# **Research Article**



# Percutaneous endoscopic transforaminal discectomy precedes interlaminar discectomy in the efficacy and safety for lumbar disc herniation

# Peng Chen<sup>1</sup>, Yihe Hu<sup>1</sup> and <sup>(i)</sup> Zhanzhan Li<sup>2</sup>

<sup>1</sup>Department of Orthopedic, Xiangya Hospital, Central South University, Changsha, Hunan Province, China; <sup>2</sup>Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China

Correspondence: Zhanzhan Li (liche4006@126.com) or Yihe Hu (yihehumed@126.com)



We searched several databases from the times of their inception to 20 December 2018. Randomized controlled trials and cohort studies that compared percutaneous endoscopic transforaminal discectomy (PETD) with percutaneous endoscopic interlaminar discectomy (PEID) were identified. We used a random-effects model to calculate the relative risks (RRs) of, and standardized mean differences (SMDs) between the two techniques, with 95% confidence intervals (CIs). Twenty-six studies with 3294 patients were included in the final analysis. Compared with PEID, PETD reduced the short-term (SMD -0.68; 95% CI -1.01, -0.34; P=0.000) and long-term (SMD -0.47; 95% CI -0.82, -0.12; P=0.000) visual analog scale scores, blood loss (SMD -4.75; 95% CI -5.80, -3.71; P=0.000), duration of hospital stay (SMD -1.86; 95% CI -2.36, -1.37; P=0.000), and length of incision (SMD -3.93; 95% CI -5.23, -2.62; P=0.000). However, PEID was associated with a lower recurrence rate (P=0.035) and a shorter operative time (P=0.014). PETD and PEID afforded comparable excellent- and good-quality data, long- and short-term Oswestry disability index (ODI) scores, and complication rates. PETD treated lumbar disc herniation (LDH) more effectively than PEID. Although PETD required a longer operative time, PETD was as safe as PEID, and was associated with less blood loss, a shorter hospital stay, and a shorter incision. PETD is the best option for patients with LDH.

# Introduction

Lumbar disc herniation (LDH) is common today, even in young individuals, and more often in males than females [1]. Most herniation sites are located at L5/S1 and L4/5. LDH is caused by degenerative changes in the intervertebral discs; external forces cause rupture of the annulus fibrosus, nuclear herniation, or compression of the cauda equina nerve roots, triggering tissue inflammation, edema, and poor microcirculation, followed by low back pain, lower extremity sciatic radiating pain, and other disorders [2], in turn compromising the quality of life [3]. Therapeutic strategies include conservative and surgical treatments. Most patients benefit greatly from conservative treatments, such as intravenous and oral medication administration, traction therapy, and manipulative rehabilitation, but some require surgery [4]. The surgical options include open discectomy (PELD) [5]. In recent years, with the rapid development of surgical techniques, minimally invasive spine surgery has become imperative. Compared with open discectomy, minimally invasive surgery is associated with a shorter operative time, less blood loss, less muscle injury, and faster functional recovery [6–8]. PELD includes percutaneous endoscopic transforaminal discectomy (PETD) and percutaneous endoscopic interlaminar discectomy (PEID). Some previous studies confirmed the therapeutic efficacy of PETD, but others did not [9,10]. PETD is rather difficult in patients

Received: 15 October 2018 Revised: 15 January 2019 Accepted: 25 January 2019

Accepted Manuscript Online: 31 January 2019 Version of Record published: 15 February 2019



with high cristae iliacae and narrow foramina, especially at L5/S1. However, the L5/S1 interlaminar space is usually adequate [11]. Ruetten et al. [12] were the first to perform intervertebral disc discectomy and decompression by creating an intervertebral foramen in the vertebral canal between the upper and lower vertebral discs. Several studies have compared the efficacies of PETD and PEID in patients with LDH; the results were inconsistent. Hence, we comprehensively analyzed this topic.

# Materials and methods Search strategy

Two investigators (P.C. and Z.L.) independently searched the following databases from their inception to 20 July 2018: PubMed, Web of Science, Embase, China National Knowledge Infrastructure, and WanFang. The following search terms were used: 'lumbar disc herniation' OR 'LDH', 'percutaneous endoscopic lumbar discectomy' OR 'percutaneous endoscopic transforaminal discectomy' OR 'PLED' OR 'PELD', and 'microendoscopic discectomy' OR 'percutaneous endoscopic interlaminar discectomy'. We restricted the languages to Chinese and English. We checked the reference lists of selected full-text and review articles to identify other potentially relevant works.

### Inclusion and exclusion criteria

The inclusion criteria were: (i) examination of a population of patients with LDH, (ii) randomized controlled trial or retrospective study comparing the efficacies of PETD and PEID in terms of LDH treatment, and (iii) comparison of PETD and PEID interventions. The primary outcome requirements were: (i) at least one short-term or long-term visual analog scale (VAS) or Oswestry disability index (ODI) score, and (ii) excellent or good data quality. The secondary outcomes were the (iii) complication rate, (iv) recurrence rate, (v) operative duration, (vi) amount of blood loss, (vii) length of incision, and (viii) length of hospital stay. Reviews, comments, duplicate and case reports, letters, and animal and experimental studies were excluded.

## Data extraction and quality assessment

We used a standard Excel sheet for data extraction. Two investigators (P.C. and Z.L.) independently extracted the following data: first author, publication year, mean patient age, study design (retrospective compared with prospective), sample size, follow-up duration, and outcome measures. We sought to contact the authors when information was missing. Differences in opinion were resolved by discussion with the third investigator (Y.H.).

All prospective and retrospective studies were evaluated using the Newcastle–Ottawa scale (which compares patient selection, comparisons, and outcomes; maximal score 9). Studies with scores  $\geq$ 7 were considered to be of high quality [13]. We used the Cochrane risk-of-bias tool to assess study quality [14]; the tool explores random sequencing, allocation concealment, blinding of participants and personnel, outcome assessments, outcome data completeness, selective reporting, and other biases. We scored each study as being at a low, high, or unclear risk of bias. Studies in which at least one key domain was considered to be at high risk of bias were regarded as high risk; other studies were considered to be of low or unclear risk.


# **Statistical analysis**

We used fixed- and random-effects models to evaluate pooled data [15]. We calculated relative risks (RRs) with 95% confidence intervals (CIs) for dichotomous data and standardized mean differences (SMDs) with 95% CIs for continuous data. Within-study heterogeneity was assessed by calculating the  $I^2$  statistic and Cochran's Q; when  $I^2$ -values >50% and *P*-values <0.05 indicated significant heterogeneity, we employed the random-effects model [16]; we used the fixed-effects model otherwise. To evaluate heterogeneity further, we performed subgroup analyses of primary outcomes (VAS and ODI scores). Publication bias was assessed by visual inspection of a funnel plot and application of the Egger's/Begg's test [17,18]. All statistical analyses were performed with the aid of Stata ver. 14.0 (StataCorp LP) and RevMan ver. 5.3 (Nordic Cochrane Center) software; *P*-values <0.05 were considered to reflect significance.

# **Results** Study selection and characteristics

Figure 1 shows the study selection flow. Our initial search returned 679 records; we found no additional text when exploring other possible sources. After removal of duplicates and scanning of titles and abstracts, we selected 71 full-text articles for further assessment. We excluded 45 of these articles. Finally, 26 studies were included in our qualitative and quantitative analyses (Supplementary Material S1). The general characteristics of the studies are listed



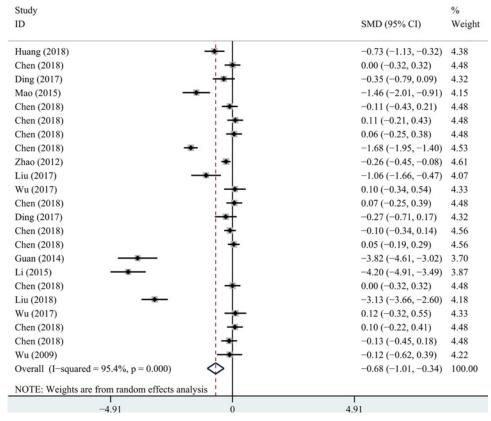


in Table 1; all studies were published between 2009 and 2018. The mean ages of patients treated with PETD ranged from 33.1 to 69.2 years, and those of patients treated with PEID ranged from 36.8 to 68.9 years. Nine studies were retrospective and seventeen were prospective. The duration of follow-up ranged from 3 to 26 months. The types of disease included central, paracentral, and far-lateral disease, and disease of the intervertebral foramen.

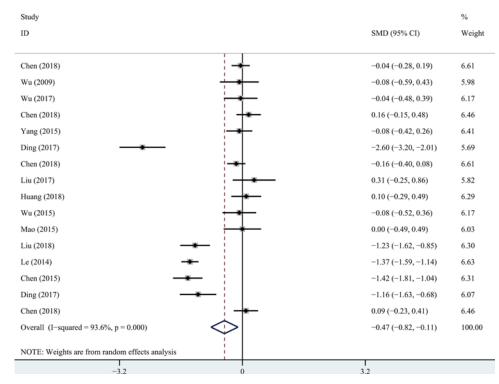
### **Quality assessment**

We included 8 randomized controlled trials and 18 follow-up studies. Supplementary Material S2 lists the risks of bias and includes the bias graphs. Two studies were considered to exhibit high risks of bias because neither the study participants nor personnel were blinded. On the Newcastle–Ottawa scale, the mean score of observational studies was >7, indicating high quality.

### **Pooled results**


The summarized results are presented in Table 2.

### Short- and long-term VAS scores


Twelve articles provided short-term and eleven provided long-term VAS scores. Significant heterogeneity was apparent ( $I^2 > 50\%$ , P=0.000). The random-effects model was used to analyze both datasets. Meta-analysis showed that the short-term (SMD -0.68; 95% CI -1.01, -0.34; P=0.000; Figure 2 and long-term (SMD -0.47; 95% CI -0.82, -0.12; P=0.000; Figure 3) scores associated with PETD were significantly lower than those associated with PEID.













4



### Table 1 Characteristics of included studies in the meta-analysis

| Author    | Publication<br>year | Age<br>(PEID/PETD) | Study design _ | Sample size |      | Follow-up time<br>(months) | Туре                                    |
|-----------|---------------------|--------------------|----------------|-------------|------|----------------------------|-----------------------------------------|
|           |                     |                    |                | PEID        | PETD | (                          | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
| Fang      | 2012                | 43.5/45.8          | Retrospective  | 40          | 40   | 6                          | (1)(2)(3)                               |
| Le        | 2014                | 37.2/38.4          | Prospective    | 190         | 185  | 12                         | (1)(2)(3)                               |
| Guan      | 2014                | -                  | Prospective    | 35          | 35   | 3                          | -                                       |
| Wu        | 2009                | 4.5/45.8           | Prospective    | 30          | 30   | 6                          | (1)(2)(3)                               |
| Wu        | 2015                | 38.5/41.3          | Prospective    | 50          | 36   | 6                          | (1)(2)(3)                               |
| Zhang     | 2015                | 43.2/41.5          | Prospective    | 30          | 30   | 26                         | (3)(4)                                  |
| Zhang     | 2015                | 37.5/35.8          | Retrospective  | 21          | 21   | 12                         | (1)(2)(4)                               |
| Fu        | 2014                | -                  | Prospective    | 8           | 62   | 12                         | (1)(2)(3)(4)                            |
| Zeng      | 2015                | -                  | Prospective    | 25          | 25   | 24                         | -                                       |
| Li        | 2013                | 38.3/43.3          | Prospective    | 212         | 208  | -                          | -                                       |
| Li        | 2015                | 51.5/51.6          | Retrospective  | 50          | 50   | -                          | -                                       |
| Yang      | 2015                | 48.4/48.0          | Prospective    | 82          | 57   | 3                          | -                                       |
| Tang      | 2015                | -                  | Prospective    | 38          | 38   | 24                         | -                                       |
| Zhao      | 2012                | 39.4/43.2          | Retrospective  | 245         | 261  | -                          | -                                       |
| Chen      | 2015                | -                  | Prospective    | 25          | 13   | 13.5                       | (3)(4)                                  |
| Mao       | 2015                | 37.5/37.8          | Retrospective  | 35          | 30   | 12                         | -                                       |
| Yoon      | 2012                | 45.9/56.5          | Retrospective  | 37          | 35   | 6                          | -                                       |
| Sinkemani | 2015                | 44.2/41.5          | Retrospective  | 50          | 36   | 14                         | -                                       |
| Liu       | 2012                | -                  | Prospective    | 25          | 13   | 13.5                       | (3)(4)                                  |
| Chen      | 2018                | 64.1/64.2          | Prospective    | 137         | 136  | 12                         | (1)(2)(4)                               |
| Chen      | 2018                | 40.7/40.2          | Prospective    | 73          | 80   | 12                         | (1)(2)(3)(4)                            |
| Huang     | 2018                | 32.1/32.3          | Retrospective  | 52          | 50   | 6                          | (1)(2)(3)(4)                            |
| Ding      | 2017                | 54.2/54.4          | Prospective    | 40          | 40   | 3                          | (1)(2)(3)(4)                            |
| Liu       | 2017                | 69.2/68.9          | Prospective    | 25          | 25   | 3                          | (1)(2)(3)(4)                            |
| Liu       | 2018                | 33.1/36.2          | Prospective    | 63          | 60   | 24                         | (1)(2)(3)(4)                            |
| Wu        | 2017                | 38.7/40.8          | Retrospective  | 40          | 40   | 12                         | (1)(2)(3)                               |

(1) Central type, (2) Para central, (3) Intervertebral foramen, and (4) Far-lateral.

# Table 2 Comparison of pooled parameters between percutaneous endoscopic lumbar, transforaminal discectomy and interlaminar discectomy

| Parameters                | Number of study | <b>P</b> <sub>heterogeneity</sub> | RR/SMD | 95% CI       | Р     | Egger | Begg  |
|---------------------------|-----------------|-----------------------------------|--------|--------------|-------|-------|-------|
| Short-term VAS            | 12              | 0.000                             | -0.68  | -1.01, -0.34 | 0.000 | 0.012 | 0.002 |
| Long-term VAS             | 11              | 0.000                             | -0.47  | -0.82, -0.12 | 0.000 | 0.900 | 0.224 |
| Short-term ODI            | 5               | 0.000                             | -0.06  | -0.33, 0.22  | 0.691 | 0.306 | 0.951 |
| Long-term ODI             | 7               | 0.000                             | -0.15  | -0.36, 0.06  | 0.123 | 0.238 | 0.537 |
| Excellent and good rate   | 13              | 0.015                             | 1.02   | 0.97, 1.07   | 0.509 | 0.232 | 0.272 |
| Complication rate         | 15              | 0.438                             | 0.78   | 0.54, 1.13   | 0.185 | 0.149 | 0.400 |
| Recurrence rate           | 11              | 0.128                             | 1.90   | 1.04, 3.47   | 0.035 | 0.017 | 0.008 |
| Duration of<br>operation  | 18              | 0.000                             | 0.70   | 0.14, 1.26   | 0.014 | 0.226 | 0.058 |
| Blood loss                | 15              | 0.000                             | -4.75  | -5.80, -3.71 | 0.000 | 0.273 | 0.235 |
| Length of incision        | 8               | 0.000                             | -3.93  | -5.23, -2.62 | 0.000 | 0.067 | 0.063 |
| Duration of hospital stay | 15              | 0.000                             | -1.86  | -2.36, -1.37 | 0.000 | 0.081 | 0.038 |

### Short-term and long-term ODI scores

Five articles provided short-term ODI scores and seven provided long-term scores. We used a random-effects model for analysis because significant heterogeneity was in play. Neither the short- nor long-term ODI score differed significantly between PETD and PEID (SMD -0.06; 95% CI -0.03, 0.22; P=0.691; Figure 4A; and SMD -0.15; 95% CI



| Study<br>ID                                    | SMD (95% CI)               | %<br>Weigh |
|------------------------------------------------|----------------------------|------------|
| Short-term A                                   |                            |            |
| Chen (2018)                                    | 0.07 (-0.17, 0.30)         | 4.42       |
| Chen (2018)                                    | 0.05 (-0.19, 0.28)         | 4.42       |
| Chen (2018)                                    | -0.10(-0.34, 0.14)         | 4.42       |
| Chen (2018)                                    | 0.12 (-0.20, 0.44)         | 4.23       |
| Wu (2017)                                      | 1.44 (0.95, 1.94)          | 3.73       |
| Huang (2018)                                   | -0.04(-0.43, 0.34)         | 4.04       |
| Wu (2017)                                      | 0.00 (-0.44, 0.44)         | 3.90       |
| Chen (2018)                                    | -0.04(-0.36, 0.27)         | 4.23       |
| Chen (2018)                                    | -0.07(-0.39, 0.25)         | 4.23       |
| Wu (2017)                                      | -0.03(-0.46, 0.41)         | 3.90       |
| Liu (2017) —                                   | -3.83(-4.78, -2.89)        | 2.42       |
| Chen (2018)                                    | 0.18 (-0.14, 0.50)         | 4.23       |
| Wu (2017)                                      | -0.02(-0.46, 0.42)         | 3.90       |
| Subtotal (I-squared = $87.8\%$ , p = $0.000$ ) | -0.06(-0.33, 0.22)         | 52.05      |
| Long-term <b>B</b>                             |                            |            |
| Huang (2018)                                   | 0.04 (-0.35, 0.43)         | 4.04       |
| Wu (2017)                                      | 0.19 (-0.25, 0.63)         | 3.89       |
| Wu (2015)                                      | -0.12 (-0.56, 0.32)        | 3.89       |
| Chen (2018)                                    | -0.18 (-0.41, 0.06)        | 4.42       |
| Sinkemani (2015)                               | -0.14(-0.57, 0.29)         | 3.92       |
| Zhang (2015)                                   | -0.14 ( $-0.75$ , $0.46$ ) | 3.38       |
| Liu (2017)                                     | -0.55 (-1.12, 0.01)        | 3.51       |
| Liu (2018)                                     | -0.56 (-0.92, -0.20)       | 4.12       |
| Wu (2009)                                      | -0.09(-0.60, 0.42)         | 3.69       |
| Le (2014) 🛨                                    | -1.30 (-1.52, -1.08)       | 4.45       |
| Chen (2018)                                    | 0.10 (-0.21, 0.42)         | 4.23       |
| Chen (2018)                                    | -0.07 (-0.30, 0.17)        | 4.42       |
| Subtotal (I-squared = $89.0\%$ , p = $0.000$ ) | -0.24 (-0.55, 0.07)        | 47.95      |
| Overall (I-squared = $89.5\%$ , p = $0.000$ )  | -0.15 (-0.36, 0.06)        | 100.0      |
| NOTE: Weights are from random effects analysis |                            |            |
| -4.78 0                                        | 4.78                       |            |

**Figure 4. Forest plot for short-term and long-term ODI between PETD and PEID** Comparison of short-term (**A**) and long-term (**B**) ODI between PETD and PEID.

