
1Scientific Reports | 7: 12324  | DOI:10.1038/s41598-017-12415-2

www.nature.com/scientificreports

Detecting a Surprisingly Low 
Transmission Distance in the 
Early Phase of the 2009 Influenza 
Pandemic
Valentina Marziano1,2, Andrea Pugliese2, Stefano Merler1 & Marco Ajelli1,3

The spread of the 2009 H1N1 influenza pandemic in England was characterized by two major waves of 
infections: the first one was highly spatially localized (mainly in the London area), while the second one 
spread homogeneously through the entire country. The reasons behind this complex spatiotemporal 
dynamics have yet to be clarified. In this study, we perform a Bayesian analysis of five models entailing 
different hypotheses on the possible determinants of the observed pattern. We find a consensus among 
all models in showing a surprisingly low transmission distance (defined as the geographic distance 
between the place of residence of the infectors and her/his infectees) during the first wave: about 1.5 km 
(2.2 km if infections linked to household and school transmission are excluded). The best-fitting model 
entails a change in human activity regarding contacts not related to household and school. By using this 
model we estimate that the transmission distance sharply increased to 5.3 km (10 km when excluding 
infections linked to household and school transmission) during the second wave. Our study reveals a 
possible explanation for the observed pattern and highlights the need of better understanding human 
mobility and activity patterns under the pressure posed by a pandemic threat.

In March 2009 a novel H1N1pdm influenza virus emerged in Mexico and started spreading globally1. The first 
cases in Europe, mainly travelers coming back from infected areas (Mexico and United States), were recorded at 
the end of April 20092. At the beginning of June 2009, more than 70 countries had been reached by the infection 
and the World Health Organization declared a pandemic. Because of the great attention that was paid to the 
pandemic threat, the surveillance of ILI cases was enhanced during the pandemic3 and several seroprevalence 
surveys were performed at different time points4–8. This made it possible to apply several mathematical models 
for epidemic spread to the available data, in order to make real-time predictions9–11 or to assess the most relevant 
factors for the observed patterns of spread12,13. The focus of the investigations was either on the national level or 
on specific epidemic hotspots14, and little has been ascertained about patterns of within-country epidemic spread 
(see however Gog et al.15 for the U.S. or Eggo et al.16 for the 1918 pandemic).

The spatial diffusion of the 2009 H1N1 influenza outbreak showed significant geographic heteroge-
neities17,18. In Europe, the pandemic progressed from West to East12,19, and about 66% of cases affecting 
European countries up to the end of June 2009 were reported in the United Kingdom20. Unlike all other 
European countries, which were characterized by moderate transmission in spring and summer and by a 
single fall/winter wave, in 2009, the UK experienced two waves, the first one in late spring/summer and 
the second one in the fall. The intensive air connections between the UK and the US and the late closure 
of schools for summer holidays have been identified as the main determinants of the first wave12,21. Data 
collected since 2009, together with modeling studies, have provided a clear picture of H1N1 epidemiol-
ogy at the national and international scale. However, some notable patterns of spread at the sub-country 
level warrant further investigation. In particular, during the first wave of the pandemic, H1N1 cases were 
heterogeneously dispersed within England. The regions of London and West Midlands experienced early 
large school-based outbreaks22,23, and a more rapid increase of general practitioner (GP) consultation rates 
for influenza-like illness (ILI) with respect to the other regions2 - this evidence was later confirmed by a 
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cross-sectional serological study4. On the contrary, the second wave spread in a much more homogeneous 
way, affecting most regions of England soon after the reopening of schools after the summer break5.

Here we aim to investigate the mechanisms that drove the observed complex pattern of spread of the 2009 
influenza pandemic in England - highly localized during the first wave, rather homogeneous during the second 
one. In particular, the spatiotemporal spread of the pandemic could have been driven by several factors such as an 
increase of the transmissibility of the virus over the course of the epidemic, an increased number (or location) of 
the influenza cases arriving from abroad or variation in the behavior of the population. To test these (and other) 
hypotheses, we used previously published serological data at the regional level4,5 to perform a Bayesian analysis of 
dynamic models of influenza transmission.

Results
We analyze seroprevalence data for England at the regional spatial resolution4,5 (i.e. NUTS1) by using 5 differ-
ent spatially explicit individual-based models of influenza transmission calibrated through a Bayesian MCMC 
approach. All developed models account for influenza natural history and the sociodemographic characteristics 
of the population. They are structurally similar to those used for the analysis of influenza spread, containment and 
mitigation12,24–28. Briefly, all models are based on a synthetic population of agents matching socio-demographic 
data on age, population density, household and school structure specific for England. The transmission of the 
infection follows a discrete-time SLIR (Susceptible - Latent - Infectious - Removed) model, with latent period - 
assumed equal to the incubation period - lasting on average 1.5 days29 and infectious period of 1.6 days, in such a 
way to obtain a generation time of 3.1 days12,30. All models explicitly account for influenza transmission in house-
holds and schools (the latter interrupted during holidays), and transmission in all ‘other settings’ is assumed to 
depend on the geographic distance between individuals. In line with previous work on the 2009 H1N1 influenza, 
age-specific susceptibility to infection is considered as well1,12,31,32 - individuals aged 15+ years have a different 
susceptibility to infection with respect to children. The models also consider age-specific pre-pandemic immunity 
rates according to serosurvey data4. The models, however, differ from one another in a way specifically designed 
to test different factors that might have shaped the spread of the 2009 H1N1 influenza pandemic. The mathe-
matical formulation of the five models is briefly described in Sec. Methods and detailed in the Supplementary 
Information.

