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Abstract

The main target of Single image super-resolution is to recover high-quality or high-resolution

image from degraded version of low-quality or low-resolution image. Recently, deep learn-

ing-based approaches have achieved significant performance in image super-resolution

tasks. However, existing approaches related with image super-resolution fail to use the fea-

tures information of low-resolution images as well as do not recover the hierarchical features

for the final reconstruction purpose. In this research work, we have proposed a new architec-

ture inspired by ResNet and Xception networks, which enable a significant drop in the num-

ber of network parameters and improve the processing speed to obtain the SR results. We

are compared our proposed algorithm with existing state-of-the-art algorithms and confirmed

the great ability to construct HR images with fine, rich, and sharp texture details as well as

edges. The experimental results validate that our proposed approach has robust perfor-

mance compared to other popular techniques related to accuracy, speed, and visual quality.

1 Introduction

Single image super-resolution (SISR) is more attractive in recovering the high-resolution (HR)

output image from a degraded version of a low-resolution (LR) input image generating by a

cheaper cost imaging framework within the limited environmental conditions. Recently, SISR,

is a very interesting research space in the area of image and computer vision tasks, which is

extensively applied in various applications such as; an object detection [1, 2], image segmenta-

tion [3, 4] and image classification [5, 6] purposes.

The better performance and higher accuracy of SISR have been encouraged in the area of

an image, especially in medical imaging [7–9], face detection and recognition [10, 11], a high-

definition television (HDTV) [12], video surveillance [13], satellite imaging [14] and autono-

mous driving technology [15, 16], where rich details information is greatly desired. Though,

image SR is a highly challenging ill-posed inverse problem. Recently, a number of SISR

approaches have been discussed to resolve the ill-posed inverse problem. These approaches
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can be subdivided into interpolation-based approaches (mostly employed as a pre-processing

step to reconstruct the HR image), reconstruction-based approaches, and learning-based

approaches. The interpolation-based approaches included as nearest neighbor-based interpo-

lation [17], cubic interpolation [18] and edge guided interpolations. Although, above

approaches are simple, and easy to implement, yet they suffer from accuracy shortcomings

and are generating the jagged ringing artifacts. Reconstruction-based image super-resolution

approaches [19–24] are mostly adopted previous information to narrow-down of the feasible

solution which can get the benefit of reconstructing the fine details of edges and suppress the

statistical noise effects [25]. However, these methods are time-consuming and rapidly degrad-

ing image reconstruction performance on 4× or 8× scale factor enlargements. Learning-based

image SR methods are brought into focus by researchers due to outstanding performance and

fast computation. Usually, such types of methods are using machine learning approaches to

evaluate the relation between a low-resolution and a high-resolution input and output images

during the training samples. Chang et al. [26] introduced the concept of neighbor embedding

to take the benefit of similar patches generated locally for reconstructing the output of HR

image from an input LR image patches. The researchers also used the idea of sparse signal

recovery theory [27] and introduced the concept of sparse coding methods [14, 26–30] to solve

the SISR problem. Meanwhile, reconstruction based approaches are combined with learning

methods to reduce the jagged ringing artifacts and to improve the blurry results [28–31].

Currently, deep neural networks [32–39] provide significantly improved performance and

led to dramatic changes in SISR. Furthermore, deep neural network approaches are very fast

and accurate, but still, there are some limitations. However, existing deep convolutional neural

network model stacked the convolution layer, side by side, to create the deeper network archi-

tecture, which leads to increase the computational cost and introduces the vanishing gradient

problem during the training. Besides, a bicubic interpolation technique is used in existing

deep convolutional neural network approaches as a step of pre-processing to upscale the low-

resolution input image and incurs the new noises in the model. For the purpose of solving

such issues and improving the quality of the LR image, we proposed a Multi-scale Xception

Based Depthwise Separable Convolution for Single Image Super-resolution (MXDSIR) to gen-

erate the HR output image from the original LR input image.

In short, our key contributions are three folds across this paper:

• Inspired by the ResNet and Xception networks, we replaced regular convolution blocks with

depthwise separable convolution blocks to achieve faster convergence during the period of

training and to stop the vanishing gradient problem as well as easing the training

complexity.

• The Rectified Linear Unit (ReLU) was replaced with the Parametric Rectified Linear Unit

(PReLU) to activate the dead features, due to zero gradients.

• We introduced the new Xception block, which can detect the different image features infor-

mation for rebuilding the HR image.

The remaining section is structured as follows. Section 2 presents a related work of image

SR approaches. Section 3 and 4 explain our proposed method and its experimental results. Sec-

tion 5 explained the conclusion.

2 Related work

The target of SISR image is to construct the visually pleasing HR output image. The first con-

crete deep learning-based approach for the SISR problem was suggested by Dong et al. [40]

PLOS ONE Multi-scale Xception based depthwise separable convolution for single image super-resolution

PLOS ONE | https://doi.org/10.1371/journal.pone.0249278 August 23, 2021 2 / 20

https://doi.org/10.1371/journal.pone.0249278


known as Super-Resolution Convolutional Neural Network (SRCNN) [40] and presented sig-

nificant improvements over all previous SR methods. SRCNN [40] model used three convolu-

tion layers to predict the HR image. Wang et al. [41] introduced the sparse prior deep

convolutional neural networks for image SR based approach, named as Sparse Coding Net-

work (SCN) [41]. The performance of SCN [41] is better than SRCNN [40]. The major draw-

back of SCN [41] is the high computational complexity and also hinders its applications in

real-time processing scenarios.