−0.36, 0.06; *I* = 0.123; Figure 4B, respectively).

### **Excellent and good data**

The data from 13 studies were rated as excellent or good; the degree of heterogeneity was moderate ( $I^2 = 51.8\%$ , P=0.015). The random-effects model indicated that the excellent and good rates in the two groups were nearly identical (RR = 1.02; 95% CI 0.97, 1.07; P=0.509; Figure 5A).

### **Complication and recurrence rates**

Complication rates were reported in 15 articles; the degree of heterogeneity was very low ( $I^2 = 1.1\%$ , P=0.438). A fixed-effects model revealed no significant between-group difference (RR = 0.78; 95% CI 0.54, 1.13; P=0.185; Figure 5B). Recurrence rates were reported in 11 articles; no heterogeneity was evident ( $I^2 = 0.0\%$ , P=0.128) and the data were analyzed using a fixed-effects model. The pooled results suggested that the recurrence rate after PETD was higher than that after PEID (RR = 1.90; 95% CI 1.04, 3.47; P=0.035; Figure 5C).

### **Duration of operation and blood loss**

Random-effects models were used to analyze the duration of operation and blood loss because significant heterogeneity was evident ( $I^2 > 50.0\%$ , P < 0.05). Eighteen articles provided data on the operative duration and fifteen provided data on blood loss. Compared with PEID, PETD required a longer operative time (SMD 0.70; 95% CI 0.14, 1.26; P=0.014; Figure 6A), but was associated with less blood loss (SMD -4.75; 95% CI -5.80, -3.71; P=0.000; Figure 6B).



| Study<br>ID                                                                                | RR (95% CI)           | %<br>Weight |
|--------------------------------------------------------------------------------------------|-----------------------|-------------|
| Excelent and good rate                                                                     |                       |             |
| Mao (2015)                                                                                 | 0.97 (0.84, 1.12)     | 6.75        |
| Sinkemani (2015)                                                                           | 1.27 (1.08, 1.50)     | 5.72        |
| Le (2014)                                                                                  | 1.19 (1.05, 1.36)     | 7.85        |
| Cheng (2009)                                                                               | 0.96 (0.83, 1.12)     | 6.42        |
| Zhang (2015)                                                                               | 0.93 (0.83, 1.05)     | 9.00        |
| Analy (2015)     +       Yang (2015)     +       Fang (2015)     +       Zhao (2012)     + | 1.05 (0.87, 1.26)     | 4.93        |
| Yang (2015) ♦                                                                              | 1.00 (0.90, 1.11)     | 9.78        |
| fang (2015) 🔶                                                                              | 1.03 (0.89, 1.19)     | 6.95        |
| Chao (2012)                                                                                | 0.98 (0.95, 1.02)     | 16.17       |
| Ding (2017)                                                                                | 0.94 (0.77, 1.15)     | 4.33        |
| Wu (2017) 🔶                                                                                | 0.97 (0.83, 1.14)     | 6.24        |
| Liu (2017)                                                                                 | 1.05 (0.84, 1.31)     | 3.69        |
| Huang (2018)                                                                               | 1.00 (0.93, 1.08)     | 12.17       |
| Subtotal (I-squared = 51.8%, p = 0.015)                                                    | 1.02 (0.97, 1.07)     | 100.00      |
| Complication rate B                                                                        |                       |             |
| Liu (2012)                                                                                 | 0.26 (0.05, 1.24)     | 5.49        |
| Yoon (2012)                                                                                | 0.47 (0.04, 4.99)     | 2.42        |
| Vu (2015)                                                                                  | 0.38 (0.11, 1.31)     | 8.47        |
| Chang (2015)                                                                               | 7.00 (0.38, 129.93)   | 1.58        |
| thang (2015)                                                                               | 0.50 (0.05, 5.10)     | 2.49        |
| u (2014)                                                                                   | 3.88 (0.39, 38.06)    | 2.57        |
| i (2015)                                                                                   | 0.57 (0.18, 1.83)     | 9.78        |
| (2015)                                                                                     | 1.04 (0.18, 6.04)     | 4.34        |
| Chen (2015)                                                                                | 0.26 (0.01, 6.16)     | 1.33        |
| iu (2018)                                                                                  | 0.88 (0.28, 2.72)     | 10.32       |
| Chen (2018)                                                                                | 0.84 (0.39, 1.78)     | 22.79       |
| Chen (2018)                                                                                | 0.12 (0.02, 0.98)     | 3.15        |
| Ding (2017)                                                                                | 1.17 (0.43, 3.17)     | 13.22       |
| iu (2017)                                                                                  | 1.25 (0.38, 4.12)     | 9.34        |
| Iuang (2018)                                                                               | 2.88 (0.31, 26.82)    | 2.70        |
| ubtotal (I-squared = $1.1\%$ , p = $0.438$ )                                               | 0.78 (0.54, 1.13)     | 100.00      |
| ecurrence and residue rate <b>C</b>                                                        |                       |             |
| fao (2015)                                                                                 | 1.29 (0.23, 7.19)     | 12.14       |
| /oon (2012)                                                                                | 1.42 (0.25, 7.99)     | 12.04       |
| hang (2015)                                                                                | 1.00 (0.07, 14.95)    | 4.91        |
| u (2014)                                                                                   | 2.33 (0.10, 53.03)    | 3.69        |
| ang (2012)                                                                                 | 7.00 (0.37, 131.28)   | 4.19        |
| (2015)                                                                                     | 6.29 (0.35, 114.58)   | 4.27        |
| hao (2012)                                                                                 | 1.18 (0.27, 5.19)     | 16.29       |
| iu (2018)                                                                                  | 1.61 (0.28, 9.27)     | 11.73       |
| hen (2018)                                                                                 | 1.52 (0.38, 6.14)     | 18.46       |
| then (2018)                                                                                | → 6.95 (0.36, 133.27) | 4.12        |
| Vu (2017)                                                                                  | 5.57 (0.68, 45.41)    | 8.17        |
| Subtotal (I-squared = 0.0%, p = 0.928)                                                     | 1.90 (1.04, 3.47)     | 100.00      |
| overall (I-squared = 22.7%, p = 0.107)                                                     | 1.02 (0.97, 1.06)     |             |
| OTE: Weights are from random effects analysis                                              |                       |             |
| .0075 1                                                                                    | 133                   |             |

### Figure 5. Forest plot for clinical outcomes

Comparisons of clinical outcomes between PETD and PEID: (A) excellent and good rate; (B) complication rate; (C) recurrence and residue rate.

### Length of incision and duration of hospital stay

The length of incision and duration of hospital stay were also evaluated. Eight articles provided data on the length of incision and fifteen provided data on the duration of hospital stay. Both indicators evidenced significant heterogeneity ( $I^2 > 50.0\%$ , P < 0.0.5). Random-effects models indicated that PETD required a shorter incision (SMD -3.93; 95% CI -5.23, -2.62; P=0.000; Figure 6C) and a shorter hospital stay (SMD -1.86; 95% CI -2.36, -1.37; P=0.000; Figure 6D).

### Sensitivity analysis and publication bias

We subjected the operative durations reported in most (n=18) articles to sensitivity analysis; we omitted one study at a time. The pooled results ranged from 0.10 to 0.63 (Supplementary Material S3). All results were significant. The Egger's/Begg's test indicated that publication bias was not in play (P>0.05), except in terms of the short-term VAS score and the recurrence rate (Table 2). The funnel plot was slightly asymmetrical (Supplementary Material S4).