Model selection and transmission distance.  We identified four factors that might have determined 
the observed complex pattern of spread and we tested them with four different models (M2-M5) together with a 
classic model (M1) based on the work by Ferguson and colleagues25. Specifically,

•	 M1 This model is based on the classic model introduced by Ferguson and colleagues25. Basically M1 differs 
from model by Ferguson and colleagues25 by three factors: M1 does not explicitly consider transmission in 
workplaces, it does not differentiate between symptomatic and asymptomatic infectious individuals, and it 
explicitly considers an age-specific susceptibility to infection. Model M1 has five parameters related to virus 
transmissibility and susceptibility to infection: three transmission rates (in households, schools and ‘other 
settings’), the relative susceptibility to infection of adults with respect to children, and one multiplying factor 
for the transmission in ‘other settings’ while schools are closed. These parameters are epidemic-specific and 
thus need to be calibrated on the basis of the observed data. M1 can be considered as a reference scenario for 
comparing the other tested models.
Note that the model has a distance dependent component of the force of infection in ‘other settings’ that is 
driven by a kernel distance function = + αK d d a( ) 1/[1 ( / ) ], where d is the geographic distance, a = 4 km 
and α = 3 as determined by Ferguson and colleagues25 by analyzing commuting data for the UK. Basically, 
the kernel defines the distance at which an infectious individual generates secondary infections through 
contacts in ‘other settings’ (i.e., all contacts except those occurring in households and schools).

•	 M2 This model is structured exactly like model M1, except for the kernel function; here we estimate the 
parameter α regulating K(d) (and set a = 1 km), hypothesizing that the mean distance of infections linked 
to the transmission in ‘other settings’ could have been different than what was estimated by Ferguson and 
colleagues25 from commuting data, possibly because of a spontaneous human response of the population to 
the pandemic threat (as previously documented for the 2003 SARS epidemic33), leading to a very high spatial 
localization of the first pandemic wave.

•	 M3 This model is like M2, but we let the virus transmissibility differ between the two waves by adding one 
free parameter regulating such a difference, either for climatic reasons or because of viral evolution, as shown 
by Dorigatti et al.13 for the ‘third wave’. Possibly an increase in infection transmissibility might have led to a 
quicker spread in the second wave and thus to a rather homogeneous seroprevalence by region.

•	 M4 This model is like M2, but we added one parameter regulating the daily number of imported cases that 
might have been larger during the second wave. Indeed, influenza incidence was much higher in the fall than 
in the spring both in the United States15 and in the other European countries34, the origins of most travelers to 
the United Kingdom. It is then plausible that the influx of infectives was higher during the second wave, when 
individual case reporting had already been discontinued3, and this in turn might have led to a more spatially 
homogeneous infection spread.

•	 M5 In this model, the parameter α regulating the infection kernel K(d) in ‘other settings’ is allowed to differ 
between the first and the second wave. This might have occurred because the population behaved differently 
at the beginning of the pandemic from later on, and this could have led to different patterns of epidemic 
spread. For the rest, the model is identical to M2.



www.nature.com/scientificreports/

3Scientific Reports | 7: 12324  | DOI:10.1038/s41598-017-12415-2

A key outcome derived from the calibrated models is the transmission distance. This is defined as the distance 
between the place of residence of an infector and the place of residence of the infectees. The transmission distance 
is not a model parameter; it is instead derived from the simulations of the calibrated models. Specifically, we con-
sider all the transmission events simulated by a specific model and, for each of them, we compute the geographic 
distance between the place of residence of the infector and the place of residence of the infectees. The transmis-
sion distance in ‘other settings’ is computed in the same way, but it accounts only for infection events linked to a 
contact occurring in settings other than households or schools. The estimated transmission distances for the five 
models are reported in Table 1.

In this respect, Table 1 shows that there is a consensus between all the analyzed models with regards to the esti-
mated transmission distance in ‘other settings’ during the first wave of the pandemic. In fact, all models (except 
for M1, where the kernel regulating the distance is kept fixed) estimate a mean transmission distance in ‘other 
settings’ around 2 km, which decreases to about 1.5 km if all sources of infections are considered. This figure is 
remarkably different from what we found by using the “classic” model (M1), which estimates a transmission dis-
tance in ‘other settings’ slightly above 11 km in agreement with the commuting distance traveled by UK residents 
(i.e., 15 km35). The probability distributions of the transmission distance for models M1-M5 are reported in the 
Supplementary Information. It is worth noting that all models provide similar estimates for the five (common) 
parameters regulating virus transmissibility and susceptibility to infection (see Supplementary Information).

Deviance Information Criterion (DIC)36 is used to compare the five models. According to this criterion, the 
model obtaining the best score is M5 (see Table 1). This supports the hypothesis that the transmission distance in 
‘other settings’ changed over the course of the pandemic.

Intuitively, Model M5 estimates a high force of infection due to close distance contacts (roughly inside a 
radius of 5 km) and a lower force of infection at higher distances during the first wave, and a less sharp decline of 
force of infection with distance in the fall wave (Fig. 1a). In particular, the mean transmission distance in ‘other 
settings’ was estimated to have increased from 2.1 km (SD = 0.7) during the early epidemic phase to 10.0 km 
(SD = 29.1) later on. The latter is close to the mean commuting distance reported to the UK Department of 
Transport35, namely 15 km, and aligned with what was estimated by model M1 that is based on the kernel esti-
mated by Ferguson and colleagues25 before the 2009 pandemic (i.e., 10.8 km, see Table 1, model M1). If we con-
sider the mean transmission distance irrespective of the setting where the infection occurs, estimates provided by 
model M5 become: 1.4 km (SD = 3.8) during the first wave, 5.3 km (SD = 20.7) during the second wave (Fig. 1b).

In summary, our results highlight that i) transmission occurred at a markedly lower distance during the initial 
phase of the pandemic, and ii) during the second wave the estimated transmission distance is close to the value 
observed in the commuting flows.

From now on, we will primarily focus on model M5 as it best explains the observed data.