Dong et al. [42] proposed the improved and faster version of SRCNN [41] architecture to

accelerate super-resolution image reconstruction, known as Fast Super-Resolution Convolu-

tional Neural Network (FSRCNN) [42]. FSRCNN [42] has a modest network architecture, that

depends on four CNN layers and one deconvolution layer for upsampling purposes and using

the original input LR images without interpolation techniques. FSRCNN [42] has lower

computational complexity and better performance as compared to SRCNN [41] but has a lim-

ited network capacity.

A very deep SR network (VDSR) [32] was proposed by Kim et al. [32] who was inspired by

the Visual Geometry Group Network (VGG-net) implemented in the ImageNet for classifica-

tion purpose [5]. VDSR [32] network reported the significant performance improvement over

the SRCNN [41] network using the 20 CNN trainable layers. In order to ease the training com-

plexity of a deeper model, they have used the global residual learning with a fast convergence

rate. However, VDSR [32] network architecture does not use the actual pixel values but used

the interpolated upscaled version of the image, which leads to more memory consumption

and heavy computational cost. Kim et al. [33] proposed a Deeply Recursive Convolutional

Network for image super-resolution (DRCN) [33] and uses the convolution layers multiple

times. The key advantage of DRCN [33] is to fix the number of training parameters, although

there are many number of recursions, the main deficiency is to slow the training process. The

authors similarly used the skip connection with a recursive manner to optimize model perfor-

mance. Mao et al. [43] extended the concept of residual type architecture and proposed Resid-

ual Encoder-Decoder Networks (RED) [43]. The RED [43] model used residual learning with

symmetric convolution operation, which is trained on 30 layers and achieves the best perfor-

mance. Therefore, such studies replicate the concept of “the Deeper the Better”.

Lai et al. [44] proposed a different network architecture for image SR is known as a deep

Laplacian Pyramid Super-Resolution Network (LapSRN) [44], to generate the HR image.

LapSRN [44] architecture depends on the different levels of the pyramid and each pyramid

level is caused by a deconvolution layer as an upsample, but having the problem in scaling fac-

tor (fixed integer), which limits the flexibility of the model. Zhang et al. [45] suggested the

denoising convolutional neural networks (DnCNNs), to accelerate the improvement of very

deep neural network types architectures. DnCNN [45] follows the same architecture as

SRCNN [40] and stacked the CNN with batch normalization (BN) layers followed by the

ReLU activation function. Although the model provides favorable results, they are computa-

tionally expensive due to the use of the batch normalization layer. Zhao et al. [46] proposed a

more flexible scaling factor to super-resolved the input LR image named as a gradual upsam-

pling network (GUN) [46]. For Upsampling purposes the GUN [46] network architecture

used the bicubic interpolation technique.

Tai et al. [47] introduced the idea of the deep recursive residual network (DRRN) [47] with

52 CNN layers. The authors introduced a stable training process for a deeper network with

parallel architecture. Ledig et al. [34] employ a deep residual connection with 16 blocks using

skip-connection to recover the upscaled version of the image. Lim et al. [48] proposed a

method to develop deep SR architecture to increase the training efficiency of a model by elimi-

nating the BN layers and their method to win the NTIRE2017 SR challenge [49]. Meanwhile,
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Tai et al. [50] suggested the deepest model, known as a persistent memory Network for image

restoration purposes (MemNet) [50], in which multiple memory blocks are stacked to obtain

persistent memory. Yamanaka et al. [51] presented a combined architecture of skip connection

layers and parallelized CNN layers for development of a deep learning-based architecture for

SISR and used mainly two networks, the first network is utilized for extracting the features of

different levels and the second is the image reconstruction type network. This model is shal-

lower than VDSR [32].

Han et al. [52] proposed the idea of Dual-State Recurrent Network (DSRN) [52], which

exchanges the information from LR to the HR state. At each state, they update the signal infor-

mation and then transmit to the HR state. Li et al. [53] used an adaptive feature detection pro-

cess to obtain the features fusion at different scales, named as a multi-scale residual network

[53]. This approach used the complete hierarchical type of feature information to reconstruct

an accurate image super-resolution. Ahn et al. [54] proposed scale-specific upsampling type

modules with multiple shortcut connections to learn residuals in LR feature space and to han-

dle the multi-scale information with appropriate specific pathways. Zhang et al. [55] took a

concatenated version of the low-resolution image with its degradation mapping type architec-

ture named as super-resolution network for multiple degradations (SRMD) [55].

