individuals (Gurven et  al., 2020). Building on 
this model, we suggest that the fitness benefits of late-life 
information transfer may create a selective pressure on the 
ability of the aging brain to maintain and utilize knowledge 
supporting prediction, despite the potential costs of knowl-
edge maintenance. Thus, while selective pressure on traits 
is classically thought to decline with age (see discussion 
below), natural selection may still act upon late-life cogni-
tive abilities, assuming they convey indirect fitness benefits 
through kin.

Prediction as a By-Product of Senescence: 
Prediction Declines More Slowly Than Learning

The adaptationist hypotheses above assume that predic-
tion contributes to overall fitness and hence that the brain’s 
ability to predict in late life has been directly selected for 
by natural selection. In contrast, a “by-product” hypothesis 
assumes that a learning-to-prediction shift has no direct 
functional significance, but rather may be a by-product of 
the typical pattern of human senescence. It is possible that 
prediction is subject to the same declines with age as all 
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biological functions, but merely declines slower compared 
to learning. This expectation aligns with a foundational 
principle in evolutionary models of aging (Kirkwood, 
1977; Williams, 1957): the fitness benefits of any trait tend 
to decrease with age, as with each passing year the proba-
bility of reproduction decreases. In other words, the older 
the organism, the less specific activities and capabilities can 
contribute to its lifetime fitness. As a consequence, selection 
is mostly contingent on traits’ early-life contribution to fit-
ness. For instance, there is evidence that genes that enhance 
early-life functions can have deleterious effects in late life 
but are nevertheless maintained by natural selection—be-
cause of the higher weight of early-life benefits versus late-
life costs on overall fitness (Kirkwood & Rose, 1991). If 
prediction declines over the life span, then prediction may 
only appear to improve relative to learning, simply because 
it declines at a slower rate. This slower decline could be 
a by-product of the mechanisms of cognitive decline. For 
instance, accumulated knowledge may be structured in a 
way that is more robust to decline (e.g., Dubossarsky et al., 
2017), or certain overused knowledge, such as habits, may 
be retrieved efficiently despite decline.

Scope, Limitations, and Future Directions
We presented two potential adaptationist hypotheses and a 
by-product hypothesis which may explain the learning-to-
prediction shift, and the required prolonged maintenance 
of long-term memories and knowledge. Though any (or a 
combination) of the three hypotheses may explain such a 
shift, we note that in terms of theoretical parsimony, the 
by-product hypothesis may face some difficulty. In par-
ticular, though different paces of decline could explain 
why particular cognitive capacities are maintained for 
longer periods, the hypothesis may be question-begging. 
Specifically, it requires an additional explanation for why 
specific cognitive capacities decline at a slower rate com-
pared to others. The nonuniformity of cognitive decline 
is well-documented (Salthouse, 2019; Spreng & Turner, 
2019, 2021), as is the ability of older adults to recruit cog-
nitive and/or neural resources in a compensatory manner 
(Reuter-Lorenz & Park, 2014). By contrast, the adapta-
tionist hypotheses—which we take to be mutually inclu-
sive—both single out specific factors (optimal resource 
allocation and social learning) which could explain why 
certain cognitive capacities are maintained or improved 
in late life. Whereas the resource-optimality hypoth-
esis does particularly well in explaining late-life declines 
in learning, the social learning hypothesis adds a direct 
fitness benefit of maintaining a knowledge  base for the 
purpose of information transfer. The resource-optimality 
hypothesis also aligns with cognitive and computational 
propositions: updating previously learned information be-
comes more difficult with age (Pettigrew & Martin, 2014), 
and the reduced complexity of internal models of the 
world (abstracted, generalizable knowledge) is assumed 

to enable more efficient retrieval and hence efficient pre-
diction (Moran et al., 2014; Spreng & Turner, 2019). The 
specific fitness benefits of prediction proposed by these hy-
potheses (resource-optimality and social learning) require 
further research (see below).

This paper embarked on a theory development process 
(see Borsboom et al., 2021; Haig, 2005), taking arguments 
for the potential existence of a phenomenon (a learning–
prediction shift) as a point of departure. We also developed 
several explanatory hypotheses which could elucidate such 
a phenomenon, but it is important to note that we remain 
nearshore. Critically, rather than having directly general-
ized the learning-to-prediction shift from specific data sets, 
a broad literature base was used to substantiate that such a 
shift may characterize aging. Future research could provide 
more direct empirical evidence that a learning-to-prediction 
shift occurs—for instance, by more direct empirical exam-
inations of age-dependent changes in the cognitive and 
neural underpinnings of learning and prediction. As for the 
developed explanatory hypotheses, a limitation of the cur-
rent work is that the proposed hypotheses are merely ver-
bally expressed. Though being useful in the larger process 
of theory development (Borsboom et  al., 2021), verbally 
expressed theories benefit from formalization in (mathe-
matical) models. Formal models may provide an initial test 
of feasibility, help explore boundary conditions, and allow 
more specific predictions to be derived (Muthukrishna & 
Henrich, 2019; Nettle & Frankenhuis, 2020; Smaldino, 
2017; Walasek et al., 2021). For instance, a potential con-
tribution to models of plasticity is an added expectation 
of decreased environmental uncertainty over the life span 
based on increasingly better predictive models (knowledge) 
of the environment. Finally, broader theories of senescence 
could integrate a focus on explanations for specific cogni-
tive improvements in late life, along with decline.

Building on modeling work, empirical work can then 
test specific predictions of the adaptationist hypotheses. 
For instance, the resource-optimal hypothesis assumes that 
prediction becomes less costly than learning over the life 
span (in terms of either time, effort, or energetic resources). 
Further work can test, for instance, whether decreased 
model complexity translates into metabolic efficiency by 
reducing the number of distinct neural spiking patterns 
necessary to encode information (Laughlin, 2001). It will 
also be important to evaluate, via modeling, whether re-
duced costs of prediction over the life span also translate 
into fitness gains. To test the social learning hypothesis, it is 
particularly important to establish whether prediction can 
convey indirect fitness benefits, such as through improved 
teaching or caregiving. Given that the by-product hypoth-
esis is the least parsimonious explanation, and that it is not 
as straightforward to test, it might be seen as a hypoth-
esis of exclusion, if adaptationist hypotheses prove to be 
insufficient. Finally, as many of the discussed evolutionary 
theories and principles (e.g., disposable soma theory, plas-
ticity models) do not uniquely apply to human cognition, 
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but to  any species capable of learning, our proposals 
might extend to other species as well (see, e.g., Fawcett & 
Frankenhuis, 2015; Walasek et al., 2021).

Conclusion
In sum, the cognitive, computational, and neurological 
profile of aging may suggest a shift from learning to pre-
diction. Our interpretation of the reviewed literature is 
that the aging brain increasingly utilizes (a) acquired 
knowledge, (b) prediction when faced with reduced sen-
sory reliability, and (c) default-executive network cou-
pling. A learning-to-prediction shift may resolve trade-offs 
in resource allocation over the life span, minimizing costly 
learning while exploiting previously acquired knowl-
edge, and/or prediction may enhance indirect fitness, by 
optimizing information transfer to the next generation. 
Alternatively, a learning-to-prediction shift may reflect a 
slower decline in prediction, resulting from a lack of se-
lective pressure on late-life cognitive traits and a robust-
ness to decline. Aligning neurocognitive and evolutionary 
theories of aging offers a comprehensive understanding 
of both losses and gains. We hope our theoretical sug-
gestions may spark novel inquiries into cognitive aging, 
not only from a “deficit-perspective,” but also from a 
“shift-perspective.”
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