Geographic spread of the pandemic.  By simulating the calibrated model M5, we found a substantial variabil-
ity in incidence rates during the first wave between the regions of England (Fig. 2a). Such a heterogeneous pattern is 
confirmed by both the analysis performed by the Strategic Health Authorities37 and serological data4,5. On the contrary, 
at the end of the pandemic, estimated and actual prevalence rates5 show a rather homogeneous pattern across all of 
England (see Fig. 2a). The same pattern can also be found by looking at age-specific prevalence rates (Fig. 2b).

At the national level, the pandemic clearly showed two waves of infection (Fig. 2c). According to our modeling 
analysis and in agreement with previous investigations13, the second wave was characterized by a markedly higher peak 
weekly incidence (mean 28.2, 95%CI: 14.2–43.9 cases per 1,000 individuals, to be compared with 10.8, 95%CI: 1.2–26.4 
cases per 1,000 individuals for the first wave - Fig. 2c). The crude number of notified ILI cases shows the opposite pat-
tern; however, this has been explained due to a higher (three to ten times) GP consultation rate during the first wave13,38.

By looking more closely at the sub-national scale, the observed dynamics at the national scale are determined, 
according to our modeling analysis, by the sum of two very different dynamics at the regional level: London suf-
fered a major epidemic wave during the spring/summer and a more moderate one during the fall; the opposite 
pattern can be observed in the other regions of England (Fig. 2d). Such a pattern is also clearly visible by looking 

Model 
name Brief description of the model and hypotheses

Number of free 
parameters DIC

Mean transmission distance 
in ‘other settings’ (and SD)†

Mean transmission 
distance (and SD)†

M1 Classic model based on pre-pandemic 
knowledge 5 434.8 w1: 11.4 km (20.3)  

w2: 10.8 km (19.9)
w1: 6.5 km (16.3)  
w2: 5.7 km (15.5)

M2 Transmission distance might be different from 
what was inferred from commuting data 6 426.1 w1: 2.2 km (1.7)  

w2: 2.2 km (1.6)
w1: 1.5 km (4.1)  
w2: 1.9 km (5.9)

M3
Transmission distance might be different from 
what was inferred from commuting data; virus 
transmissibility might be different in the two 
waves

7 454.0 w1: 2.1 km (0.9)  
w2: 2.1 km (0.8)

w1: 1.4 km (5.4)  
w2: 1.9 km (6.8)

M4
Transmission distance might be different from 
what was inferred from commuting data; import 
of cases might be larger in the second wave

7 438.5 w1: 2.1 km (0.6)  
w2: 2.1 km (0.7)

w1: 1.5 km (2.9)  
w2: 1.8 km (5.9)

M5
Transmission distance might be different from 
what was inferred from commuting data and 
might be different in the two waves

7 390.9 w1: 2.1 km (0.7)  
w2: 10.0 km (29.1)

w1: 1.4 km (3.8)  
w2: 5.3 km (20.7)

Table 1.  Estimated DIC scores and transmission distances. †Values refer to the first (w1) and second (w2) 
pandemic waves.
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Figure 1.  Transmission distance. (a) Probability distribution of transmission distance in ‘other settings’ as 
estimated by model M5 for the two influenza waves and by model M1 for both waves combined together 
(results separated by wave for M1 are reported in Supplementary Information). Note that the transmission 
distance depends on both kernel function and population density (which is responsible for the bumps in 
the curves). The curves were obtained by averaging over 100 simulations run by using median values of the 
posterior distributions of model parameters; distances have been grouped in 1 km intervals and displayed at the 
superior limit of the intervals, so that for instance 1 on the x-axis corresponds to secondary infections occurring 
between 0 km (e.g., infection between members of the same household) and 1 km. (b) Probability distribution of 
transmission distance (i.e., accounting for infections occurring in all settings).

Figure 2.  Spatiotemporal dynamics of 2009 H1N1 influenza pandemic in England. (a) Estimated attack rate 
(mean and 95%CI) by region of England at the end of the two epidemic waves as resulting from model M5. 
Abbreviations used are: Lon, London; WMid, West Midlands; EMid, East Midlands; NW, North West; NE, 
North East; SW, South West; SE, South East; EEng, East of England; Y&H, Yorkshire & Humber. (b) Estimated 
attack rate by age (mean and 95%CI) in London and in all other England regions at the end of the first wave and 
at the end of the second wave as resulting from model M5. (c) Weekly incidence of new reported ILI cases in 
the UK12 and weekly incidence of new infections estimated by simulating the calibrated model M5 (mean and 
95%CI) for England. Note that the comparison can be considered representative for the timing of the epidemic 
only, and not for the absolute magnitude of incidence, as: i) ILI cases refer to the entire UK, and ii) they are 
affected by underreporting (which was estimated to be remarkably lower during the first epidemic wave13,38, 
than in the second one). (d) Weekly incidence of new infections in London and in all other regions of England 
(grouped together) as estimated by model M5 (mean and 95%CI).
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at the dynamics of weekly and cumulative incidence at the resolution of single geographic cell (Fig. 3a,b and the 
Supplementary Video S1). Moreover, as shown in the Supplementary Video S1, it is apparent that the fall wave 
spread through the country in a remarkably more homogeneous way and at a higher pace than the summer one. 
These patterns are driven by the detected change in the transmission distance: a lower distance during the early 
phase corresponds to a lower rate of spatial diffusion of the infection, while the estimated larger value in subse-
quent phases corresponds to a quicker and much more homogeneous geographic spread.