Wang et al. [56] introduced a dilated CNN network to enhance a receptive field without

increasing the size of the kernel. The relative size of the receptive field increases in the case of

shallow network type architecture. In dilated convolutional network for SR (DCNSR) [56]

uses 12 layers to extract the contextual information efficiently. In [57], the authors proposed

End-to-End Image SR via Deep and Shallow (EEDS) [57] CNN architecture and to replace the

bicubic interpolation upsampling with the transposed upsampling layer. The HR image is

obtained from deep as well as shallow branch simultaneously. Yang et al. [58] suggested a deep

recurrent fusion network (DRFN) [58] for image super-resolution, which used the transposed

convolution layer with large scale factors. Su et al. [59] proposed a novel type structure, that

consists of several sub-networks for reconstructing the HR image progressively. In each sub-

network, the input shall be utilized with the LR feature map and transposed convolution out-

put will be fused with residuals to get the finer one. Wang et al. [60] solves the problem of sin-

gle image SR using Heaviside Function with iterative refinement. The authors used the binary

classification of images to reconstruct the HR image.

Hung et al. [61] proposed a super-sampling network (SSNet) [61] type architecture, which

used depthwise separable convolution for image SR. In this architecture a number of parame-

ters as well multiple operations can be significantly reduced by depthwise separable convolu-

tion technique. Barzegar et al. [62] introduced a small architecture to prevent the training

problem in the deeper model. The design of a DetailNet architecture in such a way, that LR

image information can be increased by any approach, then pass through main architecture to

boost the perceptual quality of LR image. Hsu et al. [63] inspired by the capsule neural network

to extract more potential features information for image SR. In this work authors designed

two networks Capsule Image Restoration Neural Network and the Capsule Attention and Re-

construction Neural Network (CARNN) [63] for image SR. The CARNN [63] network gener-

ates super-resolution features information efficiently. Liu et al. [64] proposed a new hierarchi-

cal convolutional neural network (HCNN) [64] architecture for SR purpose and to learn the

features information at different stages. In this approach, the authors have used a three-step

hierarchical process, which depends on the extraction of the edge branch, a branch of edge

reinforcement, and the SR image reconstruction branch. Muhammad et al. [65] proposed

multi-scale inception based super-resolution using a deep learning approach (MSISRD) [65]

for image reconstruction. In this approach, the authors used the concept of asymmetric
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convolution operation to enhance the computational efficiency of the model and finally used

the inception block to reconstruct the multiscale feature information for image SR.

Tian et al. [66] resolve the problem of instability during the training and proposed the new

network architecture known as Coarse-to-fine CNN for SISR (CFSRCNN). The proposed net-

work architecture consists of feature extraction, enhancement, construction and refinement of

blocks to learn the robust image super-resolution model. The stacked feature extraction blocks

are used to learn the short as well as long path features, and then finally fuses the learnable fea-

tures by expending the effect of a shallow to deeper network to enhance the representing of the

features.

Qiu et al. [67] proposed the method of multiple improved residual network (MIRN) image

SR network architecture. In this network architecture deep residual network with different lev-

els of skip connection is used to resolve the lack of correlation between the information of

adjacent CNN layers. Stochastic gradient descent method (SGD) is used to train the MIRN

network architecture. Lan et al. [68] proposed the new dense lightweight network architecture

known as fast and lightweight network for SISR. This method addresses the problem of feature

extraction and feature correlation learning.

The deep CNN based image SR network architectures used an excessive amount of CNN

layers and parameters. Usually, used high computational cost and more memory consumption

for training a SR model. To resolve these problems Tian et al. [69] proposed the lightweight

enhanced super-resolution based SRCNN known as (LESRCNN). In this approach authors are

used the three types of successive blocks as an information extraction, enhancement, and

reconstruction block with information refinement block.

3 Proposed method

In this section, we have discussed comprehensive details regarding our proposed network

architecture for image SR based on ResNet and Xception blocks. Like the existing SISR meth-

ods, our proposed method is classified into five stages namely feature extraction, shrinking,

upsampling, expanding, and multi-scale reconstruction, as shown in Fig 1.

3.1 Feature extraction

This part is similar to the previous methods but different from the input image. However,

majority of the previous deep convolutional neural network type SISR approaches extract the

features information from a bicubic interpolated upsampled version of the HR image. It is

important to note that the bicubic interpolation technique damages vital information of LR

image and introduces new noise in the model [57, 70]. In contrast, we have used an alternative

strategy in our proposed model for extracting the features information directly from the LR

image without using interpolation techniques.

Our initial feature extraction stage consists of one convolution layer and two ResNet Blocks

with skip connection followed by Parametric Rectified Linear Unit (PReLU) [71] activation

function. The said stage extracts the low, middle, and high-level features of information simul-

taneously. Inspired by VDSR [32], we have used one convolution layer of filter size 3 × 3 with

64 number of filters accompanied by the Parametric Rectified Linear Unit (PReLU) [71].

Mathematically, the convolution layer can be explained as:

FlðYÞ ¼ PReLUðWl � Fl� 1ðYÞ þ Bl; ð1Þ

where Fl denoted the resultant output features map, Bl denoted the biases of lth layer.