| data (2015)       A         data (2015)       A         Wa (2009)       Va (2009)         Va (2013)       -0.32 (-0.37, -0.08)         Jamag (2013)       -0.43 (-0.65, -0.26)         Jamag (2013)       -0.43 (-0.65, -0.26)         Jamag (2013)       -0.43 (-0.65, -0.26)         Jamag (2013)       -0.41 (-0.43, 0.33)         Jamag (2013)       -0.41 (-0.44, 0.34)         Jamag (2013)       -0.41 (-0.44, 0.34)         Jamag (2015)       -0.41 (-0.44, 0.34)         Jamag (2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ID                                             | SMD (95% CI)         | Weij |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------|------|
| $\begin{array}{c} \mbox{and } (2015) \\ \mbox{and } (2017) \\ \mbox{and } (2016) \\ \mbox{and } (2016) \\ \mbox{and } (2017) \\ \mbox{and } (2016) \\ \mbox{and } (2016) \\ \mbox{and } (2016) \\ \mbox{and } (2015) \\ \mbox{and } (2017) \\ \mbox{and } (2017) \\ \mbox{and } (2015) \\ \mbox{and } (2015) \\ \mbox{and } (2015) \\ \mbox{and } (2017) \\ \mbox{and } (2015) \\ \m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Duration of operation                          |                      |      |
| $\begin{split} & v_{0}(2009) & 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.50 + 0.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mao (2015)                                     |                      |      |
| Na (2015)       -0.52 (-0.97, -0.08)       5.6.5         Jamg (2015)       -1.20 (-1.88, -0.56)       5.4.4         Jamg (2015)       -2.70 (-2.09, 3.13)       5.4.4         Jamg (2015)       -0.21 (-0.17, 0.81)       5.5.4         Jamg (2015)       -0.21 (-0.17, 0.81)       5.5.4         Jamg (2015)       -0.21 (-0.14, 0.16, 0.5.23)       5.6.4         Jamg (2015)       -1.40 (-1.84, 1.56)       5.6.4         Jamg (2015)       -1.40 (-1.84, 1.56)       5.6.4         Jamg (2017)       -1.41 (-1.84, 1.50)       5.6.4         Jam (2017)       -2.11 (-1.94, -0.83)       5.6.6         Jam (2017)       -2.11 (-1.94, -0.83)       5.6.6         Jam (2016)       -2.11 (-1.94, -0.83)       5.6.6         Jam (2017)       -2.11 (-1.94, -0.83)       5.6.6         Jam (2016)       -2.11 (-1.94, -0.83)       5.6.6         Jam (2017)       -2.11 (-1.94, -0.83)       5.6.6         Jam (2016)       -2.11 (-1.94, -0.83)       5.6.6         Jam (2017)       -2.81 (-1.94, -0.31)       5.6.6         Jam (2016)       -2.31 (-1.32, -1.91)       6.8.7         Jam (2015)       -2.31 (-1.77, -7.01)       6.8.7         Jam (2017)       -2.31 (-1.77, -7.01)       6.8.7<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                |                      |      |
| hang (2015)<br>thang (2015)<br>than (2015)<br>than (2015)<br>than (2015)<br>than (2017)<br>than (2017)<br>than (2015)<br>than (2015)<br>thang (2015)<br>than (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Wu (2009)                                      | 0.50 (-0.02, 1.01)   | 5.56 |
| hang (2015)<br>thang (2015)<br>than (2015)<br>than (2015)<br>than (2015)<br>than (2017)<br>than (2017)<br>than (2015)<br>than (2015)<br>thang (2015)<br>than (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Wu (2015)                                      | -0.52 (-0.97, -0.08) | 5.63 |
| hang (2015)<br>-1.22(-1.88, -0.56) 5.44,<br>1.20(0, 0, 3.3) 5.42<br>1.20(1, 0, 0, 3.3) 5.43<br>1.20(1, 0, 0, 3.3) 5.43<br>1.20(1, 0, 0, 3.3) 5.43<br>1.20(1, 0, 0, 3.3) 5.63<br>1.20(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                      |      |
| $\begin{array}{c} \log(2012) \\ (202) (-22, 0.85) \\ (2013) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2017) \\ (2018) \\ (2017) \\ (2018) \\ (2017) \\ (2018) \\ (2017) \\ (2018) \\ (2017) \\ (2018) \\ (2017) \\ (2018) \\ (2017) \\ (2018) \\ (2017) \\ (2018) \\ (2017) \\ (2018) \\ (2017) \\ (2018) \\ (2017) \\ (2018) \\ (2017) \\ (2018) \\ (2017) \\ (2018) \\ (2017) \\ (2018) \\ (2017) \\ (2018) \\ (2017) \\ (2018) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                |                      |      |
| $ \begin{array}{c} \mbox{carg}(2015) & \mbox{carg}(2017) & \mbox{carg}(2017) & \mbox{carg}(2017) & \mbox{carg}(2017) & \mbox{carg}(2017) & \mbox{carg}(2015) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                |                      |      |
| $ \begin{array}{c} 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1(0) \\ 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                |                      |      |
| $ \begin{array}{c} (2015) & -1.02 (-144, -0.61) & 5.62 \\ (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Zeng (2015)                                    | 0.29 (-0.27, 0.85)   | 5.52 |
| $ \begin{array}{c} (2015) & -1.02 (-144, -0.61) & 5.62 \\ (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (107) (1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Li (2013)                                      | -0.45 (-0.65, -0.26) | 5.79 |
| $ \begin{array}{c} \mbox{rang coins} & 1.19 (2015) & 1.19 (2015) & 5.66 \\ \mbox{rang coins} & 2.44 (1.84, 1.50) & 5.44 \\ \mbox{rang coins} & 2.44 (1.84, 1.50) & 5.45 \\ \mbox{rang coins} & 0.24 (1.84, 1.50) & 5.46 \\ \mbox{rang coins} & 0.24 (1.84, 1.50) & 5.46 \\ \mbox{rang coins} & 0.24 (1.84, 1.50) & 5.46 \\ \mbox{rang coins} & 0.24 (1.84, 1.50) & 5.46 \\ \mbox{rang coins} & 0.24 (1.84, 1.50) & 5.46 \\ \mbox{rang coins} & 0.24 (1.84, 1.50) & 5.46 \\ \mbox{rang coins} & 0.21 (1-0.54, 0.33) & 5.66 \\ \mbox{rang coins} & 0.21 (1-0.54, 0.33) & 5.66 \\ \mbox{rang coins} & 0.21 (1-0.54, 0.33) & 5.66 \\ \mbox{rang coins} & 0.21 (1-0.54, 0.33) & 5.66 \\ \mbox{rang coins} & 0.21 (1-0.54, 0.33) & 5.66 \\ \mbox{rang coins} & 0.21 (1-0.54, 0.33) & 5.66 \\ \mbox{rang coins} & 0.21 (1-0.54, 0.33) & 5.66 \\ \mbox{rang coins} & 0.21 (1-0.54, 0.33) & 5.66 \\ \mbox{rang coins} & 0.21 (1-0.54, 0.33) & 5.66 \\ \mbox{rang coins} & 0.21 (1-0.54, 0.33) & 5.66 \\ \mbox{rang coins} & 0.21 (1-0.54, 0.33) & 0.20 \\ \mbox{rang coins} & 0.21 (1-0.54, 0.33) & 0.20 \\ \mbox{rang coins} & 0.21 (1-0.54, 0.33) & 0.20 \\ \mbox{rang coins} & 0.21 (1-0.54, 0.32) & 0.20 \\ \mbox{rang coins} & 0.21 (1-0.54, 0.32) & 0.20 \\ \mbox{rang coins} & 0.21 (1-0.54, 0.33) & 0.20 \\ \mbox{rang coins} & 0.21 (1-0.54, 0.33) & 0.20 \\ \mbox{rang coins} & 0.21 (1-0.54, 0.32) & 0.20 \\ \mbox{rang coins} & 0.21 (1-0.54, 0.32) & 0.20 \\ \mbox{rang coins} & 0.21 (1-0.54, 0.32) & 0.20 \\ \mbox{rang coins} & 0.21 (1-0.54, 0.32) & 0.20 \\ \mbox{rang coins} & 0.21 (1-0.54, 0.32) & 0.20 \\ \mbox{rang coins} & 0.21 (1-0.54, 0.32) & 0.20 \\ \mbox{rang coins} & 0.21 (1-0.54, 0.32) & 0.20 \\ \mbox{rang coins} & 0.21 (1-0.54, 0.32) & 0.20 \\ \mbox{rang coins} & 0.21 (1-0.54, 0.32) & 0.20 \\ \mbox{rang coins} & 0.21 (1-0.54, 0.32) & 0.20 \\ \mbox{rang coins} & 0.21 (1-0.54, 0.32) & 0.20 \\ \mbox{rang coins} & 0.21 (1-0.54, 0.32) & 0.20 \\ \mbox{rang coins} & 0.21 (1-0.54, 0.32) & 0.20 \\ \mbox{rang coins} & 0.21 (1-0.54, 0.32) & 0.20 \\ \mbox{rang coins} & 0.21 (1-0.54, 0.32) & 0.20 \\ \mbox{rang coins} & 0.21 (1-0.54, 0.32)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                |                      | 5.65 |
| $ \begin{array}{c} \math control (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                |                      |      |
| $ \begin{array}{c} bac (2012) & 0.42 (0.24, 0.61) & 5.84 \\ i.12 (015) & -1.21 (-16, 0-83) & 5.66 \\ -0.11 (-0.54, 0.33) & 5.66 \\ -0.11 (-0.54, 0.33) & 5.66 \\ -0.11 (-0.54, 0.33) & 5.66 \\ -0.11 (-0.54, 0.33) & 5.66 \\ -0.11 (-0.54, 0.33) & 5.66 \\ -0.11 (-0.54, 0.33) & 5.66 \\ -0.11 (-0.54, 0.33) & 5.66 \\ -0.11 (-0.54, 0.33) & 5.66 \\ -0.11 (-0.54, 0.33) & 5.66 \\ -0.11 (-0.54, 0.33) & 5.66 \\ -0.11 (-0.54, 0.33) & 5.66 \\ -0.11 (-0.54, 0.33) & 5.66 \\ -0.11 (-0.54, 0.33) & 5.66 \\ -0.11 (-0.54, 0.33) & 5.66 \\ -0.11 (-0.54, 0.33) & 5.66 \\ -0.11 (-0.54, 0.33) & 5.66 \\ -0.11 (-0.54, 0.33) & 5.66 \\ -0.11 (-0.54, 0.33) & 5.66 \\ -0.11 (-0.54, 0.33) & 5.66 \\ -0.11 (-0.54, 0.33) & 5.66 \\ -0.11 (-0.54, 0.35) & -0.000 \\ -0.11 (-0.54, 0.35) & -0.000 \\ -0.11 (-0.54, 0.35) & -0.000 \\ -0.11 (-0.54, 0.35) & -0.000 \\ -0.11 (-0.54, 0.35) & -0.000 \\ -0.11 (-0.54, 0.35) & -0.000 \\ -0.11 (-0.54, 0.35) & -0.000 \\ -0.11 (-0.54, 0.35) & -0.000 \\ -0.11 (-0.54, 0.35) & -0.000 \\ -0.11 (-0.54, 0.35) & -0.000 \\ -0.11 (-0.54, 0.35) & -0.000 \\ -0.11 (-0.54, 0.35) & -0.000 \\ -0.11 (-0.54, 0.35) & -0.000 \\ -0.11 (-0.54, 0.35) & -0.000 \\ -0.11 (-0.54, 0.35) & -0.000 \\ -0.11 (-0.54, 0.35) & -0.000 \\ -0.11 (-0.54, 0.35) & -0.000 \\ -0.11 (-0.54, 0.35) & -0.000 \\ -0.11 (-0.54, 0.35) & -0.000 \\ -0.11 (-0.54, 0.35) & -0.000 \\ -0.11 (-0.54, 0.35) & -0.000 \\ -0.11 (-0.54, 0.35) & -0.000 \\ -0.11 (-0.54, 0.35) & -0.000 \\ -0.11 (-0.54, 0.35) & -0.000 \\ -0.11 (-0.54, 0.35) & -0.000 \\ -0.11 (-0.54, 0.35) & -0.000 \\ -0.11 (-0.54, 0.35) & -0.000 \\ -0.11 (-0.54, 0.35) & -0.000 \\ -0.11 (-0.54, 0.35) & -0.000 \\ -0.11 (-0.54, 0.35) & -0.000 \\ -0.11 (-0.54, 0.35) & -0.000 \\ -0.11 (-0.54, 0.35) & -0.000 \\ -0.11 (-0.54, 0.35) & -0.000 \\ -0.11 (-0.54, 0.35) & -0.000 \\ -0.11 (-0.54, 0.35) & -0.000 \\ -0.11 (-0.54, 0.35) & -0.000 \\ -0.11 (-0.54, 0.35) & -0.000 \\ -0.11 (-0.54, 0.35) & -0.000 \\ -0.11 (-0.54, 0.35) & -0.000 \\ -0.11 (-0.54, 0.35) & -0.000 \\ -0.11 (-0.54, 0.35) & -0.000 \\ -0.11 (-0.54, 0.35) & -0.000 \\ -0.11 (-0.54, 0.35) & -0.000 \\ -0.11 (-0.54, 0.35) & -0.000 \\ -0.11 (-0.54, $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                |                      |      |
| $\begin{array}{c} \mathrm{int}(2018) & -1.21(-1.60, -0.83) & 5.65 \\ \mathrm{chen}(2017) & -0.11(-0.54, 0.33) & 5.65 \\ \mathrm{chen}(2018) & \mathrm{int}(2017) & -1.71(-2.22, -1.20) & 5.55 \\ \mathrm{chen}(2018) & \mathrm{int}(2017) & -1.71(-2.22, -1.20) & 5.55 \\ \mathrm{chen}(2018) & -1.71(-2.22, -1.20) & 5.55 \\ \mathrm{chen}(2019) & -1.71(-2.22, -1.20) & 5.55 \\ \mathrm{chen}(2019) & -1.71(-2.22, -1.20) & 5.55 \\ \mathrm{chen}(2015) & -1.71(-2.23, -1.51) & 6.83 \\ \mathrm{chen}(2015) & -3.71(-3.83, -2.51) & 6.83 \\ \mathrm{chen}(2015) & -3.71(-3.83, -2.51) & 6.83 \\ \mathrm{chen}(2015) & -3.71(-7.63, -6.65) & 6.99 \\ \mathrm{chen}(2015) & -3.26(-3.87, -2.66) & 6.89 \\ \mathrm{chen}(2018) & -2.24(-14.64, -10.47) & 5.55 \\ \mathrm{chen}(2018) & -2.24(-2.88, -1.95) & 6.99 \\ \mathrm{chen}(2015) & -3.36(-4.97, -3.77) & 1.00 \\ \mathrm{chen}(2015) & -3.36(-4.97, -3.77) & 1.00 \\ \mathrm{chen}(2015) & -3.36(-4.97, -3.78) & 6.99 \\ \mathrm{chen}(2015) & -3.36(-4.97, -3.79) & 6.79 \\ \mathrm{chen}(2015) & -3.36(-4.97, -3.79) & 6.79 \\ \mathrm{chen}(2015) & -3.36(-4.90, -3.79) & 6.79 \\ \mathrm{chen}(2015) & -3.36(-4.90, -3.79) & 6.79 \\ \mathrm{chen}(2015) & -3.36(-4.90, $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                      |      |
| $ \begin{array}{c} -1.1 (-54, 0.33) \\ -1.0 (217) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                | 0.42 (0.24, 0.61)    |      |
| $ \begin{array}{c} -1.1 (-54, 0.33) \\ -1.0 (217) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0 (1 (-54, 0.33) \\ -1.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Liu (2018)                                     | -1.21 (-1.60, -0.83) | 5.68 |
| Then (2018) is (2017) is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                |                      |      |
| $\begin{array}{c} \mathrm{int}(2017)^{-} \\ \mathrm{Va}(2017)^{-} \\ \mathrm{va}(2017)^{-} \\ \mathrm{va}(2017)^{-} \\ \mathrm{va}(2017)^{-} \\ \mathrm{va}(2015)^{-} \\ \mathrm{va}(2017)^{-} \\ va$ |                                                |                      |      |
| $ \begin{array}{c} w_{1}(2017) &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |                      |      |
| biotoid (I-squared = 97.3%, p = 0.000)<br>biod loss $\mathbf{B}$<br>bion (2014)<br>Va (2009)<br>Va (2015)<br>Carg (2015)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                |                      |      |
| Bind loss <b>B</b><br>Jam (2014)<br>Via (2009)<br>Via (2015)<br>Long (2017)<br>Long (2015)<br>Long (2017)<br>Long (2015)<br>Long (2017)<br>Long (2017)<br>Long (2017)<br>Long (2017)<br>Long (2015)<br>Long (2017)<br>Long (2017)<br>Long (2018)<br>Via (2017)<br>Long (2018)<br>Via (2017)<br>Long (2015)<br>Long (2015)<br>Long (2017)<br>Long (2017)<br>Long (2018)<br>Via (2017)<br>Long (2018)<br>Long (2015)<br>Long (20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                | -1.71 (-2.22, -1.20) | 5.56 |
| $\begin{array}{c} \mathrm{lam}\left(2014\right) & -2.75 (-3.41, -2.09) & 6.83 \\ \mathrm{W}\left(2015\right) & -4.41 (-5.36, -3.46) & 6.63 \\ \mathrm{W}\left(2015\right) & -0.38 (-0.89, 0.13) & 6.99 \\ \mathrm{eng}\left(2015\right) & -0.38 (-0.89, 0.13) & -0.38 (-0.89, 0.13) & -0.38 (-0.89, 0.13) & -0.38 (-0.89, 0.13) & -0.38 (-0.89, 0.13) & -0.38 (-0.89, 0.13) & -0.38 (-0.89, 0.13) & -0.38 (-0.89, 0.13) & -0.38 (-0.89, 0.13) & -0.38 (-0.89, 0.13) & -0.38 (-0.89, 0.13) & -0.38 (-0.89, 0.13) & -0.38 (-0.89, 0.13) & -0.38 (-0.89, 0.13) & -0.38 (-0.89, 0.13) & -0.38 (-0.89, 0.13) & -0.38 (-0.89, 0.13) & -0.38 (-0.89, 0.13) & -0.38 (-0.89, 0.13) & -0.38 (-0.89, 0.13) & -0.38 (-0.89, 0.13) & -0.38 (-0.89, 0.13) & -0.38 (-0.89, 0.13) & -0.38 (-0.89, 0.13) & -0.38 (-0.89, 0.13) & -0.38 (-0.89, 0.13) & -0.38 (-0.89, 0.13) & -0.38 (-0.89, 0.13) & -0.38 (-0.89, 0.13) & -0.38 (-0.89, 0.13) & -0.38 (-0.89, 0.13) & -0.38 (-0.89, 0.13) & -0.38 (-0.89, 0.13) & -0.38 (-0.89, 0.13) & -0.38 (-0.89, 0.13) & -0.38 (-0.89, 0.13) & -0.38 (-0.89, 0.13) & -0.38 (-0.89, 0.13) & -0.38 (-0.89, 0.13) & -0.38 (-0.89, 0.13) & -0.38 (-0.89, 0.13) & -0.38 (-0.89, 0.13) & -0.38 (-0.89, 0.13) & -0.38 (-0.89, 0.13) & -0.38 (-0.89, 0.13) & -0.38 (-0.89, 0.13) & -0.38 (-0.89, 0.13) & -0.38 (-0.89, 0.13) & -0.38 (-0.89, 0.23) & -0.38 (-0.89, 0.13) & -0.38 (-0.89, 0.23) & -0.38 (-0.89, 0.13) & -0.38 (-0.89, 0.23) & -0.38 (-0.89, 0.13) & -0.38 (-0.89, 0.23) & -0.38 (-0.89, 0.23) & -0.38 (-0.89, 0.23) & -0.38 (-0.89, 0.13) & -0.38 (-0.89, 0.23) & -0.38 (-0.89, 0.23) & -0.38 (-0.89, 0.23) & -0.38 (-0.49, 0.23) & -0.38 (-0.49, 0.23) & -0.38 (-0.49, 0.23) & -0.38 (-0.49, 0.23) & -0.38 (-0.49, 0.23) & -0.38 (-0.49, 0.23) & -0.38 (-0.49, 0.23) & -0.38 (-0.49, 0.23) & -0.38 (-0.49, 0.23) & -0.38 (-0.49, 0.23) & -0.38 (-0.49, 0.23) & -0.38 (-0.49, 0.23) & -0.38 (-0.49, 0.23) & -0.38 (-0.49, 0.23) & -0.38 (-0.49, 0.23) & -0.38 (-0.49, 0.23) & -0.38 (-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Subtotal (I-squared = 97.3%, p = 0.000)        | 0.70 (0.14, 1.26)    | 100. |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Blood loss B                                   |                      |      |