Support to the findings obtained from model M5 come from the other analyzed models. We found a consen-
sus between all five models with respect to several aspects of the geographic spread of the pandemic. In particular, 
all models estimate two major influenza waves at the national scale. At the sub-national scale, the first wave is 
more localized in the area of London (although to a different extent depending on the considered model), while 
at the end of the pandemic the estimated final attack rate is rather homogenous in all regions. The differences 
between the models mainly lay in the factors driving the pattern of spread. For instance model M4 estimate an 
unrealistically large number of imported cases to explain the pattern, while model M3 requires a remarkable 
influenza activity during the summer, which appears not well supported by epidemiological evidence. Results for 
models M1-M4 are discussed in more detail in the Supplementary Information.

Epidemiological characterization of the pandemic.  According to seroprevalence data4,5, a substantial 
proportion of adults and elderly were already protected against H1N1 infection and most of the cases in 2009 
occurred among school-age children; the same pattern is estimated by model M5 (Fig. 4a,b). Model simulations 
also suggest that individuals older than 15 years were less susceptible to infection than younger ones: the esti-
mated age-specific susceptibility to infection of adults is 0.61 (95%CI: 0.28–0.94), compared with a baseline value 
of 1 for children. Such an estimate is in line with previous findings where adults were found to be approximately 
half as susceptible as younger individuals1,8,31,38.

A second major determinant of epidemic spread is the reproduction number (i.e., the average number of 
secondary cases generated by an index case). We estimated a relatively low transmissibility of the H1N1pdm 
virus compared to previous pandemics: effective reproduction number of 1.45 (95% CI: 1.36–1.54) for the first 
wave and 1.30 (95% CI: 1.08–1.52) early on in the second wave. Both estimates are in line with results reported in 
previous independent studies and reviewed by Biggerstaff and colleagues39.

The limited transmissibility of the H1N1pdm virus is not sufficient to justify the low overall attack rate meas-
ured during the first wave; rather, it is a consequence of the drop of transmission associated with the closure of 
schools for the summer holidays, even though we found an increase in the transmission in ‘other settings’ (rep-
resenting all contacts except those occurring in household and school - see Sec. Material and Methods), possibly 
ascribable to increased activity of students outside schools. In particular, we estimated an increase of 1.2 (95% CI: 
0.6–1.9), which is well aligned with findings obtained from the analysis of seasonal influenza in France40.

Although schools remained closed during summer (as well as in fall and winter breaks), they had a major 
role in the spread of infection. In particular, considering the whole pandemic, we estimated that 17.8% (95% 
CI: 2.7–35.6) of the infections are linked to contacts at school - this is remarkable considering that the fraction 
of school-age individuals in England corresponds to only 20% of the population. Moreover, we estimated that 
34.7% (95% CI: 4.7–54.1) of infections occurred in households, and 47.5% (95% CI: 19.7–79.2) in ‘other settings’. 

Figure 3.  Simulated geographic spread of 2009 H1N1 influenza pandemic in England. (a) Simulated weekly 
incidence of new infections in each single cell (median over 2,000 simulations) as resulting from model M5. (b) 
Simulated cumulative weekly incidence of new infections in each single cell (median over 2,000 simulations) as 
resulting from model M5. The maps were generated using Grass GIS 6.4.2 (https://grass.osgeo.org/announces/
announce_grass642.html).

http://S1
http://S1
https://grass.osgeo.org/announces/announce_grass642.html
https://grass.osgeo.org/announces/announce_grass642.html
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Comparable values have been obtained in a previous work on the 2009 H1N1 pandemic in Italy41, and for past 
influenza pandemics as well25.

Models M1-M4 provide similar estimates of epidemiological indicators with respect to those resulting from the 
analysis of model M5. Briefly, all models estimate a lower susceptibility to infection of adults with respect to children, 
ranging, on average, from 0.49 to 0.61. There is a strong consensus between the models in the value of the reproduc-
tion number of the first wave (averages ranged from 1.42 of model M1 to 1.45 of model M5), while in the second 
wave the estimates are slightly more variable (averages ranged from 1.22 of model M1 to 1.38 of model M3, which 
however assumes an increased transmissibility of the virus over the course the pandemic). Although highly variable, 
also the fractions of infection by setting are rather consistent between the models. The estimated parameters and 
epidemiological indicators for the five models are reported in Tables S4 and S5 in the Supplementary Information.

Discussion
In this work we conducted a Bayesian analysis of the spatiotemporal dynamics of the 2009 H1N1 influenza pandemic 
in England at a sub-national scale. Specifically, we tested different hypotheses that could explain the observed highly 
localized spread during the first wave of the pandemic and the subsequent homogeneous diffusion during the sec-
ond one. The mean transmission distance in settings other than households and schools has been estimated in all 
the analyzed models to be, during the first pandemic wave, remarkably lower (≈2 km) than the mean commuting 
distance (≈15 km). On the other hand, the model best reproducing the data highlights that such a distance increased 
substantially over the course of the pandemic (the estimated mean distance for the second pandemic wave was 10 km). 
In addition, our findings provide a clear picture of the epidemiology of the 2009 pandemic, in agreement with the 
existing knowledge. Children younger than 15 years were the most affected age group: other studies found that children 
have higher contact rates42,43 and a lack of pre-existing immunity4,5,8,44; here we also estimated a higher (about twice as 
much) susceptibility to infection compared with adults, similar to previous works on the 2009 H1N1 pandemic1,8,31. We 
estimated a relatively low value of the reproduction number (around 1.4) in both waves. We also provided quantitative 
estimates of the proportion of cases by setting that is crucial for determining the effectiveness of intervention options, 
such as school closure28,45,46, highlighting a major contribution of schools to the overall transmission. Consistent with 
serum sample data5, we estimated that London experienced a marked first wave, while other regions showed little evi-
dence of a summer wave, and that the fall wave was lower in London than elsewhere.