Fl ¼ maxð0;Wl � Fl� 1 þ blÞ; ð2Þ
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whereWl are the weights of the filter and bl are the biases of the lth layers, respectively. The

output of the features map is denoted by Fl and “�” represents the convolution operation. The

Wl supports nl × fl × fl number of parameters, where, fl indicates the filter size, nl represents

number of filters. The CNN layer and ResNet blocks have the same sizes of 3 × 3 × c of kernels

which generate the “c” features map, where “c” represents 64 number of channels.

3.1.1 PReLU. Earlier approaches used the convolution layers or blocks which were fol-

lowed by the rectified Linear Unit (ReLU), like SRCNN [40] and VDSR [32]. These types of

models have a fair response, but results are still not satisfactory, because, in most of the cases

ReLU has a constant gradient. Whereas, in the proposed model, we have used the Parametric

Rectified Linear Unit (PReLU) [71], which not only resolves the problem of constant gradient

but also has a relatively faster speed of convergence during the training. Mathematically,

PReLU [71] activation function can be explained as:

PReLUðxiÞ ¼ maxðxi; 0Þ þ aiminð0; xiÞ; ð3Þ

where xi is the activation function of ith layer input image, and the negative coefficient part of

PReLU is denoted by ai, where ai parameter is used as ReLU for zero value and PReLU for

learnable purpose. The main purpose of PReLU is used to avoid the “dead features”, which is

produced by zero gradients in the ReLU activation function. The resultant output feature

maps using PReLU activation function can be written as:

FlðYÞ ¼ PReLUðWl � Fl� 1ðYÞ þ Bl; ð4Þ

where Fl denoted the resultant output features map, Bl denoted the biases of lth layer.

3.1.2 Feature extraction blocks. The layer stacked, side by side, increases the network

depth but reduces the transmission of information to the final layers [72]. Resultantly, the van-

ishing gradient problem arises in the model and the computational cost of the model is

increased. He et al. [73] proposed the ResNet blocks to resolve the above-said problems. The

ResNet blocks, these days, are extensively used in the deep learning type SISR image to recon-

struct the HR image. Furthermore, the deeper ResNet architecture has a superior performance

Fig 1. Proposed network architecture of Xception based single image super-resolution reconstruction.

https://doi.org/10.1371/journal.pone.0249278.g001
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and is effectively used in the field of image SR [34, 48]. In our proposed method, we have used

different residual skip connections which make fast training convergence and reduce the com-

plexity of the model. In Fig 2; we have shown the comparison diagrams of the original residual

skip [74] connection, SRResNet [34], and our proposed ResNet block.

The architecture of the ResNet block as expressed in Fig 2(a); uses a direct path and skip

connection by way of transmitting the features information and the summed up resultant

information followed by the ReLU activation function. SRResNet [34] block as indicated in

Fig 2(b); uses the alternative strategy to remove the ReLU activation function and provides a

simple and clear path from one block to another. Fig 2(c); shows our proposed ResNet block,

which eliminates the Batch Normalization (BN) [74] layers for improving the efficiency of the

Graphics Processing Unit (GPU) memory card and enhances the computational efficiency of

the model. Furthermore, we replace the operation of regular convolution with depthwise sepa-

rable convolution followed by point wise convolution and ReLU activation function with

PReLU. The PReLU is used to avoid the problem of vanishing gradient and to reduce the train-

ing complexity as well as enhances the efficiency of the block. For the middle and the high-

level feature extraction, we applied 2 ResNet blocks, each block consists of two 3 × 3 depthwise

separable convolution kernels with 64 filters followed by PReLU nonlinearity.

3.2 Shrinking layer

If more features are directly applied to the transpose convolution layer, it will led to increase in

computational cost as well as in size of the model. However, we have employed a one CNN

layer as a shrinking layer before the deconvolution layer. This type of arrangement has also

been observed in the latest convolutional neural network architectures for computer vision

applications. Authors, proposed in [57, 65, 75] are using a shrinking layer for increasing the

computational efficiency of the model.

3.3 Deconvolution layer

Researchers have suggested in [40, 57, 76] that the purpose of upscaling the LR image resolu-

tion before the initial layer is to increase the computational cost and damage critical

Fig 2. Comparison diagram of different ResNet blocks with the proposed ResNet block. (a) Original ResNet block.

(b) SRResNet without final ReLU activation function. (c) Our Proposed ResNet block that removes the BN and

replaces the regular convolution and ReLU activation function with depthwise separable convolution followed by the

PReLU activation function.

https://doi.org/10.1371/journal.pone.0249278.g002
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information due to the fact that the processing speed is directly dependent on resolution of the

image. Furthermore, the use of upscaled techniques before the initial layer does not provide

additional information, however, introduces the jagged ringing artifacts in the SR image. We

propose for generating the high-resolution image directly from the actual low-resolution fea-

ture domain to handle these types of problems. For this purpose, we have applied the deconvo-

lution layer as an upscaling operation before the Xception block. The size of the deconvolution

layer is 16 × 16 of stride that is equal to enlargement factors.

