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INTRODUCTION

During the last decades, the broad community of computational biophysicist/biochemists has
developed computational tools to quickly test molecular hypotheses, support, complement, and
even substitute experimental data in a reliable and reproducible fashion. As a by-product of these
advances, enormous amounts of data are being generated (1). Unfortunately, good practices about
data archiving, documenting, and sharing are not in pace with the formidable capacity to produce
information. This often results in suboptimal utilization of efforts and resources, leaving authentic
“data treasures” undiscovered. This redounds in a useless replication of work, which often times
is only needed as input for further investigation rather than representing an objective themselves
(1). It, therefore, becomes increasingly important to make computational biophysics data publicly
available, searchable, and downloadable, adhering to the “FAIR” principles (2).

Among many others, the European community has advanced a large and coordinated initiative,
the European Open Science Cloud (EOSC), which is aimed at sharing and re-using scientific
content increasing transparency and accountability. OpenAIRE is a socio-technical infrastructure
for scholarly communication and Open Science (3). It offers data store ensuring long-term
preservation of relatively “big size” datasets. Among others, the Zenodo database (4) provides a
simple and fast upload system, with the possibility to immediately obtain a DOI identifier for each
data set, including the option to update data sets separately.

Early in 2020, the COVID-19 pandemic pervaded virtually all personal and scientific activities
with extensive lockdown regimes in most countries across the world. In response to this
extraordinary context, the entire scientific community devoted massive efforts to study SARS-CoV-
2 at basic and applied levels. The Biocomputing community was not an exception and showed
a strong commitment endorsed by hundreds of groups around the globe (5). Many researchers
reoriented their priorities, offering a swift response to the emergency, providing fresh structural
and dynamical perspectives on viral variability, drug targets, effect of mutations, etc. (5). As a result,
only a few months after the beginning of the pandemic, it was possible to find many data-sharing
initiatives scattered in different portals and repositories.

In this context, our group undertook the initiative of simulating and sharing the raw data of
coarse-grained (CG) simulations of the SARS-CoV-2 proteins reported in the PDB, in the apo
state. Figure 1 shows the representative structures reported in the PDB database until October 30,
2020. We named this “The SIRAH-CoV-2 Initiative,” which was carried out in collaboration with
the Uruguayan National Center for Supercomputing, ClusterUY (https://www.cluster.uy) (8). The
raw data for individual CG Molecular Dynamics (MD) simulations is available from the Zenodo
database (9–28).
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FIGURE 1 | Schematic representation of the SARS-CoV-2 genome and associated proteins. All the proteins simulated are presented as cartoon and colored

according to their secondary structure following the standard VMD color code (6). Glycans are presented as sticks and colored according to the SNFG color scheme

(7). The D614G mutation was introduced in the soluble domain of the wild type Spike protein (green asterisk).

METHODS

Simulations were performed using the SIRAH force field 2.0
(29) running with the Amber18 suite (http://ambermd.org) at
ClusterUY. Interaction parameters for bound divalent cations
and glycans were reported by Klein et al. (30) and Garay et al.
(31), respectively.

Coordinates were downloaded from the PDB database (PDBs
id: 6VYO, 6W01, 6LU7, 6W02, 6W4B, 6M3M, 6W9C, 6W4H,
6W41, 6YHU, 6W37, 6WIQ, 7BTF, 6M17, 6VSB, 6M1V, 6XDC,
6ZSL, 6XEY, 6XR8). Non-protein, non-glycan molecules and
ions not coordinated by proteins were removed (e.g., water
and molecules present in crystallization buffers). When deemed
necessary, missing residues were reconstructed with ModLoop
(32). The D614G mutation in the SARS-CoV-2 Spike protein
was introduced on the wild type structure (PDB id: 6XR8)
by simply deleting the side chain of Asp614 and renaming
the residue. Only in this particular case, missing loops were
completed using SWISS-MODEL at https://swissmodel.expasy.
org. All structures were protonated using PDB2PQR (33) at a

pH = 7. The orientation of the protein in PDB id 6XDC was
set according to theOPMdatabase (https://opm.phar.umich.edu/
proteins/5172), with a pre-equilibrated patch containing POPC,
POPE, and POPS phospholipids in a 1:2:1 relation according
to the experimental data (34). Interaction parameters for lipids
were taken from Barrera et al. (35). The glycosylation trees were
added/completed (in PDB ids 6VSB and 6XEY) using the Glycan
Modeler & Reader utility from CHARMM-GUI (36).