What is notably novel in this study is the detection of a clear signal that the transmission distance was lower 
than previously thought and perhaps also changed over time. In particular, during the initial phase of the epi-
demic, when the attention of the public on the pandemic threat was higher, we found that infections were gen-
erated at a much closer distance than the average commuting distance. In the following phases, we estimate that 
the radius of diffusion of the epidemic became comparable with the distance traveled by commuters. A possible 
explanation for such a pattern lies in behavioral changes, spontaneously emerging as a response to the pandemic 
threat. During an emerging epidemic people may engage in precautionary behaviors that alter the transmission 
dynamics of the disease47,48. An initial overestimation of the risk of infection has been detected in Italy49 and 
Mexico50. Moreover, according to survey results51,52, in the case of an influenza pandemic a large proportion of 
people are willing to avoid crowded places, especially public transportation. For instance, a worker who usually 
commutes to reach his workplace, would likely continue to travel the same distance to reach the workplace even 
during a pandemic, but he might decide to avoid crowded environments near the workplace (such as pubs, and 

Figure 4.  Epidemiological characteristics of the 2009 H1N1 influenza pandemic in England. (a) Age-specific 
seroprevalence (mean, 95% CI) by age group and region as reported in45, (proportion of serum samples with 
haemagglutination inhibition titre 1:32 or more) and as estimated by model M5, as of August 2009 (i.e., at the 
end of the first epidemic wave). Regions are grouped as in the original works4,5; WMid corresponds to West 
Midlands. (b) as a, but as of January 2010 (i.e., at the end of the second wave).

http://S4
http://S5
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restaurants) where he usually goes outside business hours. Our findings suggest that in the early phase of the 
pandemic behavioral changes may have led to either a reduction of mobility in absolute terms or, more likely, 
to a decrease in the number of potentially infectious contacts at high distance from the place of residence/study.

Our results support the idea already presented by Birrell et al.53 that the geographic spread of influenza might be 
inaccurately described by raw commuting fluxes. However, although our results point in the direction of a human 
behavioral adaptation to the pandemic threat, they are far from conclusive. In fact, other factors could have been 
responsible for the changes in the force of infection that we measured. Clearly, data quality (far from being flawless) and 
(un)availability impose several limitations on our modeling analysis. First, concerning the initial seeding of the infec-
tion, we compute the region-specific probability of importing cases by using data on the total volume of incoming 
passengers by airport, disregarding their origin and final destination. Second, our model neglects cross-border infec-
tions that, given the geographic features of England, may have been imported from Scotland or through the Channel 
Tunnel, i.e. from France and continental Europe. A further limitation of the model is that transmission in workplaces 
is not explicitly modeled; in fact, its contribution is included in the ‘other settings’ component of the force of infection. 
However, the contribution of workplaces during the 2009 pandemic has been shown to be marginal41. Finally, it should 
be remarked that describing infection transmission through a distance kernel neglects most details of human mobility, 
although it has been shown that it gives an adequate description, especially in a setting like that of the UK54.

In conclusion, our results help to shed light on the epidemiology of the 2009 H1N1 pandemic and provide a possible 
explanation for the initially heterogeneous spatial spread of the epidemic within England, followed by a highly homo-
geneous one. Our analysis calls for a deeper understanding of human interactions and movements under the pressure 
posed by an epidemic threat. This would be instrumental for the design of more effective control strategies and revising 
current preparedness plans, particularly in light of the recent surge in the number of human H7N9 cases and deaths55.

Methods
The models.  All the models used in this work are individual-based, spatially explicit, stochastic models of 
influenza transmission in England, adapted from previous models developed for Europe12,26. The five models 
can be seen as nested models of a more general formulation. Full details on model structure and calibration are 
available in the Supplementary Information.

Remarkably, we explicitly model transmission in schools and households, i.e., the two most important settings 
for transmission according to the literature on the 2009 influenza pandemic12,41. Transmission in ‘other settings’, 
which accounts for contacts occurring in the general community (e.g., workplaces, means of transport, free-time 
activities, etc.) is shaped by the decreasing kernel function of the distance = + αK d d a( ) 1/[1 ( / ) ], where d is the 
geographic distance, and a and α regulate the kernel. In particular,

•	 for model M1, we used a = 4 km and α = 3 as determined by Ferguson and colleagues25 by analyzing com-
muting data for the UK;

•	 for models M2-M4, we assumed a = 1 km and estimate α;
•	 for model M5, we used α = (α1, α2), where α1 regulates the kernel in the first pandemic wave (here defined as 

the period since the start of the epidemic up to week 33, 2009) and α2 in the second one (from week 34, 2009 
until the end of the epidemic), and assumed a = 1 km (as for models M2-M4).

The kernel function is based on the idea that the distance traveled follows a power law, as suggested by several 
studies on human mobility (see for instance Brockmann et al.56 and Song et al.57). We assumed a fixed value for a 
in models M2-M5 in order to decrease the number of free parameters to be estimated; the reason why parameter 
a is not set to the same value in all models is discussed in the Supplementary Information.

Each student is assigned to a specific school, which is determined on the basis a resource competition model58. 
The resulting mean distance from home to school is 4.0 km, in agreement with the observed data according to the 
Department of Transport35, i.e. 4.3 km.

All models explicitly includes the closure of schools during holidays, according to the 2009 school calendar for 
England. During these periods transmission in schools is interrupted, whereas transmission in ‘other settings’ is 
assumed to increase, as in12,40. Simulations start on April 27, 2009, the day of the first cases reported in England. 
Infection is seeded within the population according to the actual time series of reported travel-related cases59. 
Once a case is imported, its location in a specific region is proportional to the volume of incoming air passengers 
per region over the period April-June 2009 as provided by the Civil Aviation Authority60; within each region, 
imported cases are distributed proportionally to population density.