| $ \begin{array}{c} \text{Va}(2009) & -4.41 (-5.36, -3.46) & 6.67 \\ -3.17 (-7.48, -2.51) & 6.83 \\ \text{Thang}(2015) & -3.26 (-3.87, -2.66) & 6.99 \\ -4.34 (-4.36, -3.13) & 6.57 \\ \text{i}(2013) & -7.17 (-7.69, -6.65) & 6.99 \\ -3.26 (-3.87, -2.66) & 6.83 \\ \text{Tang}(2015) & -4.29 (-5.01, -3.77) & 6.83 \\ \text{Tang}(2015) & -4.29 (-5.01, -3.77) & 6.83 \\ \text{Tang}(2015) & -4.29 (-5.01, -3.77) & 6.83 \\ \text{Tang}(2017) & -4.24 (-2.88, -1.255) & 6.69 \\ -4.24 (-2.88, -1.255) & 6.69 \\ -4.24 (-2.88, -1.255) & 6.69 \\ \text{Tang}(2017) & -4.27 (-5.29, -3.25) & 6.55 \\ \text{Tang}(2017) & -4.27 (-5.29, -3.25) & 6.55 \\ \text{Tang}(2015) & -4.29 (-5.29, -5.90) & 6.43 \\ \text{Tang}(2015) & -4.77 (-5.29, -3.27) & 100 \\ \text{cength of hospital stay } D \\ \text{Tang}(2015) & -2.50 (-6.49, -4.51) & 12.2 \\ \text{Tang}(2015) & -2.50 (-6.49, -4.51) & 2.2 \\ \text{Tang}(2015) & -1.23 (-1.77, -0.70) & 6.75 \\ \text{Tang}(2015) & -1.23 (-1.77, -1.70) & 6.75 \\ \text{Tang}(2015) & -1.23 (-1.77, -1.70) & 6.75 \\ \text{Tang}(2015) & -1.23 (-1.77, -1.70) & 6.75 \\ \text{Tang}(2015) & -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                |                      | 6.83 |
| $\label{eq:2015} & -3.17 (=3.83, =2.51) & 6.83 \\ -3.08 (=0.80, 0.13) & (=9.0, 0.01) \\ -4.34 (=5.37, =-3.31) & (=5.31) \\ -4.34 (=5.37, =-3.31) & (=5.31) \\ -4.34 (=5.37, =-3.31) & (=5.31) \\ -4.34 (=5.37, =-3.31) & (=5.31) \\ -4.34 (=5.37, =-3.31) & (=5.31) \\ -4.34 (=5.37, =-3.31) & (=5.31) \\ -4.34 (=5.37, =-3.31) & (=5.31) \\ -4.34 (=5.37, =-3.31) & (=5.31) \\ -4.34 (=5.37, =-3.31) & (=5.31) \\ -4.34 (=5.37, =-3.31) & (=5.31) \\ -4.34 (=5.37, =-3.31) & (=5.31) \\ -4.34 (=5.37, =-3.31) & (=5.31) \\ -4.34 (=5.31, =-4.57) & (=5.31) \\ -4.34 (=5.31, =-4.57) & (=5.31) \\ -4.34 (=5.31, =-4.57) & (=5.31) \\ -4.34 (=5.31, =-4.57) & (=5.31) \\ -4.34 (=5.31, =-4.57) & (=5.31) \\ -4.34 (=5.31, =-4.57) & (=5.31) \\ -4.34 (=5.31, =-4.57) & (=5.31) \\ -4.34 (=5.31, =-4.57) & (=5.31) \\ -4.34 (=5.31, =-4.57) & (=5.31) \\ -4.34 (=5.31, =-4.57) & (=5.31) \\ -4.34 (=5.31, =-4.57) & (=5.31) \\ -4.34 (=5.31, =-4.57) & (=5.31) \\ -4.34 (=5.31, =-4.57) & (=5.31) \\ -4.34 (=5.31, =-4.57) & (=5.31) \\ -4.34 (=5.31, =-4.57) & (=5.31) \\ -4.34 (=5.31, =-4.57) & (=5.31) \\ -4.34 (=5.31, =-4.57) & (=5.31) \\ -4.34 (=5.31, =-4.57) & (=5.31) \\ -4.34 (=5.31, =-4.57) & (=5.31) \\ -4.34 (=5.31, =-4.57) & (=5.31) \\ -4.34 (=5.31, =-4.57) & (=5.31) \\ -4.34 (=5.31, =-4.57) & (=5.31) \\ -4.34 (=5.31, =-4.57) & (=5.31) \\ -4.34 (=5.31, =-4.57) & (=5.31) \\ -4.34 (=5.31, =-4.57) & (=5.31) \\ -4.34 (=5.31, =-4.57) & (=5.31) \\ -4.34 (=5.31, =-4.57) & (=5.31) \\ -4.34 (=5.31, =-4.57) & (=5.31) \\ -4.34 (=5.31, =-4.57) & (=5.31) \\ -4.34 (=5.31, =-4.57) & (=5.31) \\ -4.34 (=5.31, =-4.57) & (=5.31) \\ -4.34 (=4.41) & (=7.51) \\ -4.34 (=4.41) & (=7.51) \\ -4.34 (=4.41) & (=7.51) \\ -4.34 (=4.41) & (=7.51) \\ -4.34 (=4.41) & (=7.51) \\ -4.35 (=4.60, -3.10) & (=2.33) \\ -4.35 (=4.60, -3.10) & (=2.33) \\ -4.35 (=4.60, -3.10) & (=2.33) \\ -4.36 (=4.9, -4.51) & (=2.31) \\ -4.36 (=4.9, -4.51) & (=2.31) \\ -4.36 (=4.9, -4.51) & (=2.31) \\ -4.36 (=4.9, -4.51) & (=2.31) \\ -4.36 (=4.9, -4.51) & (=2.31) \\ -4.36 (=4.9, -4.51) & (=2.31) \\ -4.36 (=4.9, -4.51) & (=2.31) \\ -4.36 (=4.9, -4.51) & (=2.31) \\ -4.36 (=4.9,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Wu (2009)                                      |                      | 6.63 |
| $\begin{array}{c} \text{hang (2015)} & -0.38 (-0.489, 0.13) & 6.95 \\ \text{seq (2015)} & -4.34 (-5.37, -3.31) & 6.55 \\ \text{i} (2013) & -7.17 (-7.69, -6.65) & 6.99 \\ \text{i} (2015) & -7.17 (-7.69, -6.65) & 6.99 \\ \text{i} (2015) & -7.17 (-7.69, -6.65) & 6.99 \\ \text{i} (2015) & -7.17 (-7.69, -6.65) & 6.99 \\ \text{i} (2015) & -7.19 (-9.09, -6.49) & 6.33 \\ \text{i} (2017) & -7.79 (-9.09, -6.49) & 6.33 \\ \text{i} (2017) & -7.79 (-9.09, -6.49) & 6.33 \\ \text{i} (2017) & -7.79 (-9.09, -6.49) & 6.33 \\ \text{i} (2017) & -7.29 (-9.09, -6.49) & 6.33 \\ \text{i} (2015) & -7.09 (-8.29, -5.90) & 6.43 \\ \text{i} (2015) & -7.09 (-8.29, -5.90) & 6.43 \\ \text{i} (2015) & -7.09 (-8.29, -5.90) & 6.44 \\ \text{i} (2015) & -7.09 (-8.29, -5.90) & 6.44 \\ \text{i} (2015) & -7.09 (-8.29, -5.80, -3.71) & 100 \\ -4.71 (-5.70, -7.37) & 12.2 \\ \text{i} (2015) & -5.50 (-6.49, -4.51) & 12.2 \\ \text{i} (2015) & -5.50 (-6.49, -4.51) & 12.2 \\ \text{i} (2015) & -5.50 (-6.49, -4.51) & 12.2 \\ \text{i} (2015) & -7.39 (-2.60) & 13.3 \\ \text{i} (2017) & -7.99 (-9.00) & -7.89 (-3.2, -2.63) & 13.3 \\ \text{i} (2015) & -9.28 (-3.2, -2.63) & 13.3 \\ \text{i} (2015) & -9.28 (-3.2, -2.63) & 13.3 \\ \text{i} (2015) & -9.33 (-5.23, -2.62) & 100 \\ \text{i} (2015) & -7.33 (-5.23, -2.62) & 100 \\ \text{i} (2015) & -7.33 (-3.49, -2.26) & 6.59 \\ \text{i} (2015) & -7.33 (-3.49, -2.26) & 6.64 \\ \text{i} (2015) & -7.33 (-3.49, -2.26) & 6.54 \\ \text{i} (2015) & -7.33 (-3.49, -2.26) & 6.54 \\ \text{i} (2015) & -7.33 (-3.49, -2.26) & 6.54 \\ \text{i} (2015) & -7.33 (-3.49, -2.26) & 6.54 \\ \text{i} (2015) & -7.33 (-3.49, -2.26) & 6.54 \\ \text{i} (2015) & -7.33 (-3.49, -2.26) & 6.54 \\ \text{i} (2015) & -7.33 (-3.49, -2.26) & 6.54 \\ \text{i} (2015) & -7.33 (-3.49, -2.26) & 6.54 \\ \text{i} (2015) & -7.33 (-3.49, -2.26) & 6.54 \\ \text{i} (2015) & -7.33 (-3.49, -2.26) & 6.54 \\ \text{i} (2015) & -7.33 (-3.49, -2.26) & 6.54 \\ \text{i} (2015) & -7.33 (-3.49, -2.26) & 6.54 \\ \text{i} (2015) & -7.33 (-3.49, -2.26) & 6.54 \\ \text{i} (2015) & -7.33 (-3.49, -2.26) & 6.54 \\ \text{i} (2015) & -7.33 (-3.49, -2.26) & 6.54 \\ \text{i} (2015) & -7.33 (-3.49, -2.26) & 6.54 \\ \text{i} (2015) & -7.33 (-3.49, -2.26) & 6.54 \\ \text{i} (2015) & -7.36 (-4.40, -2.32) & 6.04 \\ \text{i} (2015) & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                      |      |
| $\begin{array}{c} \mbox{cm} (2015) & -4.34 (-5.37, -3.1) & 6.55 \\ (2015) & -7.17 (-7.60, -6.65) & 6.99 \\ -3.26 (-3.87, -2.66) & 6.89 \\ -3.26 (-3.87, -2.66) & 6.89 \\ -3.26 (-3.87, -2.66) & 6.89 \\ -3.26 (-3.87, -2.66) & 6.99 \\ -3.26 (-3.87, -2.66) & 6.99 \\ -4.39 (-5.31, -4.57) & 6.99 \\ -4.39 (-5.31, -4.57) & 6.99 \\ -4.94 (-5.31, -4.57) & 6.99 \\ -4.94 (-5.31, -4.57) & 6.99 \\ -4.94 (-5.31, -4.57) & 6.99 \\ -4.94 (-5.31, -4.57) & 6.99 \\ -4.94 (-5.31, -4.57) & 6.99 \\ -4.94 (-5.31, -4.57) & 6.99 \\ -4.94 (-5.31, -3.86) & 6.99 \\ -4.75 (-5.80, -3.71) & 100 \\ -4.75 (-5.80, -3.71) & 100 \\ -4.75 (-5.80, -3.71) & 100 \\ -4.75 (-5.80, -3.71) & 100 \\ -4.75 (-5.80, -3.71) & 100 \\ -4.75 (-5.80, -3.71) & 100 \\ -4.75 (-5.80, -4.51) & 12.2 \\ -5.90 (-6.44, -4.51) & 12.2 \\ -5.90 (-6.44, -4.51) & 12.2 \\ -5.90 (-6.44, -4.51) & 12.2 \\ -5.90 (-6.44, -4.51) & 12.2 \\ -5.90 (-6.44, -4.51) & 12.2 \\ -5.90 (-6.44, -4.51) & 12.2 \\ -5.90 (-6.44, -4.51) & 12.2 \\ -5.90 (-6.44, -4.51) & 12.2 \\ -5.90 (-6.44, -4.51) & 12.2 \\ -5.90 (-6.44, -4.51) & 12.2 \\ -5.90 (-6.44, -4.51) & 12.2 \\ -5.90 (-6.44, -4.51) & 12.2 \\ -5.90 (-6.44, -4.51) & 12.2 \\ -2.98 (-3.32, -2.63) & 13.3 \\ -0.19 (-0.61, 0.25) & 13.3 \\ -0.19 (-0.61, 0.25) & 13.3 \\ -0.19 (-0.61, 0.25) & 13.3 \\ -0.19 (-0.61, 0.25) & 13.3 \\ -1.90 (-1.23 (-1.77, -0.70) & 6.77 \\ -1.23 (-1.77, -0.70) & 6.77 \\ -1.23 (-1.77, -0.70) & 6.77 \\ -1.23 (-1.77, -0.70) & 6.77 \\ -1.23 (-1.77, -0.70) & 6.77 \\ -1.23 (-1.77, -0.70) & 6.77 \\ -1.23 (-1.77, -0.70) & 6.77 \\ -1.23 (-1.77, -0.70) & 6.77 \\ -1.23 (-1.77, -0.70) & 6.77 \\ -1.23 (-1.77, -0.70) & 6.77 \\ -1.23 (-1.77, -0.70) & 6.77 \\ -1.23 (-1.77, -0.70) & 6.77 \\ -1.23 (-1.77, -0.70) & 6.77 \\ -1.23 (-1.77, -0.70) & 6.77 \\ -1.23 (-1.77, -0.70) & 6.77 \\ -1.23 (-1.77, -0.70) & 6.77 \\ -1.23 (-1.77, -0.70) & 6.77 \\ -1.23 (-1.77, -0.70) & 6.77 \\ -1.23 (-1.77, -0.70) & 6.77 \\ -1.23 (-1.77, -0.70) & 6.77 \\ -1.23 (-1.77, -0.70) & 6.77 \\ -1.23 (-1.77, -0.70) & 6.77 \\ -1.23 (-1.77, -0.70) & 6.77 \\ -1.23 (-1.77, -0.70) & 6.77 \\ -1.23 (-1.77, -0.70) & 6.77 \\ -1.23 (-1.77, -0.70) & 6.77 \\ -1.23$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                |                      |      |
| $ \begin{array}{c} (2013) \\ (2013) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2017) \\ (2017) \\ (2017) \\ (2017) \\ (2017) \\ (2017) \\ (2017) \\ (2017) \\ (2017) \\ (2018) \\ (2017) \\ (2017) \\ (2017) \\ (2018) \\ (2017) \\ (2017) \\ (2018) \\ (2017) \\ (2018) \\ (2017) \\ (2018) \\ (2017) \\ (2018) \\ (2017) \\ (2018) \\ (2017) \\ (2018) \\ (2017) \\ (2018) \\ (2018) \\ (2017) \\ (2018) \\ (2018) \\ (2017) \\ (2018) \\ (2018) \\ (2018) \\ (2017) \\ (2018) \\ (2018) \\ (2017) \\ (2018) \\ (2018) \\ (2017) \\ (2018) \\ (2017) \\ (2018) \\ (2017) \\ (2018) \\ (2017) \\ (2018) \\ (2017) \\ (2018) \\ (2017) \\ (2018) \\ (2017) \\ (2018) \\ (2015) \\ (2018) \\ (2015) \\ (2018) \\ (2017) \\ (2018) \\ (2017) \\ (2018) \\ (2015) \\ (2018) \\ (2015) \\ (2018) \\ (2017) \\ (2018) \\ (2015) \\ (2018) \\ (2015) \\ (2018) \\ (2015) \\ (2018) \\ (2015) \\ (2018) \\ (2015) \\ (2018) \\ (2015) \\ (2018) \\ (2015) \\ (2018) \\ (2015) \\ (2018) \\ (2015) \\ (2018) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (2015) \\ (201$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                |                      |      |
| $ \begin{array}{c} (2015) & -326 (-3.87, -2.66) & 6.84 \\ rang (2015) & -4.39 (-501, -3.77) & 6.83 \\ -4.39 (-501, -3.77) & 6.93 \\ rang (2015) & -2.41 (-2.84, -1.45) & 6.93 \\ -4.29 (-501, -3.77) & 6.93 \\ rang (2015) & -2.41 (-2.84, -1.55) & 6.93 \\ -4.29 (-501, -3.77) & 6.93 \\ -4.29 (-501, -3.77) & 6.93 \\ -4.29 (-501, -3.77) & 6.93 \\ -4.29 (-501, -3.77) & 6.93 \\ -4.29 (-501, -3.77) & 6.93 \\ -4.29 (-501, -3.77) & 6.93 \\ -4.29 (-501, -3.77) & 6.93 \\ -4.29 (-501, -3.77) & 6.93 \\ -4.29 (-501, -3.77) & 6.93 \\ -4.29 (-501, -3.77) & 6.93 \\ -4.29 (-501, -3.77) & 6.93 \\ -4.29 (-501, -3.77) & 6.93 \\ -4.29 (-501, -3.77) & 6.93 \\ -4.29 (-501, -3.77) & 6.93 \\ -4.29 (-501, -3.77) & 6.93 \\ -4.29 (-501, -3.77) & 6.93 \\ -4.29 (-501, -3.77) & 6.93 \\ -4.29 (-501, -3.77) & 6.93 \\ -4.29 (-501, -3.77) & 6.93 \\ -4.29 (-501, -3.77) & 6.93 \\ -4.29 (-501, -3.77) & 6.93 \\ -4.29 (-501, -3.77) & 6.93 \\ -4.29 (-501, -3.77) & 6.93 \\ -4.29 (-501, -3.77) & 6.93 \\ -4.29 (-501, -3.77) & 6.93 \\ -4.29 (-501, -3.77) & 6.93 \\ -4.29 (-501, -3.77) & 6.93 \\ -4.29 (-501, -3.77) & 6.93 \\ -4.29 (-501, -3.77) & 6.73 \\ -5.29 (-544, -1.52) & \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                |                      |      |
| $\begin{array}{c} -4.39 (-501, -3.77) & 6.83 \\ -1.254 (-1461, -10.47) & 5.5 \\ -1.254 (-1461, -10.47) & 5.5 \\ -1.254 (-1461, -10.47) & 5.5 \\ -4.39 (-501, -3.77) & 6.93 \\ -1.254 (-1461, -10.47) & 5.5 \\ -4.39 (-501, -3.77) & 6.93 \\ -2.41 (-2.88, -1.95) & 6.93 \\ -2.41 (-2.88, -1.95) & 6.93 \\ -2.41 (-2.88, -1.95) & 6.93 \\ -2.41 (-2.88, -1.95) & 6.93 \\ -2.41 (-2.88, -1.95) & 6.93 \\ -2.41 (-2.88, -1.95) & 6.93 \\ -4.30 (-4.73, -3.86) & 6.93 \\ -4.30 (-4.73, -3.86) & 6.93 \\ -4.30 (-4.73, -3.86) & 6.93 \\ -4.30 (-4.73, -3.86) & 6.93 \\ -4.30 (-4.73, -3.86) & 6.93 \\ -4.30 (-4.73, -3.86) & 6.93 \\ -4.30 (-4.73, -3.86) & 6.93 \\ -4.30 (-4.73, -3.86) & 6.93 \\ -4.30 (-4.73, -3.86) & 6.93 \\ -4.30 (-4.73, -3.86) & 6.93 \\ -4.30 (-4.73, -3.86) & 6.93 \\ -4.30 (-4.73, -3.86) & 6.93 \\ -4.30 (-4.73, -3.86) & 6.93 \\ -4.30 (-4.73, -3.86) & 6.93 \\ -4.30 (-4.73, -3.86) & 6.93 \\ -4.30 (-4.73, -3.86) & 6.93 \\ -4.30 (-4.73, -3.86) & 6.93 \\ -4.30 (-4.73, -3.86) & 6.93 \\ -4.30 (-4.73, -3.86) & 6.93 \\ -4.30 (-4.73, -3.86) & 6.93 \\ -4.30 (-4.73, -3.86) & 6.93 \\ -4.30 (-4.73, -3.86) & 6.93 \\ -4.30 (-4.73, -3.86) & 6.93 \\ -4.30 (-4.8, -4.81) & 1.22 \\ -2.36 (-3.03, -2.51) & 1.33 \\ -3.39 (-5.23, -2.62) & 1.33 \\ -3.39 (-5.23, -2.62) & 1.33 \\ -3.39 (-5.23, -2.62) & 1.33 \\ -3.39 (-5.23, -2.62) & 1.33 \\ -3.39 (-5.23, -2.62) & 1.33 \\ -4.30 (-2.35, -2.62) & 1.30 \\ -4.30 (-2.35, -2.62) & 1.30 \\ -4.30 (-2.35, -2.62) & 1.30 \\ -4.30 (-2.35, -2.62) & 1.30 \\ -4.30 (-2.35, -2.62) & 1.30 \\ -4.30 (-2.35, -2.62) & 1.30 \\ -4.30 (-2.35, -2.62) & 1.30 \\ -4.30 (-2.35, -2.62) & 1.30 \\ -4.30 (-2.48, -1.41) & 6.73 \\ -9.5 (-2.48, -1.41) & 6.73 \\ -9.5 (-2.48, -1.41) & 6.73 \\ -9.5 (-2.48, -1.41) & 6.73 \\ -9.5 (-2.48, -1.41) & 6.73 \\ -9.5 (-2.40, -1.50) & -2.36 \\ -2.36 (-2.33, -1.27) & 6.43 \\ -1.50 (-2.30, -1.01) & 6.23 \\ -1.36 (-2.35, -1.37) & 1.00 \\ -3.38 (-4.60, -3.10) & 6.23 \\ -1.36 (-2.35, -1.37) & 1.00 \\ -2.8 (-2.44, -1.52) & \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                |                      |      |