3.4 Expanding layer

The expanding layer performs the inverse operation of a shrinking layer and produces the HR

image more accurately. Furthermore, if the HR image is directly reconstructed from LR fea-

tures, the final reconstruction quality of the image will be poor. Therefore, after the deconvolu-

tion layer, we are applying the expanding layer to recover the original feature’s information

smoothly.

3.5 Multi-scale reconstruction

3.5.1 Depthwise separable convolution. Originally, depthwise separable convolution was

proposed by Sifre [77] and was applied for image classification purposes. Factorizing a convo-

lution operation is a form of depthwise separable convolution in which it converts regular con-

volution operation into a depthwise separable convolution operation followed by a pointwise

convolution operation. The separable convolution operation performs a single filter per chan-

nel input and finally combines the linear input channels. The convolution process substitutes a

factorized convolution layer with two layers; one is used for space filter, and the other is used

for combining purposes. Thus, the depthwise separable convolution will sufficiently lessen

both the number of parameters and size of the model. The regular type of convolution kernel

takes three parameters such as; height (h), width (w), and input channel (cin) of an input fea-

ture map (I). The resultant convolution layer (h × w × cin) is applied as K × K × cin × cout,
where cout, is the number of output channels. The depthwise separable convolution depends

on two convolution operations: depthwise separable convolution operation and pointwise

convolution operation. Mathematically, the depthwise separable convolution operation can be

written as:

Gðy; x; jÞ ¼
Xk

u¼1

Xk

v¼1

Kðu; v; jÞ � Iðyþ u � 1; xþ v; jÞ; ð5Þ

where K represents the kernels of depthwise separable convolution operation of size K × K ×
cin. The nth filter in the kernel K is applied on the nth number of channels in the input feature

map of I to reconstruct the G output feature map. While reconstructing new features, we apply

the pointwise convolution. Mathematically, the pointwise convolution can be written as:

Oðy; x; lÞ ¼
Xcin

j¼1

Gðx; y; jÞ � Pðj; lÞ; ð6Þ

where the size of the kernel of pointwise convolution operation is 1 × 1 × cin × cout.
3.5.2 Xception block. In the final phase, we have employed a multi-scale Xception block

that stands for a multi-scale Extreme version of Inception block, which is adopted from Goo-

gLeNet [78] with a modified depthwise separable convolution better than Inception v-3 [79].

Multi-scale Xception block is used to choose the correct kernel size, as kernel size performs a

pivotal role in model design, training procedure, and multi-scale reconstruction purposes. The
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larger size of the kernel is more suitable, when the features information is distributed globally,

whereas the smaller size of the kernel is better, when features information is distributed locally.

The Xception architecture employs this concept and includes more depthwise separable con-

volution on kernels of various sizes. Fig 3(a); shows a single scale regular convolution plain

type of architectures, in which several convolution layers are stacked in a single straight-line

path. Such type of architectures are implemented by a well-known image super-resolution

methods, like SRCNN [40] and FSRCNN [42]. These types of architectures are easy in imple-

mentation, however, deeper network architecture has more memory consumption and

enhances the network depth of the model. Fig 3(b); uses the regular convolution type inception

block to extract the multi-scale feature information efficiently. Fig 3(c); shows our proposed

block of multi-scale depthwise separable convolution. The proposed Xception block consists

of different depthwise separable convolution kernel sizes, like 3 × 3, 5 × 5, and 7 × 7 followed

by pointwise convolution with PReLU activation function, to reconstruct the SR image.

4 Experimental results

In this section, initially, we discuss the selection procedure of training and testing datasets with

hyper-parameters. The training as well as testing datasets were downloaded from Kaggle web-

site [80]. Afterwards, we have evaluated the quantitative as well as the qualitative performance

in terms of PSNR/SSIM [81] and perceptual vision quality on five test datasets which are pub-

licly available. Finally, we have compared the computational cost and processing speed of our

proposed model in terms of PSNR versus the running time and network depth (number of K
parameters).

4.1 Training datasets

The various sizes of the image datasets have been available for the training purposes to train

the model for single image super-resolution. Yang et al. [23] and the Berkeley Segmentation

Dataset (BSD300) [82] are commonly used image datasets, because these datasets are used by

well-known SR methods, like VDSR [32], DRCN [33] and LapSRN [44] for the training pur-

pose. In order to enhance the training dataset, data augmentation technique has been applied

in terms of rotation and flipping. All the experimental evaluations were done on the original

Fig 3. Comparison of a single scale, multi-scale regular and depthwise separable convolution blocks. (a) Single

Scale Regular Convolution (b), Multi-Scale Regular Convolution, and (c) Multi-Scale Depthwise Separable

Convolution (Our proposed).

https://doi.org/10.1371/journal.pone.0249278.g003
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image and for data manipulation purposes, we used a programming language python 3.7.9,

deep learning Keras 2.1.5 library supported back-end as Tensor Flow and PyTorch version

1.6.0. Various types of loss functions were also available to evaluate model performance. Deep

learning-based CNN SR architecture has mostly used the mean square error (MSE) as the loss

function. So, we have also used similar type of loss with our proposed method. Mathematically,

the loss function may be calculated as:

LðyÞ ¼
1

m

Xm

i¼1

FððYi; yÞ � XiÞ
2
; ð7Þ

where F(Yi, θ) is the recovered output image, Xi is the high-quality HR images, Yi is corre-

sponding the low quality image, and the number of small size batches is them in the training.