Model calibration.  Model calibration was performed by using Markov chain Monte Carlo (MCMC) sam-
pling applied to the binomial likelihood of the age-specific and region-specific prevalence of H1N1 antibodies 
observed in England according to serum samples collected in August 20094 (i.e., at the end of the first wave) and 
over the period January-April 20105 (i.e., after the end of the second wave). All models share a set of five common 
parameters, i.e., three transmission rates (in households, schools and ‘other settings’), the relative susceptibility 
to infection of adults with respect to children, and one multiplying factor for the transmission in ‘other settings’ 
while schools are closed. M3 has one further free parameter determining the (possible) increase of virus trans-
missibility during the second wave. M4 has one parameter regulating the number of imported cases during the 
second wave. Models M2-M4 have one free parameter regulating the kernel function K(d) (i.e., α). Finally, model 
M5 has one parameter (α1) regulating kernel K(d) during the first wave and a second one (α2) for the second 
wave. Details on model calibration are provided in the Supplementary Information.

Data availability statement.  Data used to develop and validate the model can be retrieved through the 
referenced works. Outputs of model simulations are available upon request.



www.nature.com/scientificreports/

8Scientific Reports | 7: 12324  | DOI:10.1038/s41598-017-12415-2

References
	 1.	 Fraser, C. et al. Pandemic Potential of a Strain of Influenza A (H1n1): Early Findings. Science 324, 1557–1561 (2009).
	 2.	 Health Protection Agency (HPA). Epidemiological report of pandemic (H1n1) 2009 in the UK. http://webarchive.nationalarchives.

gov.uk/20140714084352/http:/www.hpa.org.uk/webc/HPAwebFile/HPAweb_C/1284475321350 (2010).
	 3.	 Nicoll, A. et al. Experience and lessons from surveillance and studies of the 2009 pandemic in Europe. Public Health 124, 14–23, 

https://doi.org/10.1016/j.puhe.2009.12.001 (2010).
	 4.	 Miller, E. et al. Incidence of 2009 pandemic influenza A H1n1 infection in England: a cross-sectional serological study. The Lancet 

375, 1100–1108 (2010).
	 5.	 Hardelid, P. et al. Assessment of baseline age-specific antibody prevalence and incidence of infection to novel influenza AH1n1 2009. 

Health Technol Assess 14, https://doi.org/10.3310/hta14550-03 (2010).
	 6.	 Broberg, E., Nicoll, A. & Amato-Gauci, A. Seroprevalence to Influenza A(H1n1) 2009 Virus–Where Are We? Clin Vaccine Immunol 

18, 1205–1212 (2011).
	 7.	 Hackenberg, A., Arman-Kalcek, G., Hiller, J. & Gabriel, G. Antibody prevalence to the 2009 pandemic influenza A (H1n1) virus in 

Germany: geographically variable immunity in winter 2010/2011. Med Microbiol Immunol 202, 87–94, https://doi.org/10.1007/
s00430-012-0251-4 (2013).

	 8.	 Merler, S. et al. Pandemic Influenza A/H1n1pdm in Italy: Age, Risk and Population Susceptibility. PLoS ONE 8, e74785, https://doi.
org/10.1371/journal.pone.0074785 (2013).

	 9.	 Balcan, D. et al. Seasonal transmission potential and activity peaks of the new influenza A(H1n1): a Monte Carlo likelihood analysis 
based on human mobility. BMC Med 7, 45, https://doi.org/10.1186/1741-7015-7-45 (2009).

	10.	 Baguelin, M. et al. Vaccination against pandemic influenza a/h1n1v in england: a real-time economic evaluation. Vaccine 28, 
2370–2384, https://doi.org/10.1016/j.vaccine.2010.01.002 (2010).

	11.	 Ajelli, M., Merler, S., Pugliese, A. & Rizzo, C. Model predictions and evaluation of possible control strategies for the 2009 A/H1n1v 
influenza pandemic in Italy. Epidemiol Infect 139, 68–79, https://doi.org/10.1017/S0950268810001317 (2011).

	12.	 Merler, S., Ajelli, M., Pugliese, A. & Ferguson, N. M. Determinants of the Spatiotemporal Dynamics of the 2009 H1n1 Pandemic in 
Europe: Implications for Real-Time Modelling. PLoS Comput Biol 7, e1002205, https://doi.org/10.1371/journal.pcbi.1002205 (2011).

	13.	 Dorigatti, I., Cauchemez, S. & Ferguson, N. M. Increased transmissibility explains the third wave of infection by the 2009 H1n1 
pandemic virus in England. Proc Natl Acad Sci USA 110, 13422–13427 (2013).

	14.	 Cauchemez, S. et al. Role of social networks in shaping disease transmission during a community outbreak of 2009 H1N1 pandemic 
influenza. Proc Natl Acad Sci USA 108, 2825–2830 (2011).

	15.	 Gog, J. R. et al. Spatial Transmission of 2009 Pandemic Influenza in the US. PLOS Comput Biol 10, 1–11 (2014).
	16.	 Eggo, R. M., Cauchemez, S. & Ferguson, N. M. Spatial dynamics of the 1918 influenza pandemic in England, Wales and the United 

States. J R Soc Interface 8, 233–243 (2010).
	17.	 Chowell, G. et al. Characterizing the Epidemiology of the 2009 Influenza A/H1n1 Pandemic in Mexico. PLOS Med 8, e1000436, 

https://doi.org/10.1371/journal.pmed.1000436 (2011).
	18.	 Nicoll, A. & Coulombier, D. Europe’s initial experience with pandemic (H1n1) 2009 - mitigation and delaying policies and practices. 