| $\begin{array}{c} -4.39 (-501, -3.77) & 6.83 \\ -1.254 (-1461, -10.47) & 5.5 \\ -1.254 (-1461, -10.47) & 5.5 \\ -1.254 (-1461, -10.47) & 5.5 \\ -4.39 (-501, -3.77) & 6.93 \\ -1.254 (-1461, -10.47) & 5.5 \\ -4.39 (-501, -3.77) & 6.93 \\ -2.41 (-2.88, -1.95) & 6.93 \\ -2.41 (-2.88, -1.95) & 6.93 \\ -2.41 (-2.88, -1.95) & 6.93 \\ -2.41 (-2.88, -1.95) & 6.93 \\ -2.41 (-2.88, -1.95) & 6.93 \\ -2.41 (-2.88, -1.95) & 6.93 \\ -4.30 (-4.73, -3.86) & 6.93 \\ -4.30 (-4.73, -3.86) & 6.93 \\ -4.30 (-4.73, -3.86) & 6.93 \\ -4.30 (-4.73, -3.86) & 6.93 \\ -4.30 (-4.73, -3.86) & 6.93 \\ -4.30 (-4.73, -3.86) & 6.93 \\ -4.30 (-4.73, -3.86) & 6.93 \\ -4.30 (-4.73, -3.86) & 6.93 \\ -4.30 (-4.73, -3.86) & 6.93 \\ -4.30 (-4.73, -3.86) & 6.93 \\ -4.30 (-4.73, -3.86) & 6.93 \\ -4.30 (-4.73, -3.86) & 6.93 \\ -4.30 (-4.73, -3.86) & 6.93 \\ -4.30 (-4.73, -3.86) & 6.93 \\ -4.30 (-4.73, -3.86) & 6.93 \\ -4.30 (-4.73, -3.86) & 6.93 \\ -4.30 (-4.73, -3.86) & 6.93 \\ -4.30 (-4.73, -3.86) & 6.93 \\ -4.30 (-4.73, -3.86) & 6.93 \\ -4.30 (-4.73, -3.86) & 6.93 \\ -4.30 (-4.73, -3.86) & 6.93 \\ -4.30 (-4.73, -3.86) & 6.93 \\ -4.30 (-4.73, -3.86) & 6.93 \\ -4.30 (-4.8, -4.81) & 1.22 \\ -2.36 (-3.03, -2.51) & 1.33 \\ -3.39 (-5.23, -2.62) & 1.33 \\ -3.39 (-5.23, -2.62) & 1.33 \\ -3.39 (-5.23, -2.62) & 1.33 \\ -3.39 (-5.23, -2.62) & 1.33 \\ -3.39 (-5.23, -2.62) & 1.33 \\ -4.30 (-2.35, -2.62) & 1.30 \\ -4.30 (-2.35, -2.62) & 1.30 \\ -4.30 (-2.35, -2.62) & 1.30 \\ -4.30 (-2.35, -2.62) & 1.30 \\ -4.30 (-2.35, -2.62) & 1.30 \\ -4.30 (-2.35, -2.62) & 1.30 \\ -4.30 (-2.35, -2.62) & 1.30 \\ -4.30 (-2.35, -2.62) & 1.30 \\ -4.30 (-2.48, -1.41) & 6.73 \\ -9.5 (-2.48, -1.41) & 6.73 \\ -9.5 (-2.48, -1.41) & 6.73 \\ -9.5 (-2.48, -1.41) & 6.73 \\ -9.5 (-2.48, -1.41) & 6.73 \\ -9.5 (-2.40, -1.50) & -2.36 \\ -2.36 (-2.33, -1.27) & 6.43 \\ -1.50 (-2.30, -1.01) & 6.23 \\ -1.36 (-2.35, -1.37) & 1.00 \\ -3.38 (-4.60, -3.10) & 6.23 \\ -1.36 (-2.35, -1.37) & 1.00 \\ -2.8 (-2.44, -1.52) & \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Li (2015)                                      | -3.26 (-3.87, -2.66) | 6.86 |
| $\begin{array}{c} -2.54 (-14.61, -10.47) & 5.52 \\ -2.40 (2012) & & -4.34 (-5.31, -4.57) & 6.99 \\ -2.41 (-2.88, -1.95) & 6.92 \\ -7.79 (-9.09, -6.49) & 6.33 \\ -4.20 (-5.31, -4.57) & 6.93 \\ -7.79 (-9.09, -6.49) & 6.33 \\ -4.20 (-2.88, -1.95) & 6.92 \\ -7.79 (-9.09, -6.49) & 6.33 \\ -4.20 (-2.88, -1.95) & 6.92 \\ -4.21 (-5.29, -3.25) & 6.55 \\ -7.90 (-8.29, -5.90) & 6.42 \\ -4.71 (-5.70, -3.71) & 100 \\ -4.71 (-5.70, -3.71) & 100 \\ -4.71 (-5.70, -3.71) & 100 \\ -4.71 (-5.70, -3.71) & 100 \\ -4.71 (-5.70, -3.71) & 100 \\ -4.71 (-5.70, -3.71) & 100 \\ -4.71 (-5.70, -3.71) & 100 \\ -4.71 (-5.70, -3.71) & 122 \\ -6.00 (-7.20, -4.80) & 11.5 \\ -6.96 (-8.46, -5.46) & 11.3 \\ -5.50 (-6.49, -4.51) & 122 \\ -5.50 (-6.49, -4.51) & 122 \\ -5.50 (-6.49, -4.51) & 122 \\ -5.50 (-6.49, -4.51) & 122 \\ -5.50 (-6.49, -4.51) & 122 \\ -5.50 (-6.49, -4.51) & 122 \\ -5.50 (-6.49, -4.51) & 122 \\ -5.50 (-6.49, -4.51) & 122 \\ -5.50 (-6.49, -4.51) & 122 \\ -5.50 (-6.49, -4.51) & 122 \\ -5.50 (-6.49, -4.51) & 122 \\ -5.50 (-6.49, -4.51) & 122 \\ -5.50 (-6.49, -4.51) & 122 \\ -5.50 (-6.49, -4.51) & 122 \\ -5.50 (-6.49, -4.51) & 122 \\ -5.50 (-6.49, -4.51) & 122 \\ -5.50 (-6.49, -4.51) & 122 \\ -5.50 (-6.49, -4.51) & 122 \\ -5.50 (-6.49, -4.51) & 122 \\ -5.50 (-6.49, -4.51) & 122 \\ -5.50 (-6.49, -4.51) & 122 \\ -5.50 (-6.49, -4.51) & 122 \\ -5.50 (-6.49, -4.51) & 122 \\ -5.50 (-6.49, -4.51) & 122 \\ -5.50 (-6.49, -4.51) & -2.50 \\ -5.50 (-6.49, -4.51) & -2.50 \\ -5.50 (-6.49, -1.50) & -2.50 \\ -5.50 (-6.49, -1.50) & -2.50 \\ -5.50 (-6.49, -1.50) & -2.50 \\ -5.50 (-1.40, -1.50) & -2.50 \\ -5.50 (-1.40, -1.50) & -2.50 \\ -5.50 (-1.40, -1.50) & -2.50 \\ -5.50 (-1.40, -1.50) & -2.50 \\ -5.50 (-1.40, -1.50) & -2.50 \\ -5.50 (-1.40, -1.50) & -2.50 \\ -5.50 (-1.40, -1.50) & -2.50 \\ -5.50 (-1.40, -1.50) & -2.50 \\ -5.50 (-1.40, -1.50) & -2.50 \\ -5.50 (-1.40, -1.50) & -2.50 \\ -5.50 (-1.40, -1.50) & -2.50 \\ -5.50 (-1.40, -1.50) & -2.50 \\ -5.50 (-1.40, -1.50) & -2.50 \\ -5.50 (-1.40, -1.50) & -2.50 \\ -5.50 (-1.40, -1.50) & -2.50 \\ -5.50 (-1.40, -1.50) & -2.50 \\ -5.50 (-1.50) & -2.50 \\ -5.50 (-1.50) & -2.50 \\ -5.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                |                      |      |
| $\begin{array}{c} -4.94 (-5.31, -4.57) & 6.99 \\ -2.41 (-2.88, -1.95) & 6.92 \\ -2.61 (-2.88, -1.95) & 6.92 \\ -2.61 (-2.88, -1.95) & 6.92 \\ -2.61 (-2.88, -1.95) & 6.92 \\ -2.61 (-2.88, -1.95) & 6.92 \\ -2.61 (-2.88, -1.95) & 6.92 \\ -2.61 (-2.52, -3.25) & 6.53 \\ -7.09 (-8.29, -5.90) & 6.43 \\ -4.07 (-5.29, -3.25) & 6.53 \\ -7.09 (-8.29, -5.90) & 6.43 \\ -4.75 (-5.80, -3.71) & 100 \\ -4.75 (-5.80, -3.71) & 100 \\ -4.75 (-5.80, -3.71) & 100 \\ -6.00 (-7.20, -4.80) & 11.5 \\ -6.00 (-7.20, -4.80) & 11.5 \\ -6.00 (-7.20, -4.80) & 11.5 \\ -5.95 (-6.49, -4.51) & 12.2 \\ -5.95 (-6.49, -4.51) & 12.2 \\ -5.95 (-6.49, -4.51) & 12.2 \\ -5.95 (-6.49, -4.51) & 12.2 \\ -2.98 (-3.2, -2.60) & 12.3 \\ -5.95 (-6.49, -4.51) & 12.2 \\ -2.98 (-6.32, -2.60) & 12.3 \\ -2.93 (-5.22, -2.60) & 12.3 \\ -2.93 (-5.22, -2.60) & 12.3 \\ -2.93 (-5.22, -2.62) & 13.3 \\ -2.93 (-5.22, -2.62) & 100 \\ -2.15 (-2.74, -1.56) & 6.63 \\ Nu (2017) & -2.35 (-2.31, -1.85) & 6.42 \\ Nu (2015) & -0.36 (-0.69, 0.17) & 6.7 \\ -0.36 (-0.69, 0.17) & 6.7 \\ -0.36 (-0.69, 0.17) & 6.7 \\ -0.36 (-1.48, -0.41) & 6.7 \\ -0.37 (-1.48, -0.41) & 6.7 \\ -0.33 (-1.48, -0.41) & 6.7 \\ -0.33 (-1.48, -0.41) & 6.7 \\ -0.33 (-1.48, -0.41) & 6.7 \\ -0.33 (-1.48, -0.41) & 6.7 \\ -0.33 (-1.48, -0.41) & 6.7 \\ -0.33 (-1.48, -0.41) & 6.7 \\ -0.35 (-1.17, 0.07) & 6.5 \\ -0.316 (-4.00, -2.32) & 6.00 \\ -0.33 (-3.41, -2.20) & 6.83 \\ -0.33 (-3.41, -2.20) & 6.83 \\ -0.33 (-3.41, -2.20) & 6.83 \\ -0.33 (-3.41, -2.20) & 6.83 \\ -0.33 (-3.41, -2.20) & 6.83 \\ -0.33 (-3.41, -2.20) & 6.83 \\ -0.33 (-3.41, -2.20) & 6.83 \\ -0.33 (-3.41, -2.20) & 6.83 \\ -0.33 (-3.41, -2.20) & 6.83 \\ -0.33 (-3.41, -2.20) & 6.83 \\ -0.33 (-3.41, -2.20) & 6.83 \\ -0.33 (-3.41, -2.20) & 6.83 \\ -0.33 (-3.41, -2.20) & 6.83 \\ -0.33 (-3.41, -2.20) & 6.83 \\ -0.33 (-3.41, -2.20) & 6.83 \\ -0.33 (-3.41, -2.20) & 6.83 \\ -0.33 (-3.41, -2.20) & 6.83 \\ -0.33 (-3.41, -2.20) & 6.83 \\ -0.33 (-3.41, -2.20) & 6.83 \\ -0.33 (-3.41, -2.20) & 6.83 \\ -0.33 (-3.41, -2.20) & 6.83 \\ -0.33 (-3.41, -2.20) & 6.83 \\ -0.33 (-3.41, -2.20) & 6.83 \\ -0.33 (-3.41, -2.20) & 6.83 \\ -0.33 (-3.41, -2.20) & 6.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                |                      |      |
| $\begin{array}{c} -2.41 (-2.88, -1.95) & 6.92 \\ -7.79 (-9.09, -6.49) & 6.33 \\ -7.79 (-9.09, -6.49) & 6.33 \\ -4.30 (-4.73, -3.86) & 6.92 \\ -4.27 (-5.29, -3.25) & 6.53 \\ -4.20 (-4.73, -3.86) & 6.92 \\ -4.27 (-5.29, -3.25) & 6.54 \\ -4.27 (-5.29, -3.25) & 6.43 \\ -4.27 (-5.29, -3.25) & 6.43 \\ -4.27 (-5.29, -3.25) & 6.43 \\ -4.27 (-5.20, -3.71) & 100 \\ -4.75 (-5.80, -3.71) & 100 \\ -4.75 (-5.80, -3.71) & 100 \\ -4.75 (-5.80, -3.71) & 100 \\ -4.75 (-5.80, -3.71) & 100 \\ -4.75 (-5.80, -3.71) & 100 \\ -4.75 (-5.80, -3.71) & 100 \\ -5.95 (-6.49, -4.51) & 12.2 \\ -6.96 (-8.46, -5.46) & 11.3 \\ -6.96 (-8.46, -5.46) & 11.3 \\ -6.96 (-8.46, -5.46) & 11.3 \\ -6.96 (-8.46, -5.46) & 11.3 \\ -6.96 (-8.46, -5.46) & 11.3 \\ -2.53 (-3.02, -2.05) & 13.3 \\ -3.27 (-3.95, -2.60) & 13.4 \\ -2.28 (-3.32, -2.63) & 13.3 \\ -3.27 (-3.95, -2.60) & 13.4 \\ -2.98 (-3.32, -2.63) & 13.3 \\ -3.23 (-1.27, -0.70) & 6.74 \\ -0.19 (-0.63, 0.25) & 13.4 \\ -0.19 (-0.63, 0.25) & 13.4 \\ -0.19 (-0.63, 0.25) & 13.4 \\ -0.19 (-0.63, 0.25) & 13.4 \\ -0.26 (-0.69, 0.17) & 6.74 \\ -0.26 (-0.69, 0.17) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.77 \\ -0.33 (-3.49, -2.26) & 6.58 \\ -0.33 (-3.49, -2.20) & 6.58 \\ -0.33 (-3.49, -2.20) & 6.58 \\ -0.33 (-3.49, -2.20) & 6.58 \\ -0.33 (-3.49, -2.20) & 6.58 \\ -0.33 (-3.49, -2.20) & 6.58 \\ -0.33 (-3.49, -2.20) & 6.58 \\ -0.33 (-3.49, -2.20) & 6.58 \\ -0.33 (-3.49, -2.20) & 6.58 \\ -0.33 (-3.49, -2.20) & 6.58 \\ -0.33 (-3.49, -2.20) & 6.58 \\ -0.33 (-3.49, -2.20) & 6.58 \\ -0.33 (-3.49, -2.20) & 6.58 \\ -0.33 (-3.49, -2.20) & 6.58 \\ -0.33 (-3.49, -2.20) & 6.58 \\ -0.33 (-3.49, -2.20) & 6.58 \\ -0.33 (-3.49, -2.20) & 6.58 \\ -0.33 (-3.49, -2.20) & 6.58 \\ -0.33 (-3.49, -2.20) & 6.58 \\ -0.33 (-3.49, -2.20) & 6.58 \\ -0.33 (-3.49, -2.20) & 6.58 \\ -0.33 (-3.49, -2.20) & 6.58 \\ -0.33 (-3.49, -2.20) & 6.58 \\ -0.33 (-3.49, -2.20) & 6.58 \\ -0.33 (-3.49, -2.20) & 6.58 \\ -0.33 (-3.49, -2.20) & 6.58 \\ -0.33 (-3.49, -2.20) & 6.58 \\ -0.33 (-3.49, -2.20) & 6.58 \\ -0.33 (-3.49, -2.20) & 6.58 \\ -0.33 (-3.49, -2.20) & 6.58 \\ -0.33 (-3.49, -2.20) & 6.58 \\ -0.33 (-3.49, -2.20) & 6.58 \\ -0.33 (-3.49$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                |                      |      |
| $\begin{array}{c} \mbox{lig} (2017) & -7.79 (-9.09, -6.49) & 6.33 \\ -4.30 (-4.73, -3.86) & 6.92 \\ i. (2017) & -4.27 (-5.29, -3.25) & 6.43 \\ -4.30 (-4.73, -3.86) & 6.92 \\ -4.27 (-5.29, -3.25) & 6.43 \\ -4.20 (-5.29, -3.25) & 6.43 \\ -4.20 (-5.29, -5.90) & -6.41 \\ -4.75 (-5.80, -3.71) & 100 \\ -4.75 (-5.80, -3.71) & 100 \\ -4.75 (-5.80, -3.71) & 12.3 \\ -6.00 (-7.20, -4.80) & 11.5 \\ -6.00 (-7.20, -4.80) & 11.5 \\ -6.00 (-7.20, -4.80) & 11.5 \\ -6.00 (-7.20, -4.80) & 11.5 \\ -6.00 (-7.20, -4.80) & 11.5 \\ -6.00 (-7.20, -4.80) & 11.5 \\ -6.00 (-7.20, -4.80) & 11.5 \\ -6.00 (-7.20, -4.80) & 11.5 \\ -6.00 (-7.20, -4.80) & 11.5 \\ -6.00 (-7.20, -4.80) & 11.5 \\ -6.00 (-7.20, -4.80) & 11.5 \\ -6.00 (-7.20, -4.80) & 11.5 \\ -6.00 (-7.20, -4.80) & 11.5 \\ -6.00 (-7.20, -4.80) & 11.5 \\ -7.20 (-3.23, -2.60) & 12.4 \\ -2.25 (-3.01, -2.05) & 13.0 \\ -3.25 (-3.01, -2.05) & 13.0 \\ -3.25 (-3.21, -1.85) & 6.42 \\ -2.53 (-3.21, -1.85) & 6.42 \\ -2.53 (-3.21, -1.85) & 6.42 \\ -2.53 (-3.21, -1.85) & 6.42 \\ -2.53 (-3.21, -1.85) & 6.42 \\ -2.53 (-3.21, -1.85) & 6.42 \\ -2.53 (-3.21, -1.85) & 6.42 \\ -2.53 (-3.21, -1.85) & 6.42 \\ -2.53 (-3.21, -1.85) & 6.42 \\ -2.53 (-3.21, -1.85) & 6.42 \\ -2.53 (-3.21, -1.85) & 6.42 \\ -2.53 (-3.21, -1.85) & 6.42 \\ -2.53 (-3.21, -1.85) & 6.42 \\ -2.53 (-3.21, -1.85) & 6.42 \\ -2.53 (-3.21, -1.85) & 6.42 \\ -2.53 (-3.21, -1.85) & 6.42 \\ -2.53 (-3.21, -1.85) & 6.42 \\ -2.53 (-3.21, -1.85) & 6.42 \\ -2.53 (-3.21, -1.85) & 6.42 \\ -2.53 (-3.21, -1.85) & 6.42 \\ -2.53 (-3.21, -1.85) & 6.42 \\ -2.53 (-3.21, -1.85) & 6.42 \\ -2.53 (-3.21, -1.85) & 6.42 \\ -2.53 (-3.21, -1.85) & 6.42 \\ -2.53 (-3.21, -1.85) & 6.42 \\ -2.53 (-3.21, -1.85) & 6.42 \\ -2.53 (-3.21, -1.85) & 6.42 \\ -2.53 (-3.21, -1.85) & 6.42 \\ -2.53 (-3.21, -1.85) & 6.42 \\ -2.53 (-3.21, -1.85) & 6.42 \\ -2.53 (-3.21, -1.85) & 6.42 \\ -2.53 (-3.21, -1.85) & 6.42 \\ -2.53 (-3.21, -1.85) & 6.42 \\ -2.53 (-3.21, -1.85) & 6.42 \\ -2.53 (-3.21, -1.85) & 6.42 \\ -2.53 (-3.21, -1.85) & 6.42 \\ -2.53 (-3.21, -1.85) & 6.42 \\ -2.53 (-3.21, -1.52) & 6.42 \\ -2.53 (-3.21, -1.52) & 6.42 \\ -2.54 (-2.45, -1.27) & 6.42 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                |                      |      |
| $\begin{array}{c} \mbox{here} 2018) & -4.30 (-473, -3.86) & 6.92 \\ -4.27 (-5.29, -3.25) & 6.54 \\ -4.00 (-4.27, -5.29, -3.25) & 6.64 \\ -7.00 (-8.29, -5.90) & 6.44 \\ -4.75 (-5.80, -3.71) & 100 \\ -4.00 (-8.29, -5.90) & 6.44 \\ -4.75 (-5.80, -3.71) & 100 \\ -4.71 (-5.70, -3.71) & 12.2 \\ -5.00 (-7.20, -4.80) & 11.5 \\ -6.00 (-7.20, -4.80) & 11.5 \\ -6.09 (-8.46, -5.46) & 11.1 \\ -5.50 (-6.49, -4.51) & 12.2 \\ -5.50 (-6.49, -4.51) & 12.2 \\ -5.50 (-6.49, -4.51) & 12.2 \\ -2.98 (-3.29, -2.63) & 13.3 \\ -2.98 (-3.29, -2.63) & 13.3 \\ -2.98 (-3.29, -2.63) & 13.3 \\ -2.98 (-3.29, -2.63) & 13.3 \\ -2.98 (-3.29, -2.63) & 13.3 \\ -2.98 (-3.29, -2.63) & 13.3 \\ -2.98 (-3.29, -2.63) & 13.3 \\ -2.98 (-3.29, -2.63) & 13.3 \\ -2.98 (-3.29, -2.63) & 13.3 \\ -2.98 (-3.29, -2.63) & 13.3 \\ -2.98 (-3.29, -2.63) & 13.3 \\ -2.98 (-2.48, -1.41) & 6.74 \\ -0.59 (-4.48, -0.41) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.74 \\ -1.95 (-2.63, -1.27) & 6.45 \\ -2.73 (-3.19, -2.26) & 6.85 \\ -2.73 (-3.19, -2.26) & 6.85 \\ -2.73 (-3.19, -2.26) & 6.85 \\ -2.73 (-3.19, -2.26) & 6.85 \\ -2.73 (-3.19, -2.26) & 6.85 \\ -2.73 (-3.19, -2.26) & 6.85 \\ -2.73 (-3.19, -2.26) & 6.85 \\ -2.73 (-3.19, -2.26) & 6.85 \\ -2.73 (-3.19, -2.26) & 6.85 \\ -2.73 (-3.19, -2.26) & 6.85 \\ -2.73 (-3.19, -2.26) & 6.85 \\ -2.73 (-3.19, -2.26) & 6.85 \\ -2.73$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Liu (2018)                                     | -2.41 (-2.88, -1.95) | 6.92 |
| $\begin{array}{c} \mbox{here} 2018) & -4.30 (-473, -3.86) & 6.92 \\ -4.27 (-5.29, -3.25) & 6.54 \\ -4.00 (-4.27, -5.29, -3.25) & 6.64 \\ -7.00 (-8.29, -5.90) & 6.44 \\ -4.75 (-5.80, -3.71) & 100 \\ -4.00 (-8.29, -5.90) & 6.44 \\ -4.75 (-5.80, -3.71) & 100 \\ -4.71 (-5.70, -3.71) & 12.2 \\ -5.00 (-7.20, -4.80) & 11.5 \\ -6.00 (-7.20, -4.80) & 11.5 \\ -6.09 (-8.46, -5.46) & 11.1 \\ -5.50 (-6.49, -4.51) & 12.2 \\ -5.50 (-6.49, -4.51) & 12.2 \\ -5.50 (-6.49, -4.51) & 12.2 \\ -2.98 (-3.29, -2.63) & 13.3 \\ -2.98 (-3.29, -2.63) & 13.3 \\ -2.98 (-3.29, -2.63) & 13.3 \\ -2.98 (-3.29, -2.63) & 13.3 \\ -2.98 (-3.29, -2.63) & 13.3 \\ -2.98 (-3.29, -2.63) & 13.3 \\ -2.98 (-3.29, -2.63) & 13.3 \\ -2.98 (-3.29, -2.63) & 13.3 \\ -2.98 (-3.29, -2.63) & 13.3 \\ -2.98 (-3.29, -2.63) & 13.3 \\ -2.98 (-3.29, -2.63) & 13.3 \\ -2.98 (-2.48, -1.41) & 6.74 \\ -0.59 (-4.48, -0.41) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.74 \\ -1.95 (-2.48, -1.41) & 6.74 \\ -1.95 (-2.63, -1.27) & 6.45 \\ -2.73 (-3.19, -2.26) & 6.85 \\ -2.73 (-3.19, -2.26) & 6.85 \\ -2.73 (-3.19, -2.26) & 6.85 \\ -2.73 (-3.19, -2.26) & 6.85 \\ -2.73 (-3.19, -2.26) & 6.85 \\ -2.73 (-3.19, -2.26) & 6.85 \\ -2.73 (-3.19, -2.26) & 6.85 \\ -2.73 (-3.19, -2.26) & 6.85 \\ -2.73 (-3.19, -2.26) & 6.85 \\ -2.73 (-3.19, -2.26) & 6.85 \\ -2.73 (-3.19, -2.26) & 6.85 \\ -2.73 (-3.19, -2.26) & 6.85 \\ -2.73$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ding (2017)                                    | -7.79 (-9.09, -6.49) | 6.33 |