In the training phase, we have used an adaptive momentum estimation optimizer (Adam) [83]

having a 0.0004 initial learning rate with mini-batch size of 16. The process of training takes

200 epochs to converge the model properly. We train our model on a NVIDIA GeForce

RTX2070 GPU, having 2.6 GHz Ci7-9750H CPU with 16 GB RAM under the Windows 10

operating system’s environment.

4.2 Testing datasets

We have assessed the performance of proposed network architecture on five standard datasets.

The Set5 [84] dataset comprises of five images having different sizes like 228 × 228 and

512 × 512 pixels. The Set14 [85] images consist of different sizes of fourteen images. BSD100

[82] test dataset depends on 100 different natural scenes of images. Urban100 [86] is the chal-

lenging test image dataset having different frequency bands with detailed information.

Manga109 [87] test image dataset depends on different comic type images with fine structures.

4.3 Implementation details

Under the Windows 10 operating system environment, our proposed approach was trained

and tested with NVIDIA GeForce RTX2070 GPU with 16 GB RAM. We have trained our

model on the scale enhancement factor of 2×, 4×, and 8× in Keras 2.1.5, PyTorch 1.6.0 and

MATLAB 2018a framework.

4.4 Comparison with other state-of-the-art-methods

We compare the performance of our MXDSIR SR method with ground-truth HR image,

including baseline method (Bicubic interpolation) and twelve other state-of-the-art methods

are A+ [88], RFL [89], SelfExSR [86], SCN [41], SRCNN [40], FSRCNN [42], VDSR [32],

DRCN [33], LapSRN [44], DRRN [47], MemNet [50], and MSISRD [65] by both objective

PSNR/SSIM [81] and subjective measures. The summary of quantitative evaluation performed

on five benchmark datasets as shown in Table 1. We can observe from Table 1, that our model

achieves the best quantitative results in terms of PSNR/SSIM on enlargement factor 2× and 8×.

The maximum and minimum range of the average PSNR improvement on scale factor 2× is

0.13dB to 4.12dB. Similarly, we also used another quality matrix to evaluate the performance

of our proposed model is the SSIM. The minimum and maximum average range of SSIM

improvement on scale factor 2× are in the range of 0.001 to 0.05. In the enlargement factor 4×,

our model achieves the second-best performance as compared to other existing methods,

though DRRN [47] and MSISRD [65] are the most comparable, but these models incur a

higher computational complexity as they have more model parameters. Finally, our minimum

and maximum improvement on challenging enlargement factor 8×, our range of the
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Table 1. Presents benchmark results of the average value of PSNR/SSIM [81] for enlargement factor 2×, 4×, and 8× on Set5 [84], Set14 [85], BSD100 [82], Urban100

[86], and Manga109 [87] test datasets. Bold indicated results with red colors are the best values. The underlined results with blue color are second � best values.

Method Scale Para Set5 PSNR/SSIM Set14 PSNR/SSIM BSD100 PSNR/SSIM Urban100 PSNR/SSIM Manga109 PSNR/SSIM Average PSNR/SSIM

Bicubic 2× -/- 33.69/0.931 30.25/0.870 29.57/0.844 26.89/0.841 30.86/0.936 30.52/0.884

A+ [88] 2× -/- 36.60/0.955 32.32/0.906 31.24/0.887 29.25/0.895 35.37/0.968 32.96/0.922

RFL [89] 2× -/- 36.59/0.954 32.29/0.905 31.18/0.885 29.14/0.891 35.12/ 0.966 32.86/0.920

SelfExSR [86] 2× -/- 36.60/0.955 32.24/0.904 31.20/0.887 29.55/0.898 35.82/0.969 33.08/0.923

SCN [41] 2× 42 36.58/0.954 32.35/0.905 31.26/0.885 29.52/0.897 35.51/0.967 33.04/0.922

SRCNN [40] 2× 57 36.72/0.955 32.51/0.908 31.38/0.889 29.53/0.896 35.76/0.968 33.18/0.923

FSRCNN

[42]

2× 12 37.05/0.956 32.66/0.909 31.53/0.892 29.88/0.902 36.67/0.971 33.56/0.926

VDSR [32] 2× 665 37.53/0:959 33.05/0.913 31.90/0:896 30.77/0.914 37.22/0:975 34.09/0.931

DRCN [33] 2× 1775 37.63/0:959 33.06/0.912 31.85/0.895 30.76/0.914 37.63/0.974 34.19/0.931

LapSRN [44] 2× 812 37.52/0:959 33.08/0.913 31.80/ 0.895 30.41/0.910 37.27/0.974 34.02/0.930