All parameters are available for download from the SIRAH
force field web page (http://www.sirahff.com).

Protonated structures were mapped to CG with SIRAH Tools
(37). Solutes were centered in an octahedral box filled with pre-
equilibrated SIRAH’s CG water molecules named WT4 (38). An
ionic strength of 0.15M was set by randomly replacing WT4
molecules with Na+ and Cl− CG ions (39).

Since SIRAH uses a Hamiltonian common to any atomistic
MD simulation, the 6–12 terms used to treat Lennard-Jones
interactions might lead to large repulsions if initial structures
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suffer from clashes. Because of this, gentle initialization protocols
aimed to resolve steric clashes are strongly recommended.

The simulation protocol consisted of:

1) Solvent and side chains relaxation by 5,000 steps of energy
minimization, imposing positional restraints of 2.4 kcal
mol−1 Å−2 on backbone beads corresponding to the nitrogen
and carbonylic oxygen (named GN and GO, respectively).
When Zinc or glycans are present, these restrains also apply
to the beads corresponding to the metal ions and sugar rings
(named ZnX, GO2, GNac, GO3, GO4, GC6, GC1, and GO7).

2) Full system relaxation by 5,000 steps of unrestrained
energy minimization.

3) Solvent equilibration by 5 ns of MD in the NVT ensemble at
300K, imposing positional restraints of 2.4 kcal mol−1 Å−2 on
the whole protein and glycans and Zinc ions, when present.

4) Biomolecule relaxation by 25 ns of MD in the NVT ensemble
at 300K, imposing positional restraints of 0.24 kcal mol−1

Å−2 on the mentioned beads.
5) Same as step 4 with the position restrains of 0.12 kcal

mol−1 Å−2.
6) Production simulation in the NPT ensemble at 300K and

1 bar.

We used a time step of 20 fs and a direct cutoff of 1.2 nm for
non-bonded interactions and Particle Mesh Ewald (PME) for
long-range electrostatics (40, 41). Snapshots were recorded every
200 ps. PME was calculated at every integration step owing to
code restrictions, and the neighbor list was updated whenever
any atom had moved more than one-half a non-bonded “skin”
of 0.2 nm. A Fourier spacing close to 0.1 nm was used. The whole
systemwas coupled to a Langevin thermostat (42) with a collision
frequency of 50 ps−1 and to a Berendsen barostat (43) with a
relaxation time of 1 ps.

The multimicroseconds CG MD trajectories of SARS-CoV-2
proteins include the information required to visualize, analyze,
and backmap on VMD (6). Each entry is constituted by
three subsets of data associated with the same CG MD
simulation. The first set (referred as raw data) contains the
system’s topology, starting configuration, simulation report,
last checkpoint, and trajectory in AMBER format and allows
continuing the simulation. The second subset contains a
“stripped” version of the MD, not including solvent, while
the third contains a “skipped” trajectory with one frame
every 10 ns.

Since CG beads in SIRAH are mapped from atoms’ position,
it is possible to get direct measures from the trajectories using
VMD tools. These include RootMean Square Deviation (RMSD),
radius of gyration, etc. Moreover, a tcl script corresponding
to SIRAH Tools is present in each tar file of the dataset that
performs additional analyses and secondary structure content
from the VMD’s Tcl/Tk console (6). Typing sirah_help displays
all available options. It enables macros for visualizing and
coloring residue types, the element corresponding to each CG
bead, among others. This tool is totally compatible with all
the functions on VMD and used the same color schemes.
Provided that Amber Tools (44) is locally installed, it is possible

to obtain pseudoatomistic structural models at every point of
the trajectory.

UTILIZATION OF THE DATA

We started this initiative to provide our colleagues with a
complete and homogeneous set of CG MD simulations that
could facilitate the analysis of large-scale dynamics of SARS-
CoV-2 proteins.