| $\begin{array}{c} \operatorname{int}(2017) & -4.27 (-5.29, -3.25) & 6.58 \\ -7.09 (-8.29, -5.90) & 6.47 \\ -7.09 (-8.29, -5.90) & 6.47 \\ -7.09 (-8.29, -5.90) & 6.47 \\ -7.09 (-8.29, -5.90) & 6.47 \\ -7.09 (-8.29, -5.90) & 6.47 \\ -7.09 (-8.29, -5.90) & 6.47 \\ -7.09 (-8.29, -5.90) & 6.47 \\ -4.71 (-5.70, -3.71) & 12.3 \\ -6.00 (-7.20, -4.80) & 11.5 \\ -6.00 (-7.20, -4.80) & 11.5 \\ -6.00 (-7.20, -4.80) & 11.5 \\ -6.00 (-7.20, -4.80) & 11.5 \\ -6.00 (-7.20, -4.80) & 11.5 \\ -6.00 (-7.20, -4.80) & 11.5 \\ -5.50 (-6.49, -4.51) & 12.3 \\ -2.53 (-3.02, -2.05) & 13.3 \\ -2.53 (-3.02, -2.05) & 13.3 \\ -2.53 (-3.02, -2.05) & 13.3 \\ -2.53 (-3.02, -2.05) & 13.3 \\ -2.298 (-3.32, -2.63) & 13.3 \\ -2.298 (-3.32, -2.63) & 13.3 \\ -2.298 (-3.32, -2.63) & 13.3 \\ -2.298 (-3.32, -2.63) & 13.3 \\ -0.65 (-1.77, -0.70) & 6.74 \\ -1.23 (-1.77, -0.70) & 6.74 \\ -1.23 (-1.77, -0.70) & 6.74 \\ -1.23 (-1.77, -0.70) & 6.74 \\ -1.23 (-1.77, -0.70) & 6.74 \\ -1.23 (-1.77, -0.70) & 6.74 \\ -1.23 (-1.77, -0.70) & 6.74 \\ -1.23 (-1.77, -0.70) & 6.74 \\ -1.23 (-1.77, -0.70) & 6.74 \\ -1.23 (-1.77, -0.70) & 6.74 \\ -1.23 (-1.77, -0.70) & 6.74 \\ -1.23 (-1.77, -0.70) & 6.74 \\ -1.23 (-1.77, -0.70) & 6.74 \\ -1.23 (-1.77, -0.70) & 6.74 \\ -1.23 (-1.77, -0.70) & 6.74 \\ -1.23 (-1.77, -0.70) & 6.74 \\ -1.23 (-1.77, -0.70) & 6.74 \\ -1.23 (-1.77, -0.70) & 6.74 \\ -1.23 (-1.77, -0.70) & 6.74 \\ -1.23 (-1.77, -0.70) & 6.74 \\ -1.23 (-1.77, -0.70) & 6.74 \\ -1.23 (-1.77, -0.70) & 6.74 \\ -1.23 (-1.77, -0.70) & 6.74 \\ -1.23 (-1.77, -0.70) & 6.74 \\ -1.23 (-1.77, -0.70) & 6.74 \\ -1.23 (-1.77, -0.70) & 6.74 \\ -1.23 (-1.77, -0.70) & 6.74 \\ -1.23 (-1.77, -0.70) & 6.74 \\ -1.23 (-1.77, -0.70) & 6.74 \\ -1.23 (-1.77, -0.70) & 6.74 \\ -1.23 (-1.77, -0.70) & 6.74 \\ -1.23 (-1.77, -0.70) & 6.74 \\ -1.23 (-1.77, -0.70) & 6.74 \\ -1.23 (-1.77, -0.70) & 6.74 \\ -1.23 (-1.77, -0.70) & 6.74 \\ -1.23 (-1.77, -0.70) & 6.74 \\ -1.23 (-1.77, -0.70) & 6.74 \\ -1.23 (-1.77, -0.70) & 6.74 \\ -1.23 (-1.77, -0.70) & 6.74 \\ -1.23 (-1.77, -0.70) & 6.74 \\ -1.23 (-1.77, -0.70) & 6.74 \\ -1.23 (-1.77, -0.70) & 6.74 \\ -1.23 (-1.77, -0.70) & 6.74 \\ -1.23 (-1.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                |                      |      |
| Nu (2017)       -7.09 (-8.29, -5.90)       642         subtoal (1-squared = 97.5%, p = 0.000)       -4.73 (-5.80, -3.71)       100         ength of incision       C       -4.71 (-5.70, -3.71)       12.3         Imag (2015)       -6.00 (-7.20, -4.80)       11.5         carge (2015)       -5.05 (-6.49, -4.51)       12.3         imag (2017)       -5.93 (-5.40, -3.71)       12.3         Len (2018)       -2.53 (-3.00, -2.05)       13.0         Vu (2009)       -3.21 (-3.95, -2.63)       13.1         vu (2017)       -0.99 (-0.63, 0.25)       13.3         Subtotal (1-squared = 97.0%, p = 0.000)       -0.19 (-0.63, 0.25)       13.3         vu (2017)       -0.26 (-0.60, 0.17)       6.92         subtotal (1-squared = 97.0%, p = 0.000)       -2.53 (-3.21, -1.85)       6.44         vu (2015)       -0.26 (-0.60, 0.17)       6.92         subtotal (1-squared = 97.0%, p = 0.000)       -2.53 (-3.21, -1.85)       6.44         vu (2015)       -0.33 (-3.42, -2.63)       13.1         subtotal (1-squared = 97.0%, p = 0.000)       -2.53 (-3.21, -1.85)       6.44         vu (2015)       -1.33 (-1.71, -0.70)       6.77         subtotal (1-squared = 92.9%, p = 0.000)       -2.33 (-3.9, -2.20)       6.83         vu (2015)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                |                      |      |
| bibitotal (I-squared = 97.5%, p = 0.000)<br>-4.75 (-5.80, -3.71) 100<br>-4.70 (-5.70, -3.71) 12.3<br>-4.71 (-5.70, -3.71) 12.3<br>-6.00 (-7.20, -4.80) 11.5<br>-6.00 (-7.20, -4.80) 11.5<br>-6.96 (-8.46, -5.46) 11.1<br>-5.50 (-6.49, -4.51) 12.2<br>-2.53 (-3.00, -2.05) 13.3<br>-2.53 (-3.00, -2.05) 13.3<br>-2.73 (-3.95, -2.60) 12.3<br>-2.98 (-5.23, -2.63) 13.3<br>-2.98 (-5.23, -2.63) 13.3<br>-2.98 (-5.23, -2.63) 13.3<br>-2.98 (-5.23, -2.63) 13.3<br>-2.98 (-5.23, -2.63) 100<br>-3.93 (-5.23, -2.62) 100<br>-3.93 (-5.23, -2.62) 100<br>-2.51 (-2.74, -1.56) 66.6<br>-2.53 (-2.74, -1.56) 66.6<br>-2.53 (-2.74, -1.56) 66.4<br>-2.53 (-2.74, -1.56) 66.6<br>-2.53 (-2.74, -1.52) 7.0<br>-3.88 (-2.36, -1.37) 100<br>-3.88 (-2.36, -1.37) 100<br>-3.88 (-2.36, -1.37) 100<br>-2.8 (-2.46, -1.52) .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                |                      |      |
| $\begin{array}{c} \mbox{cendsh of incision $ \mbox{C}$} & -4.71 (-5.70, -3.71) & 12.3 \\ -6.00 (-7.20, -4.80) & 11.6 \\ -6.96 (-8.46, -5.46) & 11.3 \\ -6.96 (-8.46, -5.46) & 11.3 \\ -5.50 (-6.49, -4.51) & 12.3 \\ -2.53 (-3.00, -2.05) & 13.0 \\ -3.27 (-3.95, -2.60) & 12.4 \\ -2.98 (-3.32, -2.63) & 13.3 \\ -0.19 (-0.65, 0.25) & 13.3 \\ -0.19 (-0.65, 0.25) & 13.3 \\ -0.19 (-0.65, 0.25) & 13.3 \\ -0.19 (-0.65, 0.25) & 13.3 \\ -0.19 (-0.65, 0.25) & 13.3 \\ -0.19 (-0.65, 0.25) & 13.3 \\ -0.19 (-0.65, 0.25) & 13.3 \\ -0.19 (-0.65, 0.25) & 13.3 \\ -0.19 (-0.65, 0.25) & 13.3 \\ -0.26 (-0.69, 0.17) & 6.77 \\ -0.26 (-0.69, 0.17) & 6.79 \\ -0.25 (-2.74, -1.56) & 6.66 \\ -2.53 (-3.21, -1.85) & 6.43 \\ -1.99 (-2.48, -0.41) & 6.77 \\ -0.95 (-1.71, 0.07) & 6.77 \\ -0.95 (-1.71, 0.07) & 6.77 \\ -0.95 (-1.71, 0.07) & 6.77 \\ -0.95 (-1.71, 0.07) & 6.77 \\ -0.95 (-1.71, 0.07) & 6.77 \\ -0.95 (-1.71, 0.07) & 6.77 \\ -0.55 (-1.71, 0.07) & 6.77 \\ -0.55 (-1.71, 0.07) & 6.77 \\ -0.55 (-1.71, 0.07) & 6.77 \\ -0.55 (-1.71, 0.07) & 6.77 \\ -0.55 (-1.71, 0.07) & 6.77 \\ -0.55 (-1.71, 0.07) & 6.77 \\ -0.55 (-1.71, 0.07) & 6.77 \\ -0.55 (-1.71, 0.07) & 6.77 \\ -0.55 (-1.71, 0.07) & 6.77 \\ -0.55 (-1.71, 0.07) & 6.77 \\ -0.55 (-1.71, 0.07) & 6.77 \\ -0.55 (-1.71, 0.07) & 6.77 \\ -0.55 (-1.71, 0.07) & 6.77 \\ -0.55 (-1.71, 0.07) & 6.77 \\ -0.55 (-1.71, 0.07) & 6.77 \\ -0.55 (-1.71, 0.07) & 6.77 \\ -0.55 (-1.71, 0.07) & 6.77 \\ -0.55 (-1.71, 0.07) & 6.77 \\ -0.55 (-1.71, 0.07) & 6.77 \\ -0.55 (-1.71, 0.07) & 6.77 \\ -0.55 (-1.71, 0.07) & 6.77 \\ -0.55 (-1.71, 0.07) & 6.77 \\ -0.55 (-1.71, 0.07) & 6.77 \\ -0.55 (-1.71, 0.07) & 6.77 \\ -0.55 (-1.71, 0.07) & 6.77 \\ -0.55 (-1.71, 0.07) & 6.77 \\ -0.55 (-1.71, 0.07) & 6.77 \\ -0.55 (-1.71, 0.07) & 6.77 \\ -0.55 (-1.71, 0.07) & 6.77 \\ -0.55 (-1.71, 0.07) & 6.77 \\ -0.55 (-1.71, 0.07) & 6.77 \\ -0.55 (-1.71, 0.07) & 6.77 \\ -0.55 (-1.71, 0.07) & 6.77 \\ -0.55 (-1.71, 0.07) & 6.77 \\ -0.55 (-1.71, 0.07) & 6.77 \\ -0.55 (-1.71, 0.07) & 6.77 \\ -0.55 (-1.71, 0.07) & 6.77 \\ -0.55 (-1.71, 0.07) & 6.77 \\ -0.55 (-1.71, 0.07) & 6.77 \\ -0.55 (-1.71, 0.07) & 6.77 \\ -0.55 (-1.71, 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                |                      |      |
| Nu (2009) $-4.71 (-5.70, -3.71)$ 12.3         hang (2015) $-6.00 (-7.20, -4.80)$ 11.5         ceg (2015) $-6.00 (-7.20, -4.80)$ 11.3         i (2018) $-5.50 (-6.49, -4.51)$ 12.3         i (2018) $-2.53 (-3.00, -2.05)$ 13.3         Nu (2017) $-2.28 (-3.32, -2.63)$ 13.3         i (2018) $-2.98 (-3.32, -2.63)$ 13.3         vu (2017) $-0.19 (-0.63, 0.25)$ 13.3         subtotal (1-squared = 97.0%, p = 0.000) $-3.39 (-5.23, -2.62)$ 100         ceg (2015) $-1.23 (-1.77, -0.70)$ $6.74$ inkemani (2015) $-0.26 (-0.69, 0.17)$ 6.93         inkemani (2015) $-0.26 (-0.69, 0.17)$ 6.93         vu (2009) $-2.33 (-2.74, -1.56)$ 6.64         vu (2015) $-0.26 (-0.69, 0.17)$ 6.93         ing (2015) $-0.25 (-1.71, 0.07)$ 6.74         thang (2015) $-0.35 (-1.17, 0.07)$ 6.74         thang (2015) $-0.35 (-1.17, 0.07)$ 6.74         tig (2015) $-0.56 (-1.18, -0.43)$ 6.94         tig (2015) $-0.56 (-1.17, 0.72)$ 6.94         tig (2017) $-0.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                              |                      | 100. |
| $\begin{array}{c} \text{hang (2015)} & -6.00 (-7.20, -4.80) & 11.5\\ \text{derg (2015)} & -6.96 (-8.46, -5.46) & 11.3\\ \text{derg (2015)} & -5.50 (-6.49, -4.51) & 12.2\\ \text{derg (2015)} & -2.53 (-3.00, -2.05) & 13.3\\ \text{derg (2017)} & -2.53 (-3.00, -2.05) & 13.3\\ \text{derg (2017)} & -2.98 (-3.32, -2.63) & 13.3\\ \text{derg (2017)} & -0.19 (-0.63, 0.25) & 13.3\\ \text{subtotal } (1-\text{squared = 97.0\%, p = 0.000)} & -3.93 (-5.23, -2.62) & 100\\ \text{derg (2015)} & -0.19 (-0.63, 0.25) & 13.3\\ \text{derg (2015)} & -0.26 (-0.69, 0.17) & 6.97\\ \text{derg (2015)} & -0.26 (-0.69, 0.17) & 6.97\\ \text{derg (2015)} & -2.51 (-2.74, -1.56) & 6.63\\ \text{derg (2015)} & -0.25 (-1.71, 0.07) & 6.57\\ \text{drag (2015)} & -0.55 (-1.17, 0.07) & 6.57\\ \text{drag (2015)} & -0.55 (-1.17, 0.07) & 6.57\\ \text{drag (2015)} & -3.31 (-4.00, -2.32) & 6.04\\ \text{drag (2015)} & -3.31 (-4.00, -2.32) & 6.04\\ \text{drag (2015)} & -3.38 (-4.60, -2.32) & 6.06\\ \text{drag (2015)} & -3.88 (-4.60, -2.32) & 6.06\\ \text{drag (2015)} & -1.50 (-2.00, -1.01) & 6.83\\ \text{drag (2017)} & -1.59 (-2.48, -1.47) & 0.62\\ \text{drag (2018)} & -1.59 (-2.48, -1.47) & 0.62\\ \text{drag (2017)} & -3.88 (-4.60, -2.32) & 6.06\\ \text{drag (2017)} & -3.88 (-4.60, -2.32) & 6.06\\ \text{drag (2017)} & -3.88 (-4.60, -1.52) &\\ \text{drag (2018)} & -1.59 (-2.00, -1.01) & 6.83\\ \text{drag (2017)} & -1.59 (-2.64, -1.52) &\\ \text{drag (2017)} & -1.59 (-2.64, -1.52) &\\ \text{drag (2017)} & -1.50 (-2.00, -1.01) & 6.83\\ \text{drag (2017)} & -1.50 (-2.00, -1.01) & 6.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                | -4.71 (-5.70 -2.71)  | 12.2 |
| $\begin{array}{c} \mbox{ceg} (2015) & -6.96 (-8.46, -5.46) & 11.1 \\ -5.50 (-6.49, -4.51) & 12.2 \\ 1.2 (2018) & -2.53 (-3.00, -2.05) & 13.3 \\ -2.25 (-3.03, -2.5) & 12.3 \\ -2.98 (-3.32, -2.63) & 13.3 \\ -2.98 (-3.32, -2.63) & 13.3 \\ -2.98 (-3.23, -2.63) & 13.3 \\ -2.98 (-3.23, -2.63) & 13.3 \\ -2.98 (-3.23, -2.63) & 13.3 \\ -2.98 (-3.23, -2.63) & 13.3 \\ -2.98 (-3.23, -2.63) & 13.3 \\ -2.98 (-3.23, -2.63) & 13.3 \\ -2.98 (-3.23, -2.63) & 13.3 \\ -2.98 (-3.23, -2.63) & 13.3 \\ -2.98 (-3.23, -2.63) & 13.3 \\ -2.98 (-2.53, -2.63) & 13.3 \\ -2.98 (-2.53, -2.63) & 13.3 \\ -2.98 (-2.73, -1.85) & -2.63 (-2.73, -1.85) & -2.63 \\ -2.53 (-2.74, -1.56) & 6.63 \\ -2.53 (-2.74, -1.56) & 6.64 \\ -2.53 (-2.74, -1.56) & 6.64 \\ -2.53 (-2.74, -1.56) & 6.64 \\ -2.53 (-2.74, -1.85) & 6.44 \\ -1.95 (-2.48, -1.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.95 (-2.48, -1.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.95 (-2.48, -1.41) & 6.77 \\ -0.95 (-2.48, -1.41) & 6.77 \\ -0.95 (-2.63, -1.27) & 6.43 \\ -0.65 (-0.99, -0.27) & 7.06 \\ -0.101 & 6.81 \\ -0.101 & 6.81 \\ -0.101 & 6.81 \\ -0.101 & 6.81 \\ -0.101 & 6.81 \\ -0.101 & 6.81 \\ -0.101 & 6.81 \\ -0.101 & 6.81 \\ -0.28 (-2.46, -1.52) & . \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                |                      |      |
| $\begin{array}{c} -5.50 (-6.49, -4.51) & 12.2 \\ -2.53 (-3.00, -2.05) & 13.0 \\ -3.27 (-3.95, -2.60) & 12.4 \\ -2.53 (-3.00, -2.05) & 13.0 \\ -3.27 (-3.95, -2.60) & 12.4 \\ -2.98 (-3.32, -2.63) & 13.3 \\ -0.19 (-0.65, 0.25) & 13.3 \\ -0.19 (-0.65, 0.25) & 13.3 \\ -0.19 (-0.65, 0.25) & 13.3 \\ -0.19 (-0.65, 0.25) & 13.3 \\ -3.93 (-5.23, -2.62) & 100 \\ -3.23 (-1.77, -0.70) & 6.77 \\ -7.26 (-0.69, 0.17) & 6.92 \\ -2.15 (-2.74, -1.56) & 6.63 \\ -2.53 (-3.21, -1.85) & 6.43 \\ -2.59 (-2.48, -1.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.95 (-1.71, 0.70) & 6.75 \\ -1.72 (-1.77, -1.70) & 6.77 \\ -0.95 (-1.71, 0.70) & 6.75 \\ -0.73 (-3.94, -2.72) & 6.59 \\ -2.73 (-3.94, -2.72) & 6.59 \\ -2.73 (-3.94, -2.72) & 6.59 \\ -2.73 (-3.94, -2.72) & 6.59 \\ -2.73 (-3.94, -2.72) & 6.59 \\ -2.73 (-3.94, -2.72) & 6.59 \\ -2.73 (-3.94, -2.72) & 6.59 \\ -2.73 (-3.94, -2.72) & 6.59 \\ -2.73 (-3.94, -2.72) & 6.59 \\ -2.73 (-3.94, -2.72) & 6.59 \\ -2.73 (-3.94, -2.72) & 6.59 \\ -2.73 (-3.94, -2.72) & 6.59 \\ -2.73 (-3.94, -2.72) & 6.59 \\ -2.73 (-3.94, -2.72) & 6.59 \\ -2.73 (-3.94, -2.72) & 6.59 \\ -2.73 (-3.94, -2.72) & 6.59 \\ -2.73 (-3.94, -2.72) & 6.59 \\ -2.73 (-3.94, -2.72) & 6.59 \\ -2.73 (-3.94, -2.72) & 6.59 \\ -2.73 (-3.94, -2.72) & 6.59 \\ -2.73 (-3.94, -2.72) & 6.59 \\ -2.73 (-3.94, -2.72) & 6.59 \\ -2.73 (-3.94, -2.72) & 6.59 \\ -2.73 (-3.94, -2.72) & 6.59 \\ -2.73 (-3.94, -2.72) & 6.59 \\ -2.73 (-3.94, -2.72) & 6.59 \\ -2.73 (-3.94, -2.72) & 6.59 \\ -2.73 (-3.94, -2.72) & 6.59 \\ -2.73 (-3.94, -2.72) & 6.59 \\ -2.73 (-3.94, -2.72) & 6.59 \\ -2.73 (-3.94, -2.72) & 6.59 \\ -2.73 (-3.94, -2.72) & 6.59 \\ -2.73 (-3.94, -2.72) & 6.59 \\ -2.73 (-3.94, -2.72) & 6.59 \\ -2.73 (-3.94, -2.72) & 6.59 \\ -2.73 (-3.94, -2.72) & 6.59 \\ -2.73 (-3.94, -2.72) & 6.59 \\ -2.73 (-3.94, -2.72) & 6.59 \\ -2.73 (-3.94, -2.72) & 6.59 \\ -2.73 (-3.94, -2.72) & 6.59 \\ -2.75 (-2.64, -1.52) & -2.59 \\ -2.8 (-2.64, -1.52) & -2.59 \\ -2.8 (-2.64, -1.52) & -2.59 \\ -2.8 (-2.64, -1.52) & -2.59 \\ -2.8 (-2.64, -1.52) & -2.59 \\ -2.8 ($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                |                      |      |
| $\begin{array}{c} -2.53 (-3.00, -2.05) & 13.3 \\ -3.27 (-3.95, -2.60) & 12.5 \\ -3.28 (-3.20, -2.05) & 13.1 \\ -3.27 (-3.95, -2.60) & 12.5 \\ -2.98 (-3.22, -2.63) & 13.1 \\ -0.19 (-0.63, 0.25) & 13.5 \\ -0.19 (-0.63, 0.25) & 13.5 \\ -0.19 (-0.63, 0.25) & 13.5 \\ -0.19 (-0.63, 0.25) & 13.5 \\ -0.19 (-0.63, 0.25) & 13.5 \\ -0.19 (-0.63, 0.25) & 13.5 \\ -0.19 (-0.63, 0.25) & 13.5 \\ -0.25 (-1.77, -0.70) & 6.77 \\ -0.25 (-2.48, -1.41) & 6.77 \\ -0.25 (-2.48, -1.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Zeng (2015)                                    | -6.96 (-8.46, -5.46) | 11.3 |