DRRN [47] 2× 297 37.74/0:959 33.23/0:914 32.05/0:897 31.23/0:919 37:92/0:976 34.43/0:933

MemNet [50] 2× 677 37.78/0:959 33.28/0:914 32.08/0:897 31:31/0:919 37.72/0.974 34.43/0:933

MSISRD [65] 2× 240 37:80/0:960 33:84/0:920 32:09/0.895 31.10/0.913 37.70/0:975 34:51=0:933

MXDSIR 2× 222 37:93/0:959 33:87/0:920 32:12/0:897 31:33/0.918 37:93/0:976 34:64=0:934

Bicubic 4× -/- 28.43/0.811 26.01/0.704 25.97/0.670 23.15/0.660 24.93/0.790 25.70/0.727

A+ [88] 4× -/- 30.32/0.860 27.34/0.751 26.83/0.711 24.34/0.721 27.03/0.851 27.17/0.779

RFL [89] 4× -/- 30.17/0.855 27.24/0.747 26.76/0.708 24.20/0.712 26.80/0.841 27.03/0.773

SelfExSR [86] 4× -/- 30.34/0.862 27.41/0.753 26.84/0.713 24.83/0.740 27.83/0.866 27.45/0.787

SCN [41] 4× 42 30.41/0.863 27.39/0.751 26.88/0.711 24.52/0.726 27.39/0.857 27.32/0.782

SRCNN [40] 4× 57 30.50/0.863 27.52/0.753 26.91/0.712 24.53/0.725 27.66/0.859 27.42/0.782

FSRCNN

[42]

4× 12 30.72/0.866 27.61/0.755 26.98/0.715 24.62/0.728 27.90/0.861 27.57/0.785

VDSR [32] 4× 665 31.35/0.883 28.02/0.768 27.29/0.726 25.18/0.754 28.83/0.887 28.13/0.804

DRCN [33] 4× 1775 31.54/0.884 28.03/0.768 27.24/0.725 25.14/0.752 28.98/0.887 28.19/0.803

LapSRN [44] 4× 812 31.54/0.885 28.19/0:772 27.32/0:727 25.21/0.756 29.09/0.890 28.27/0.806

DRRN [47] 4× 297 31.68/0:888 28.21/0:772 27.38/0:728 25.44/0:764 29.46/0:896 28.43/0:810

MemNet [50] 4× 677 31:74/0:889 28.26/0:772 27:40/0:728 25:50/0:763 29.42/0.894 28.46/0:809

MSISRD [65] 4× 240 31.62/0.886 28:51/0:771 27.33/0:727 25.42/0.757 31:61/0.891 28:90/0.806

MXDSIR 4× 222 32:37/0:888 28:63/0:772 27:45/0:728 25:54/0:763 30:21/0:895 28:84=0:809

Bicubic 8× -/- 24.40/0.658 23.10/ 0.566 23.67/0.548 20.74/0.516 21.47/0.650 22.68/0.588

A+ [88] 8× -/- 25.53/0.693 23.89/0.595 24.21/0.569 21.37/0.546 22.39/0.681 23.48/0.617

RFL [89] 8× -/- 25.38/0.679 23.79/0.587 24.13/0.563 21.27/0.536 22.28/0.669 23.37/0.607

SelfExSR [86] 8× -/- 25.49/0.703 23.92/0.601 24.19/0.568 21.81/0.577 22.99/0.719 23.68/0.634

SCN [41] 8× 42 25.59/0.706 24.02/0.603 24.30/0.573 21.52/0.560 22.68/0.701 23.62/0.629

SRCNN [40] 8× 57 25.33/0.690 23.76/0.591 24.13/0.566 21.29/0.544 22.46/0.695 23.39/0.617

FSRCNN

[42]

8× 12 25.60/0.697 24.00/0.599 24.31/0.572 21.45/0.550 22.72/0.692 23.62/0.622

VDSR [32] 8× 665 25.93/0.724 24.26/0.614 24.49/0.583 21.70/0.571 23.16/0.725 23.91/0.643

LapSRN [44] 8× 812 26.15/0.738 24.35/0.620 24.54/0:586 21.81/0:581 23.39/0.735 24.05/0.652

MemNet [50] 8× 677 26.16/0:741 24:38/0.619 24.58/0.584 21.89/0:582 23:56/0:738 24.11/0:653

DRCN [33] 8× 1775 25.93/0.723 24.25/0.614 24.49/0.582 21.71/0.571 23.20/0.724 23.92/0.643

MSISRD [65] 8× 240 26:26/0.737 24:38/0:621 24:73/0:586 22:53/0:582 23.50/0.738 24:28=0:653

MXDSIR 8× 222 26:31/0:740 24:42/0:622 24:77/0:587 22:91/0:582 23:63/0:739 24:41=0:654

https://doi.org/10.1371/journal.pone.0249278.t001
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improvement in terms of average PSNR is 0.13dB to 1.73dB. Similarly, our model achieves

minimum and maximum average SSIM improvement is 0.003 to 0.082.

Apart from the quantitative comparison, the qualitative performance of our method and

existing state-of-the-art methods are shown in Figs 4–8, were obtained from Huang [86]

(https://github.com/jbhuang0604/SelfExSR) and [90] PLOS ONE Journal (https://doi.org/10.