Euro Surveill 14, pii = 19279 (2009).
	19.	 WHO. Situation update in the European Region: overview of influenza surveillance data week 40/2009 to week 07/2010. http://www.

euro.who.int/__data/assets/pdf_file/0003/91839/E93581.pdf (2010).
	20.	 ECDC. The 2009 A(H1n1) pandemic in Europe. A review of the experience. doi:https://doi.org/10.2900/35415 (2010).
	21.	 Poggensee, G. et al. The first wave of pandemic influenza (H1n1) 2009 in Germany: from initiation to acceleration. BMC Infect Dis 

10, 155, https://doi.org/10.1186/1471-2334-10-155 (2010).
	22.	 Calatayud, L. et al. Pandemic (H1n1) 2009 virus outbreak in a school in London, April-May 2009: an observational study. Epidemiol 

Infect 138, 183–191 (2010).
	23.	 Health Protection Agency West Midlands H1N1v Investigation Team. Preliminary descriptive epidemiology of a large school 

outbreak of influenza A(H1n1)v in the West Midlands, United Kingdom, May 2009. Euro Surveill 14, pii = 19264 (2009).
	24.	 Ferguson, N. M. et al. Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature 437, 209–214 (2005).
	25.	 Ferguson, N. M. et al. Strategies for mitigating an influenza pandemic. Nature 442, 448–452 (2006).
	26.	 Merler, S. & Ajelli, M. The role of population heterogeneity and human mobility in the spread of pandemic influenza. Proc R Soc B 

277, 557–565 (2010).
	27.	 Merler, S., Ajelli, M., Fumanelli, L. & Vespignani, A. Containing the accidental laboratory escape of potential pandemic influenza 

viruses. BMC Med 11, 252, https://doi.org/10.1186/1741-7015-11-252 (2013).
	28.	 Fumanelli, L., Ajelli, M., Merler, S., Ferguson, N. M. & Cauchemez, S. Model-Based Comprehensive Analysis of School Closure 

Policies for Mitigating Influenza Epidemics and Pandemics. PLOS Comput Biol 12, e1004681, https://doi.org/10.1371/journal.
pcbi.1004681 (2016).

	29.	 Lessler, J. et al. Incubation periods of acute respiratory viral infections: a systematic review. Lancet Infect Dis 9, 291–300 (2009).
	30.	 Cowling, B. J., Fang, V. J., Riley, S., Malik Peiris, J. S. & Leung, G. M. Estimation of the serial interval of influenza. Epidemiology 20, 

344–347 (2009).
	31.	 Cauchemez, S. et al. Household Transmission of 2009 Pandemic Influenza A (H1n1) Virus in the United States. New Engl J Med 361, 

2619–2627 (2009).
	32.	 Lau, M. S. Y., Cowling, B. J., Cook, A. R. & Riley, S. Inferring influenza dynamics and control in households. Proc Natl Acad Sci USA 

112, 9094–9099 (2015).
	33.	 Hong Kong International Airport. Statistics. http://www.hongkongairport.com/eng/aboutus/statistics.html (2003).
	34.	 European Centre for Disease Prevention and Control (ECDC). Analysis of influenza A(H1n1)v individual case reports in EU and 

EEA countries. https://ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/0906_SUR_Analysis_of_influenza_
AH1N1v_individual_datain_EU_and_EEA_EFTA_countries.pdf (2009).

	35.	 Department of Transport. National Travel Survey 2013. https://www.gov.uk/government/statistics/national-travel-survey-2013 
(2015).

	36.	 Ando, T. Bayesian predictive information criterion for the evaluation of hierarchical Bayesian and empirical Bayes models. 
Biometrika 94, 443–58 (2007).

	37.	 Health Protection Agency (HPA). Pandemic (H1n1) 2009 in England: an overview of initial epidemiological findings and 
implications for the second wave. http://www.checktheevidence.com/pdf/Swine%20Flu%20-%20NHS%20-%20Epidemiology.pdf 
(2009).

	38.	 Birrell, P. J. et al. Bayesian modeling to unmask and predict influenza A/H1n1pdm dynamics in London. Proc Natl Acad Sci USA 
108, 18238–18243 (2011).

	39.	 Biggerstaff, M., Cauchemez, S., Reed, C., Gambhir, M. & Finelli, L. Estimates of the reproduction number for seasonal, pandemic, 
and zoonotic influenza: a systematic review of the literature. BMC Infect Dis 14, 480, https://doi.org/10.1186/1471-2334-14-480 
(2014).

	40.	 Cauchemez, S., Valleron, A.-J., Boelle, P.-Y., Flahault, A. & Ferguson, N. M. Estimating the impact of school closure on influenza 
transmission from Sentinel data. Nature 452, 750–754 (2008).

	41.	 Ajelli, M., Poletti, P., Melegaro, A. & Merler, S. The role of different social contexts in shaping influenza transmission during the 2009 
pandemic. Sci Rep 4, 7218, https://doi.org/10.1038/srep07218 (2014).

http://webarchive.nationalarchives.gov.uk/20140714084352/http:/www.hpa.org.uk/webc/HPAwebFile/HPAweb_C/1284475321350
http://webarchive.nationalarchives.gov.uk/20140714084352/http:/www.hpa.org.uk/webc/HPAwebFile/HPAweb_C/1284475321350
http://dx.doi.org/10.1016/j.puhe.2009.12.001
http://dx.doi.org/10.3310/hta14550-03
http://dx.doi.org/10.1007/s00430-012-0251-4
http://dx.doi.org/10.1007/s00430-012-0251-4
http://dx.doi.org/10.1371/journal.pone.0074785
http://dx.doi.org/10.1371/journal.pone.0074785
http://dx.doi.org/10.1186/1741-7015-7-45
http://dx.doi.org/10.1016/j.vaccine.2010.01.002
http://dx.doi.org/10.1017/S0950268810001317
http://dx.doi.org/10.1371/journal.pcbi.1002205
http://dx.doi.org/10.1371/journal.pmed.1000436
http://www.euro.who.int/__data/assets/pdf_file/0003/91839/E93581.pdf
http://www.euro.who.int/__data/assets/pdf_file/0003/91839/E93581.pdf
http://dx.doi.org/10.2900/35415
http://dx.doi.org/10.1186/1471-2334-10-155
http://dx.doi.org/10.1186/1741-7015-11-252
http://dx.doi.org/10.1371/journal.pcbi.1004681
http://dx.doi.org/10.1371/journal.pcbi.1004681
http://www.hongkongairport.com/eng/aboutus/statistics.html
https://ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/0906_SUR_Analysis_of_influenza_AH1N1v_individual_datain_EU_and_EEA_EFTA_countries.pdf
https://ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/0906_SUR_Analysis_of_influenza_AH1N1v_individual_datain_EU_and_EEA_EFTA_countries.pdf
https://www.gov.uk/government/statistics/national-travel-survey-2013
http://www.checktheevidence.com/pdf/Swine%20Flu%20-%20NHS%20-%20Epidemiology.pdf
http://dx.doi.org/10.1186/1471-2334-14-480
http://dx.doi.org/10.1038/srep07218