Aimed to provide the readers with a brief example of the
performance of SIRAH in comparison with fully atomistic
simulations, we compared the 15 µs long simulation of SARS-
CoV-2Main protease, present in our database, with an 10µs long
all-atoms simulation of the same protein reported by the Taiji’s
group and deposited in the Mendeley database (45). Reciprocal
(or 2D) RMSD comparison showed that both trajectories visit
different conformations with a checkered pattern indicative of
conformational fluctuations in both trajectories (Figure 2A).
The RMSD using the experimental structure as a reference
showed a higher deviation for the CG trajectories of both chains
(Figure 2B, bottom), while the gyration radii showed that the
CG protein sampled also higher values (Figure 2B, middle).
Despite these differences the secondary structure elements were
well-maintained during the CG trajectory (Figure 2B, top). The
traces for CG and all-atom simulations were similar, although
with a loss of nearly 5% in the content of extended beta
conformations in the CG case. A superposition against the
experimental structure on both trajectories showed roughly
comparable features (Figures 2C,D).

A possible use for the dataset is described in the following
example. On June 14th, Liu et al. deposited the Cryo-EM
structure of the SARS-CoV-2 Spike glycoprotein bound to
a human antibody (47). This structure showed that Spike’s
Receptor Binding Domain (RBD) was glycosylated at Asn331,
343, and 481. Surprisingly, Asn481 neither showed the canonical
glycosylation motif nor was previously reported as glycosylated
(48). The vicinity of this site to the Angiotensin Converting
Enzyme 2 (ACE2) binding zone poses the question of whether
glycosylation at Asn481 could modulate the RBD-ACE2 binding
(Figures 2E,F). To address this question we took the trajectory
of the triple glycosylated RBD from the database (27). First, we
used the backmapping capabilities of SIRAH to backmap the
trajectory. Second we superimposed the backmapped structures
from this CG simulation on the X-ray structure of the RBD-
ACE2 complex [PDB id 6VW1 (49)]. This generated an ensemble
of possible conformations of glycosylated RBD putatively bound
to ACE2, which provided rough insights about possible steric
clashes. Despite being close to the ACE2 interface, glycosylation
at Asn481 would not be expected to create steric clashes
with the human receptor (Figure 2G). Similarly, glycan-glycan
interactions at the RBD-ACE2 interface between Asn481 and
Asn90, its closest glycosylation site on ACE2 (asterisk in
Figures 2E,H) seemed unlikely despite their large flexibility
because both moieties remained at opposite sides of the protein-
protein interface. Clearly, a thorough analysis would include
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FIGURE 2 | (A) Bi-dimensional RMSD of the Cα between the atomic trajectory and the backmapped conformations from the CG trajectory. (B) Top: Percentage of

secondary structure content. Middle: Gyration Radii of the whole proteins from the atomic (blue), and backmapped trajectory in red. Bottom: RMSD of the Cα

between the trajectories and the experimental structure, separated by chains. (C) Superposition between the experimental structure (yellow) and the last conformation

of the atomic trajectory (blue). Chains A are presented as cartoon and chains B as presented as surface. (D) Same as (C) with the backmapped structure of the last

frame of the SIRAH trajectory in red. (E) X-ray structure PDB 6VW1 in cartoon representation, ACE2 is semitransparent, glycosylations are show as sticks colored

according to element. The Zinc ion present in the binding site is shown as a space-filling sphere. The asterisk marks the glycosylation at Asn90 on ACE2. The

N-glycosylation solved by X-ray on each position are indicated schematically. (F) Starting conformer of the RBD glycosylated at Asn331, 343, and 481 colored

according to the SNFG color scheme (46). (G) Superposition of backmapped structures from the glycosylated RBD and that in the structure 6VW1. Proteins are

colored according to panels (E) and (F). RBD Glycosylations sites are shown in magenta, blue, and green for Asn331, Asn343, and Asn481, respectively. Only one

conformed every 1 µs is shown. (H) Close up on the RBD-ACE2 interaction showing the positions of Asn481 (green), and the closest glycans in ACE2.

simulation of complex and all possible glycosylation motifs.
Although perfectly possible, this goes beyond the scope of this
Data Report.

Nevertheless, besides being useful to foresee large
conformational changes and the gross determinants of possible
interactions, this kind of information could be useful to decide
the expression systems of choice in relation to the length or
nature of the glycoforms attainable by prokaryote, insects, or
mammalian cells.

Finally, we would like to point out that this is a
live initiative and new simulation data will be added.
Moreover, we remain open to produce additional simulations
upon request.
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