| $\begin{array}{c} -2.53 (-3.00, -2.05) & 13.3 \\ -3.27 (-3.95, -2.60) & 12.5 \\ -3.28 (-3.20, -2.05) & 13.1 \\ -3.27 (-3.95, -2.60) & 12.5 \\ -2.98 (-3.22, -2.63) & 13.1 \\ -0.19 (-0.63, 0.25) & 13.5 \\ -0.19 (-0.63, 0.25) & 13.5 \\ -0.19 (-0.63, 0.25) & 13.5 \\ -0.19 (-0.63, 0.25) & 13.5 \\ -0.19 (-0.63, 0.25) & 13.5 \\ -0.19 (-0.63, 0.25) & 13.5 \\ -0.19 (-0.63, 0.25) & 13.5 \\ -0.25 (-1.77, -0.70) & 6.77 \\ -0.25 (-2.48, -1.41) & 6.77 \\ -0.25 (-2.48, -1.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 (-1.48, -0.41) & 6.77 \\ -0.94 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                |                      | 12.3 |
| $\begin{array}{c} -3.27(-3.95,-2.60) & 12.8\\ -2.98(-3.32,-2.63) & 13.1\\ -0.19(-0.63,0.25) & 13.3\\ -0.19(-0.63,0.25) & 13.3\\ -3.93(-5.23,-2.62) & 100\\ -3.93(-5.23,-2.62) & 100\\ -3.93(-5.23,-2.62) & 100\\ -3.93(-5.23,-2.62) & 100\\ -1.23(-1.77,-0.70) & 6.74\\ -0.26(-0.69,0.17) & 6.92\\ -2.15(-2.74,-1.56) & 6.63\\ -2.53(-3.21,-1.85) & 6.43\\ -1.95(-2.48,-1.41) & 6.74\\ -1.95(-2.48,-1.41) & 6.74\\ -0.94(-1.48,-0.41) & 6.74\\ -0.94(-1.48,-0.41) & 6.74\\ -0.94(-1.48,-0.41) & 6.74\\ -0.94(-1.48,-0.41) & 6.74\\ -0.94(-1.48,-0.41) & 6.74\\ -0.94(-1.48,-0.41) & 6.74\\ -0.94(-1.48,-0.41) & 6.74\\ -0.94(-1.48,-0.41) & 6.74\\ -0.94(-1.48,-0.41) & 6.74\\ -0.94(-1.48,-0.41) & 6.74\\ -0.95(-1.17,0.07) & 6.55\\ -1.17,0.07) & 6.55\\ -1.17,0.07) & 6.55\\ -1.17,0.07) & 6.55\\ -1.17,0.07) & 6.55\\ -1.17,0.07) & 6.55\\ -1.17,0.07) & 6.57\\ -0.56(-1.17,0.07) & 6.57\\ -0.58(-1.17,0.07) & 6.57\\ -0.58(-1.17,0.07) & 6.57\\ -0.58(-1.17,0.07) & 6.57\\ -0.58(-1.17,0.07) & 6.57\\ -0.58(-1.17,0.07) & 6.57\\ -0.58(-1.17,0.07) & 6.57\\ -0.58(-1.17,0.07) & 6.57\\ -0.58(-1.17,0.07) & 6.57\\ -0.58(-1.17,0.07) & 6.57\\ -0.58(-1.17,0.07) & 6.57\\ -0.58(-1.17,0.07) & 6.57\\ -0.58(-1.17,0.07) & 6.57\\ -0.58(-1.17,0.07) & 6.57\\ -0.58(-1.17,0.07) & 6.57\\ -0.58(-1.17,0.07) & 6.57\\ -0.58(-1.17,0.07) & 6.57\\ -0.58(-1.17,0.07) & 6.57\\ -0.58(-1.17,0.07) & 6.57\\ -0.58(-1.17,0.07) & 6.57\\ -0.58(-1.17,0.07) & 6.57\\ -0.58(-1.17,0.07) & 6.57\\ -0.58(-1.17,0.07) & 6.57\\ -0.58(-1.17,0.07) & 6.57\\ -0.58(-1.17,0.07) & 6.57\\ -0.58(-1.17,0.07) & 6.57\\ -0.58(-1.17,0.07) & 6.57\\ -0.58(-1.17,0.07) & 6.57\\ -0.58(-1.17,0.07) & 6.57\\ -0.58(-1.17,0.07) & 6.57\\ -0.58(-1.17,0.07) & 6.57\\ -0.58(-1.17,0.07) & 6.57\\ -0.58(-1.17,0.07) & 6.57\\ -0.58(-1.17,0.07) & 6.57\\ -0.58(-1.17,0.07) & 6.57\\ -0.58(-1.17,0.07) & 6.57\\ -0.58(-1.17,0.07) & 6.57\\ -0.58(-1.17,0.07) & 6.57\\ -0.58(-1.17,0.07) & 6.57\\ -0.58(-1.17,0.07) & 6.57\\ -0.58(-1.17,0.07) & 6.57\\ -0.58(-1.17,0.07) & 6.57\\ -0.58(-1.17,0.07) & 6.57\\ -0.58(-1.17,0.07) & 6.57\\ -0.58(-1.15,0.07) & 6.58\\ -0.58(-1.15,0.07) & 6.58\\ -0.58(-1.15,0.07) & 6.58\\ -0.58(-1.15,0.07) & 6.58\\ -0.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                |                      |      |
| Then (2018)<br>Va (2017)<br>Va (2017)<br>Va (2017)<br>Uabtotal (1-squared = 97.0%, p = 0.000)<br>-0.19 (-0.63, 0.25)<br>-3.39 (-5.23, -2.62)<br>Uabtotal (1-squared = 97.0%, p = 0.000)<br>-1.23 (-1.77, -0.70)<br>-1.23 (-1.77, -0.70)<br>-2.53 (-3.21, -1.85)<br>-1.23 (-2.48, -1.41)<br>-1.25 (-2.48, -1.41)<br>-1.25 (-2.48, -1.41)<br>-1.25 (-2.48, -1.41)<br>-1.25 (-2.48, -1.41)<br>-1.23 (-1.70, 0.7)<br>-1.53 (-3.40, -2.23)<br>-1.60 (-1.87, -1.32)<br>-1.50 (-2.00, -1.01)<br>-1.28 (-2.36, -1.37)<br>-1.00<br>-1.88 (-2.36, -1.37)<br>-1.00<br>-2.08 (-2.46, -1.52)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                |                      |      |
| $\begin{tabular}{ c  c  c  c  c  c  c  c  c  c  c  c  c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                |                      |      |
| Subtotal (1-squared = 97.0%, p = 0.000) $-3.93 (-5.23, -2.62)$ 100         Lenght of hospital stay <b>D</b> $-1.23 (-1.77, -0.70)$ $67.7$ Mac (2015) $-0.26 (-0.60, 0.17)$ $69.2$ Sinkemani (2015) $-0.26 (-0.60, 0.17)$ $69.2$ Juna (2014) $-2.25 (-2.74, -1.56)$ $66.6$ Vu (2009) $-2.53 (-3.21, -1.85)$ $64.2$ Vu (2015) $-0.94 (-1.48, -0.41)$ $67.7$ Chang (2015) $-0.94 (-1.48, -0.41)$ $67.7$ Chang (2015) $-0.56 (-1.70, 0.07)$ $68.3$ Sing (2015) $-0.56 (-1.77, -0.70)$ $7.06$ Sing (2015) $-0.56 (-1.72, 0.72)$ $6.93$ Sing (2015) $-0.56 (-1.72, 0.72)$ $6.93$ Sing (2015) $-0.56 (-1.72, -0.70)$ $6.92$ Sing (2017) $-0.63 (-0.99, -0.27)$ $7.04$ Sing (2017) $-1.56 (-2.30, -1.27)$ $6.43$ Vu (2017) $-1.95 (-2.63, -1.27)$ $6.43$ Vu (2017) $-1.95 (-2.63, -1.27)$ $6.43$ Subtotal (1-squared = 92.9%, p = 0.000) $-1.86 (-2.36, -1.37)$ $100$ Overall (1-squared = 92.7%, p = 0.000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Chen (2018)                                    | -2.98 (-3.32, -2.63) | 13.1 |
| Subtotal (1-squared = 97.0%, p = 0.000)       -3.93 (-5.23, -2.62)       100         Lenght of hospital stay $D$ -1.23 (-1.77, -0.70)       6.77         Mac (2015)       -0.26 (-0.69, 0.17)       6.92         Sinkemani (2015)       -0.26 (-0.69, 0.17)       6.92         Nu (2009)       -2.15 (-2.74, -1.56)       6.63         Nu (2015)       -1.95 (-2.48, -1.41)       6.77         Chang (2015)       -0.94 (-1.48, -0.41)       6.77         Thang (2015)       -0.94 (-1.48, -0.41)       6.77         Sing (2015)       -0.316 (-4.00, -2.32)       6.00         Sing (2015)       -2.73 (-3.19, -2.26)       6.83         Sing (2015)       -2.73 (-3.19, -2.26)       6.83         Sing (2015)       -2.73 (-3.19, -2.26)       6.83         Sing (2017)       -0.35 (-4.09, -3.10)       6.22         Chang (2018)       -0.65 (-1.69, -0.10)       6.82         Sing (2017)       -1.86 (-2.36, -1.27)       6.43         Shabtotal (1-squared = 92.9%, p = 0.000)       -1.86 (-2.36, -1.37)       100         Overall (1-squared = 92.9%, p = 0.000)       -2.08 (-2.64, -1.52)       .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Wu (2017)                                      | -0.19 (-0.63, 0.25)  | 13.0 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Subtotal (I-squared = 97.0%, p = 0.000)        |                      | 100. |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Lenght of hospital stay                        | i l                  |      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                | -1.23 (-1.77, -0.70) | 6.74 |
| $\begin{array}{c} \mbox{lam}(2014) & -2.15 (-2.74, -1.56) & 6.63 \\ \mbox{Vu}(2009) & -2.53 (-3.21, -1.85) & 6.42 \\ \mbox{Vu}(2015) & -2.53 (-3.21, -1.85) & 6.42 \\ \mbox{I}=1.95 (-2.48, -0.41) & 6.74 \\ \mbox{I}=1.95 (-2.48, -0.41) & 6.74 \\ \mbox{I}=0.55 (-1.17, 0.07) & 6.75 \\ \mbox{I}=0.25 (-1.15, 0.07) & 6.75 \\ \mbox{I}=0.25 (-1.17, 0.07) & 6.75 \\ \mbox{I}=0.25 (-2.63, -1.27) & 6.45 \\ \mbox{I}=0.25 (-2.63, -1.25) & -2.5 \\ \mbox{I}=0.25 (-2.63, -1.25 (-2.53, -1.25 ) & -2.5 \\ \mbox{I}=0.25 (-2.63, -1.25 (-2.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                |                      |      |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                |                      |      |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                |                      |      |
| -0.94 (-1.48, -0.41) $6.7$ $hang (2015)$ $-0.55 (-1.17, 0.07)$ $6.55$ $cng (2015)$ $-3.16 (-4.00, -2.32)$ $6.00$ $i (2015)$ $-3.33 (-3.94, -2.72)$ $6.55$ $i (2015)$ $-2.73 (-3.19, -2.26)$ $6.83$ $i (2015)$ $-0.65 (-1.17, 0.07)$ $6.75$ $i (2015)$ $-3.33 (-3.94, -2.72)$ $6.55$ $i (2015)$ $-2.73 (-3.19, -2.26)$ $6.83$ $i (2017)$ $-0.65 (-1.87, -1.32)$ $7.10$ $i (2017)$ $-1.60 (-1.87, -1.32)$ $7.10$ $i (2017)$ $-1.60 (-2.00, -1.01)$ $6.81$ $i (2017)$ $-1.50 (-2.00, -1.01)$ $6.81$ $i (2017)$ $-1.86 (-2.36, -1.37)$ $100$ $va (2017)$ $-1.86 (-2.36, -1.37)$ $100$ $va (2017)$ $-1.86 (-2.36, -1.37)$ $100$ $va (2017)$ $-2.08 (-2.46, -1.52)$ $.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |                      |      |
| -0.94 (-1.48, -0.41) $6.7$ $hang (2015)$ $-0.55 (-1.17, 0.07)$ $6.55$ $cng (2015)$ $-3.16 (-4.00, -2.32)$ $6.00$ $i (2015)$ $-3.33 (-3.94, -2.72)$ $6.55$ $i (2015)$ $-2.73 (-3.19, -2.26)$ $6.83$ $i (2015)$ $-0.65 (-1.17, 0.07)$ $6.75$ $i (2015)$ $-3.33 (-3.94, -2.72)$ $6.55$ $i (2015)$ $-2.73 (-3.19, -2.26)$ $6.83$ $i (2017)$ $-0.65 (-1.87, -1.32)$ $7.10$ $i (2017)$ $-1.60 (-1.87, -1.32)$ $7.10$ $i (2017)$ $-1.60 (-2.00, -1.01)$ $6.81$ $i (2017)$ $-1.50 (-2.00, -1.01)$ $6.81$ $i (2017)$ $-1.86 (-2.36, -1.37)$ $100$ $va (2017)$ $-1.86 (-2.36, -1.37)$ $100$ $va (2017)$ $-1.86 (-2.36, -1.37)$ $100$ $va (2017)$ $-2.08 (-2.46, -1.52)$ $.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Wu (2015)                                      |                      | 6.74 |
| thang (2015)       -0.55 (-1.17, 0.07)       6.55         teng (2015)       -3.16 (-4.00, -2.32)       6.00         (2015)       -3.33 (-3.94, -2.72)       6.55         transport       -2.73 (-3.19, -2.26)       6.00         transport       -0.65 (-1.17, 0.07)       6.57         transport       -3.36 (-3.49, -2.22)       6.00         transport       -2.73 (-3.19, -2.26)       6.83         transport       -3.85 (-4.60, -3.10)       6.27         transport       -3.85 (-4.60, -3.10)       6.27         transport       -3.85 (-4.60, -3.10)       6.27         transport       -1.66 (-1.87, -1.32)       7.10         Unit (2017)       -1.59 (-2.00, -1.01)       6.83         Val (2017)       -1.50 (-2.00, -1.01)       6.83         Subtotal (I-squared = 92.9%, p = 0.000)       -1.86 (-2.36, -1.37)       100         Overall (I-squared = 98.7%, p = 0.000)       -2.08 (-2.64, -1.52)       .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                | -0.94 (-1.48 -0.41)  | 6.74 |
| $\begin{array}{c} \mbox{cerg} (2015) & -3.16 (-4.00, -2.32) & 6.00 \\ -3.33 (-3.94, -2.72) & 6.53 \\ -3.33 (-3.94, -2.72) & 6.53 \\ -2.73 (-3.19, -2.26) & 6.83 \\ -2.73 (-3.19, -2.26) & 6.83 \\ -2.73 (-3.19, -2.26) & 6.83 \\ -2.73 (-3.19, -2.26) & 6.83 \\ -2.73 (-3.19, -2.26) & 6.83 \\ -2.73 (-3.19, -2.26) & 6.83 \\ -2.73 (-3.19, -2.26) & 6.83 \\ -2.73 (-3.19, -2.26) & 6.83 \\ -2.73 (-3.19, -2.26) & 6.83 \\ -2.73 (-3.19, -2.26) & 6.83 \\ -2.73 (-3.19, -2.26) & 6.83 \\ -2.73 (-3.19, -2.26) & 6.83 \\ -2.73 (-3.19, -2.26) & 6.83 \\ -2.73 (-3.19, -2.26) & 6.83 \\ -1.60 (-1.87, -1.32) & 7.16 \\ -1.95 (-2.03, -1.27) & 6.43 \\ -1.50 (-2.00, -1.01) & 6.81 \\ -1.86 (-2.36, -1.37) & 100 \\ -2.08 (-2.64, -1.52) & . \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |                      |      |
| i (2015)<br>(arg (2015)<br>(arg (2015)<br>(arg (2015)<br>(arg (2017)<br>Chen (2018)<br>(arg (2017)<br>Chen (2018)<br>(arg (2017)<br>Chen (2018)<br>(arg (2017)<br>Chen (2018)<br>(arg (2017)<br>(br)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)<br>(cr)                                                                                                                                                                            |                                                |                      |      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |                      |      |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Li (2015)                                      | -3.33 (-3.94, -2.72) | 6.59 |
| .iu (2018)     -0.63 (-0.99, -0.27)     7.04       .ing (2017)     -3.88 (-4.60, -3.10)     6.27       .ing (2017)     -1.60 (-1.87, -1.32)     7.10       .iu (2017)     -1.60 (-1.87, -1.32)     7.11       .iu (2017)     -1.95 (-2.00, -1.01)     6.81       .iu (2017)     -1.50 (-2.00, -1.01)     6.81       .iu (2017)     -1.86 (-2.36, -1.37)     100       .vareed = 92.9%, p = 0.000)     .     -2.08 (-2.64, -1.52)     .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yang (2015)                                    | -2.73(-3.19, -2.26)  | 6.87 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |                      |      |
| Chem (2018)       -1.60 (-187, -1.32)       7.11         .iu (2017)       -1.95 (-2.63, -1.27)       6.43         Nu (2017)       -1.50 (-2.00, -1.01)       6.81         Subtotal (I-squared = 92.9%, p = 0.000)       6       -1.86 (-2.36, -1.37)       100         Overall (I-squared = 98.7%, p = 0.000)       -2.08 (-2.64, -1.52)       .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                      |      |
| .iu (2017)       -1.95 (-2.63, -1.27)       6.43         .vu (2017)       -1.50 (-2.00, -1.01)       6.81         .ubtotal (I-squared = 92.9%, p = 0.000)       -1.86 (-2.36, -1.37)       100         .verall (I-squared = 98.7%, p = 0.000)       -2.08 (-2.64, -1.52)       .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jing (2017)                                    |                      |      |
| .iu (2017)       -1.95 (-2.63, -1.27)       6.43         .vu (2017)       -1.50 (-2.00, -1.01)       6.81         .ubtotal (I-squared = 92.9%, p = 0.000)       -1.86 (-2.36, -1.37)       100         .verall (I-squared = 98.7%, p = 0.000)       -2.08 (-2.64, -1.52)       .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                |                      | 7.16 |
| Vu (2017)         -1.50 (-2.00, -1.01)         6.81           Subtotal (I-squared = 92.9%, p = 0.000)         -1.86 (-2.36, -1.37)         100           Overall (I-squared = 98.7%, p = 0.000)         -2.08 (-2.64, -1.52)         .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Liu (2017)                                     | -1.95 (-2.63, -1.27) | 6.43 |
| Subtotal (1-squared = 92.9%, p = 0.000)       Image: squared = 92.9%, p = 0.000)       Image: squ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                |                      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Subtotal (I-squared = 92.9%, p = 0.000)        |                      | 100. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Overall (I-squared = 98.7%, p = 0.000)         | -2.08 (-2.64 -1.52)  | _    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NOTE: Weights are from random effects analysis | ¥                    |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,                                              |                      |      |