1371/journal.pone.0241313.g007).

From these images clearly observed that the baseline bicubic method cannot reconstruct

any extra details information, but introduce the new noises in the image as well as more blurry

results especially on enlargement scale factor 4× and 8×. The deep learning based image super-

resolution approach, like SRCNN [40], FSRCNN [42] and VDSR [32] can produce, in some

cases, fair reconstruction details from the original LR input image, but still results in blurry

image contours due to their model designed in linear fashion (stacked layer side by side). In

case of LapSRN [44] as well as family of deeper model, results are fair, but miss some edges

and lines, because deeper model only relies on the single scale kernel. As we compare existing

deeper model for image SR, our model achieves noticeable improvement in terms of percep-

tual quality, due to multiscale kernel used in the Xception block. The noticeable improvement

observed in Fig 6; especially “080” image from Urban100 has excessive amount of artifacts, but

our method produces sharper boundaries and richer textures with less amount of artifacts.

Similar artifacts also observed on the image Figs 7 and 8 respectively.

Fig 4. Visual performance of images with 4× enlargement factor of image 039 from BSD100 dataset.

https://doi.org/10.1371/journal.pone.0249278.g004

Fig 5. Visual performance of images with 4× enlargement factor of image 057 from Urban100 dataset.

https://doi.org/10.1371/journal.pone.0249278.g005
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In summary, our proposed method can achieve better quality improvement measured by

PSNR, SSIM index, and visual image quality comparison compared to other methods. In the

following sections, our proposed architecture provides a favorable trade-off in terms of

computational cost and visual quality improvement.

Fig 8. Visual performance of images with 8× enlargement factor of image 011 from Set14 dataset.

https://doi.org/10.1371/journal.pone.0249278.g008

Fig 6. Visual performance of images with 8× enlargement factor of image 080 from Urban100 dataset.

https://doi.org/10.1371/journal.pone.0249278.g006

Fig 7. Visual performance of images with 8× enlargement factor of image 095 from Urban100 dataset.

https://doi.org/10.1371/journal.pone.0249278.g007
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4.5 Performance comparison in terms of the kernel size

The size as well as the type of the convolution kernel plays a key role in terms of the model size

and computational cost. In Fig 9; we have selected the two different convolution kernels, one is

regular convolution kernel and the other is a depthwise separable convolution kernel, with the

same 64 number of feature maps. Performance of our proposed depthwise separable convolu-

tion kernel is more computationally efficient as compared to the regular convolution kernel.

4.6 Comparison in terms of the number of the model parameters

We have presented the complexity of the model related to network depth (number of parame-

ters) versus PSNR [81] as shown in Fig 10. By using the depthwise separable convolution layer,

our proposed model decreases the number of parameters as compared to other publicly avail-

able methods. Our MXDSIR method has parameters about 66% less than the VDSR [32], 87%

Fig 9. Complexity comparison between the regular convolution kernel versus the depthwise separable

convolution kernel.

https://doi.org/10.1371/journal.pone.0249278.g009

Fig 10. The performance comparison measurement on PSNR [81] versus the depth of the network (number of

parameters). The performance results on the Set5 [84] dataset with scale factor 4×.

https://doi.org/10.1371/journal.pone.0249278.g010
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less than the DRCN [33], 72% less than the LapSRN [44], 67% less than the MemNet [50], 74%

less than MADNet [68] and 81% less than CFSRCNN [66].

4.7 Quantitative comparison in terms of run time versus PSNR

In this part, as shown in Fig 11; we have evaluated our method in terms of running or execu-

tion time versus PSNR [81]. As for the execution of time performance is concerned, we have

used the public access codes given by the authors to evaluate the state-of-the-art methods with

2.6 GHz Ci7-9750H CPU 16GB RAM. The comparative analysis between the execution of

time and performance on the Set5 [84] dataset for 8× SR reveals that our method is 0.16 dB

higher than LapSRN [44] on PSNR [81] and, approximately, 10 times faster than LapSRN [44].

5 Conclusion

In this paper, we have presented fast and computationally efficient Xception based residual

CNN network architecture for image SR to extract the features information locally as well as

globally from the input LR image, and to generate the HR output image. The proposed net-

work architecture used the two ResNet blocks and three Xception block, which is adopted

from the ResNet and GoogLeNet to recover several features during the extraction and recon-

struction stages. The proposed technique ensured that the network shows fast convergence

speed and low computational cost, by replacing the interpolation technique with the learned

transposed convolution layer and regular convolution operation with the depthwise separable

convolution. Furthermore, our network architecture is relatively simple and well designed for

images and computer vision tasks. Extensive experimental results on different image datasets

not only provides satisfactory results on the performance of image SR quantitatively but also

have favorable results in terms of complexity and provided visual pleasing quality as compare

to the existing state-of-the-art SR methods.

Fig 11. Quantitative comparison between the PSNR [81] performance vs. runtime on Set5 [84] scale 8×
enlargement.

https://doi.org/10.1371/journal.pone.0249278.g011
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