### Figure 6. Forest plot for symptoms

Comparisons of duration of operation (A), blood loss (B), length of incision (C), and length of hospital stay (D).

# **Discussion**

We comprehensively and systematically reviewed the literature and found that: (i) PETD resulted in lower shortand long-term VAS scores than PEID, despite the absence of a significant difference between PETD and PEID in terms of short- and long-term ODI scores and the numbers of studies of excellent and good quality; (ii) although the complication rates of PETD and PEID were similar, PEID was associated with significantly less recurrence; and (iii) compared with PEID, PETD required a longer operative time, but was associated with less blood loss, a shorter incision, and a shorter hospital stay. Overall, PETD was better and safer than PEID.

PELD has become a more popular treatment for LDH than open discectomy. A previous study assessed the efficacy of PELD using transforaminal and interlaminar approaches [10]. However, that study had several limitations. First, only nine studies involving 621 patients were included in the analysis; we included 26 studies with 3294 patients.



Second, no more than five studies were included in certain comparisons. Blood loss, bed time after surgery, and duration of hospital stay were reported in only two articles; the veracity of the pooled results is thus debatable. Third, our study involved the analysis of more information. We evaluated the short- and long-term VAS and ODI scores, and the complication and recurrence rates. Finally, our study (with a larger sample) indicated that PETD significantly reduced the blood loss, operative duration, length of incision, and duration of hospital stay; such conclusions could not be drawn in the previous study [10].

We found that PETD significantly reduced the short- and long-term VAS scores. The short-term VAS score reflects not only made improvements in disc herniation, but also the extent of surgical trauma. The incision at the intervertebral foramen was smaller (generally approximately 0.8 cm) in PETD than in PEID [19]. The PETD approach channel is expanded via blunt muscle separation, which damages tissue and muscle to lesser extents than the PEID approach [20]. Patients can feel nerve root pain during surgery. The long-term VAS scores further suggested that PETD caused less tissue injury than PEID. However, we found that PETD required a longer operative time. In general, longer spinal surgery times are associated with more complications and re-operations; surgical time is an important comparative parameter when selecting an approach. Most herniations were located at L5/S1 and L4/5, where the intervertebral disc spaces are wide; traditional surgery is not difficult. However, the anatomical structure renders it challenging to puncture and remove disc fragments via PETD, especially at L5/S1 [21,22]. Moreover, PEID is easier to surgically master; this approach uses elements of traditional surgery. We found no significant difference in complication rates, but PETD was associated with a higher recurrence rate than PEID. In terms of radiation exposure during surgery, a prospective study showed that a surgeon should perform no more than 291 procedures [23]. PETD is associated with more radiation exposure than PEID [24], reflecting the longer operative time caused by puncture difficulties, particularly in patients with high cristae iliacae, narrow foramina, or large facet joints. Radiation exposure increases with the operative time.

We found no significant difference in the complication rates of the two groups, in contrast with previous reports [10]. A retrospective cohort study including 5338 patients showed that the adult spinal surgery time was associated with several postoperative complications, including (but not limited to) wound and pulmonary complications, venous thromboembolism, the need for postoperative transfusion, length of hospital stay  $\geq$ 5 days, sepsis, the need for re-operation, and unplanned re-admission [25]. We analyzed the recurrence rate, blood loss, and duration of hospital stay. These results also differed from previous findings. PETD was associated with a longer operative time, but less blood loss and a shorter hospital stay, than was PEID. We speculate that complications tend to increase with longer trauma duration; less trauma leads to fewer complications. However, the degree of heterogeneity amongst studies was high; the results may be unreliable.

The principal strength of our study was that we adhered to the PRISMA checklist and the recommendations of the Cochrane collaboration [26]. We reviewed many studies with large samples. However, limitations remain. First, most included studies were retrospective in nature; only eight were randomized controlled trials (which yield higher quality evidence). Further work is required. Second, the degree of within-study heterogeneity was rather high for certain parameters; such heterogeneity was statistical and/or clinical, and may compromise the reliability of our pooled data. Third, the surgical approach was probably influenced by disease severity/type. However, our examination of a large sample may overcome these limitations. In conclusion, PETD more effectively treated LDH than PEID. The PETD operative time was longer than that of PEID, but the two techniques were equally safe. PETD was associated with less blood loss, a shorter hospital stay, and a smaller incision than PEID. PETD should thus be preferred when treating LDH. Randomized controlled trials with larger samples are required to confirm our findings.

### Acknowledgements

We thank the colleagues of Department of Orthopedics, Xiangya Hospital, Central South University.

### Author contribution

Z.L. and Y.H. conceived and designed the research. P.C. and Z.L. analyzed the data. Z.L. created all tables and figures. P.C. drafted the manuscript. Z.L. and Y.H. critically revised the manuscript. All authors read and approved the final manuscript.

### Funding

The authors declare that there are no sources of funding to be acknowledged.

### **Competing interests**

The authors declare that there are no competing interests associated with the manuscript.





### Abbreviations

CI, confidence interval; LDH, lumbar disc herniation; ODI, Oswestry disability index; PEID, percutaneous endoscopic interlaminar discectomy; PELD, percutaneous endoscopy lumbar discectomy; PETD, percutaneous endoscopic transforaminal discectomy; RR, relative risk; SMD, standardized mean difference; VAS, visual analog scale.

### References

- 1 Amin, R.M., Andrade, N.S. and Neuman, B.J. (2017) Lumbar disc herniation. Curr. Rev. Musculoskelet. Med. 10, 507–516, https://doi.org/10.1007/s12178-017-9441-4
- 2 Benoist, M. (2002) The natural history of lumbar disc herniation and radiculopathy. *Joint Bone Spine* 69, 155–160, https://doi.org/10.1016/S1297-319X(02)00385-8
- 3 Kaneuchi, Y., Sekiguchi, M., Kameda, T., Kobayashi, Y. and Konno, S. (2019) Temporal and spatial changes of mu-opioid receptors in the brain, spinal cord and dorsal root ganglion in a rat lumbar disc herniation model. *Spine* **44**, 85–95, https://doi.org/10.1097/BRS.00000000002776
- 4 Wang, G., Hu, J., Liu, X. and Cao, Y. (2015) Surgical treatments for degenerative lumbar scoliosis: a meta-analysis. *Eur. Spine J.* 24, 1792–1799, https://doi.org/10.1007/s00586-015-3942-x
- 5 Tu, Z., Li, Y.W., Wang, B., Lu, G., Li, L., Kuang, L. et al. (2017) Clinical outcome of full-endoscopic interlaminar discectomy for single-level lumbar disc herniation: a minimum of 5-year follow-up. *Pain Physician* **20**, E425–E430
- 6 Kuang, L., Wang, B. and Lu, G. (2017) Transforaminal lumbar interbody fusion versus mini-open anterior lumbar interbody fusion with oblique self-anchored stand-alone cages for the treatment of lumbar disc herniation: a retrospective study with 2-year follow-up. Spine 42, E1259–E1265, https://doi.org/10.1097/BRS.00000000002145
- 7 Wang, B., Lu, G., Liu, W., Cheng, I. and Patel, A.A. (2012) Full-endoscopic interlaminar approach for the surgical treatment of lumbar disc herniation: the causes and prophylaxis of conversion to open. Arch. Orthop. Trauma Surg. 132, 1531–1538, https://doi.org/10.1007/s00402-012-1581-9
- 8 He, J., Xiao, S., Wu, Z. and Yuan, Z. (2016) Microendoscopic discectomy versus open discectomy for lumbar disc herniation: a meta-analysis. *Eur. Spine J.* **25**, 1373–1381, https://doi.org/10.1007/s00586-016-4523-3
- 9 Yoon, S.M., Ahn, S.S., Kim, K.H., Kim, Y.D., Cho, J.H. and Kim, D.H. (2012) Comparative study of the outcomes of percutaneous endoscopic lumbar discectomy and microscopic lumbar discectomy using the tubular retractor system based on the VAS, ODI, and SF-36. *Korean J. Spine* 9, 215–222, https://doi.org/10.14245/kjs.2012.9.3.215
- 10 Sinkemani, A., Hong, X., Gao, Z.X., Zhuang, S.Y., Jiang, Z.L., Zhang, S.D. et al. (2015) Outcomes of microendoscopic discectomy and percutaneous transforaminal endoscopic discectomy for the treatment of lumbar disc herniation: a comparative retrospective study. *Asian Spine J.* **9**, 833–840, https://doi.org/10.4184/asj.2015.9.6.833
- 11 Wang, B., Lu, G., Patel, A.A., Ren, P. and Cheng, I. (2011) An evaluation of the learning curve for a complex surgical technique: the full endoscopic interlaminar approach for lumbar disc herniations. *Spine J.* **11**, 122–130, https://doi.org/10.1016/j.spinee.2010.12.006
- 12 Ruetten, S., Komp, M., Merk, H. and Godolias, G. (2009) Recurrent lumbar disc herniation after conventional discectomy: a prospective, randomized study comparing full-endoscopic interlaminar and transforaminal versus microsurgical revision. J. Spinal Disord. Tech. 22, 122–129, https://doi.org/10.1097/BSD.0b013e318175ddb4
- 13 Wells, G., Shea, B., O'Connell, D., Peterson, J., Welch, V., Losos, M. et al. (2003) The Newcastle–Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Available at http://www.ohri.ca/programs/clinical\_epidemiology/oxford.asp (Accessed 8 Feb 2019)
- 14 Higgins, J.P., Altman, D.G., Gotzsche, P.C., Juni, P., Moher, D., Oxman, A.D. et al. (2011) The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. *BMJ* **343**, d5928, https://doi.org/10.1136/bmj.d5928
- 15 Higgins, J.P. and Thompson, S.G. (2002) Quantifying heterogeneity in a meta-analysis. Stat. Med. 21, 1539–1558, https://doi.org/10.1002/sim.1186
- 16 Higgins, J.P., Thompson, S.G., Deeks, J.J. and Altman, D.G. (2003) Measuring inconsistency in meta-analyses. BMJ 327, 557–560, https://doi.org/10.1136/bmj.327.7414.557
- 17 Egger, M., Davey, S.G., Schneider, M. and Minder, C. (1997) Bias in meta-analysis detected by a simple, graphical test. *BMJ* **315**, 629–634, https://doi.org/10.1136/bmj.315.7109.629
- 18 Begg, C.B. and Mazumdar, M. (1994) Operating characteristics of a rank correlation test for publication bias. *Biometrics* **50**, 1088–1101, https://doi.org/10.2307/2533446
- 19 Cai, P., Kong, Q. and Song, Y. (2018) Short-term effectiveness of percutaneous endoscopic lumbar discectomy in treatment of buttock pain associated with lumbar disc herniation. *Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi* **32**, 673–677
- 20 Kim, E., Kim, S.Y., Kim, H.S., Jeong, J.K., Jung, S.Y., Han, C.H. et al. (2017) Effectiveness and safety of acupotomy for lumbar disc herniation: a study protocol for a randomized, assessor-blinded, controlled pilot trial. *Integr. Med. Res.* 6, 310–316, https://doi.org/10.1016/j.imr.2017.07.005
- 21 Xu, B., Xu, H., Destandau, J., Ma, X., He, J., Xia, Q. et al. (2017) Anatomic investigation of lumbar transforaminal fenestration approach and its clinical application in far lateral disc herniation. *Medicine* **96**, e7542, https://doi.org/10.1097/MD.00000000007542
- 22 Wang, C.Z., Li, D.L., Mu, S.X., Hou, B.Z. and Liu, X. (2014) Anatomic investigation of the pedicle fat grafts with the third lumbar segmental artery and its application in reoperation for lumbar disc herniation. *Zhongguo Gu Shang* **27**, 401–404
- 23 Ahn, Y., Kim, C.H., Lee, J.H., Lee, S.H. and Kim, J.S. (2013) Radiation exposure to the surgeon during percutaneous endoscopic lumbar discectomy: a prospective study. Spine 38, 617–625, https://doi.org/10.1097/BRS.0b013e318275ca58
- 24 Wu, R., Liao, X. and Xia, H. (2017) Radiation exposure to the surgeon during ultrasound-assisted transforaminal percutaneous endoscopic lumbar discectomy: a prospective study. World Neurosurg. 101, 658–665, https://doi.org/10.1016/j.wneu.2017.03.050
- 25 Phan, K., Kim, J.S., Capua, J.D., Lee, N.J., Kothari, P., Dowdell, J. et al. (2017) Impact of operation time on 30-day complications after adult spinal deformity surgery. *Global Spine J.* **7**, 664–671, https://doi.org/10.1177/2192568217701110



26 Liberati, A., Altman, D.G., Tetzlaff, J., Mulrow, C., Gotzsche, P.C., Ioannidis, J.P. et al. (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. *J. Clin. Epidemiol.* **62**, e1–e34, https://doi.org/10.1016/j.jclinepi.2009.06.006