www.nature.com/scientificreports/

9Scientific Reports | 7: 12324  | DOI:10.1038/s41598-017-12415-2

	42.	 Mossong, J. et al. Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases. PLoS Med 5, e74, https://doi.
org/10.1371/journal.pmed.0050074 (2008).

	43.	 Fumanelli, L., Ajelli, M., Manfredi, P., Vespignani, A. & Merler, S. Inferring the Structure of Social Contacts from Demographic Data 
in the Analysis of Infectious Diseases Spread. PLoS Comput Biol 8, e1002673, https://doi.org/10.1371/journal.pcbi.1002673 (2012).

	44.	 Rizzo, C. et al. Cross-reactive antibody responses to the 2009 A/H1n1v influenza virus in the Italian population in the pre-pandemic 
period. Vaccine 28, 3558–3562 (2010).

	45.	 Earn, D. J. et al. Effects of school closure on incidence of pandemic influenza in alberta, canada. Ann Intern Med 156, 173–181 
(2012).

	46.	 Ciavarella, C., Fumanelli, L., Merler, S., Cattuto, C. & Ajelli, M. School closure policies at municipality level for mitigating influenza 
spread: a model-based evaluation. BMC Infect Dis 16, 576, https://doi.org/10.1186/s12879-016-1918-z (2016).

	47.	 Poletti, P., Ajelli, M. & Merler, S. Risk perception and effectiveness of uncoordinated behavioral responses in an emerging epidemic. 
Math Biosci 238, 80–89 (2012).

	48.	 Funk, S., Gilad, E. & Jansen, V. A. A. Endemic disease, awareness, and local behavioural response. J Theor Biol 264, 501–509 (2010).
	49.	 Poletti, P., Ajelli, M. & Merler, S. The Effect of Risk Perception on the 2009 H1n1 Pandemic Influenza Dynamics. PLoS ONE 6, 

e16460, https://doi.org/10.1371/journal.pone.0016460 (2011).
	50.	 Springborn, M., Chowell, G., MacLachlan, M. & Fenichel, E. P. Accounting for behavioral responses during a flu epidemic using 

home television viewing. BMC Infect Dis 15, 1–14 (2015).
	51.	 Sadique, M. Z. et al. Precautionary behavior in response to perceived threat of pandemic influenza. Emerg Infect Dis 13, 1307–1313 

(2007).
	52.	 SteelFisher, G. K., Blendon, R. J., Bekheit, M. M. & Lubell, K. The public’s response to the 2009 H1n1 influenza pandemic. New Engl 

J Med 362, e65, https://doi.org/10.1056/NEJMp1005102 (2010).
	53.	 Birrell, P. J., Zhang, X.-S., Pebody, R. G., Gay, N. J. & De Angelis, D. Reconstructing a spatially heterogeneous epidemic: 

Characterising the geographic spread of 2009 A/H1N1pdm infection in England. Sci Rep 6, 29004, https://doi.org/10.1038/
srep29004 (2016).

	54.	 Truscott, J. & Ferguson, N. M. Evaluating the adequacy of gravity models as a description of human mobility for epidemic modelling. 
PLoS Comput Biol 8, e1002699, https://doi.org/10.1371/journal.pcbi.1002699 (2012).

	55.	 Wolrd Health Organization (WHO). Human Infection with Avian Influenza A(H7N9). http://www.wpro.who.int/outbreaks_
emergencies/H7N9/en/ (2017).

	56.	 Brockmann, D., Hufnagel, L. & Geisel, T. The scaling laws of human travel. Nature 439, 462–465 (2006).
	57.	 Song, C., Koren, T., Wang, P. & Barabási, A.-L. Modelling the scaling properties of human mobility. Nature Phys 6, 818–823 (2010).
	58.	 Simini, F., Gonzalez, M. C., Maritan, A. & Barabasi, A.-L. A universal model for mobility and migration patterns. Nature 484, 

96–100 (2012).
	59.	 European Centre for Disease Prevention and Control (ECDC). ECDC Situation report on new influenza A(H1n1) infection 13 June 

2009. http://reliefweb.int/sites/reliefweb.int/files/resources/A24395166FE4C77C492575D500235223-Full_Report.pdf (2009).
	60.	 Civil Aviation Authority. Airport data 1990 onwards. http://www.caa.co.uk/Data-and-analysis/UK-aviation-market/Airports/

Datasets/UK-Airport-data/Airport-data-1990-onwards/ (2015).

Acknowledgements
This work was funded by the European Commission Horizon2020 CIMPLEX 641191. The funders had no role in 
study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author Contributions
M.A. and S.M. conceived the study, V.M. conducted the experiments, V.M. and M.A. analyzed the results. All 
authors contributed to interpret the results. M.A. drafted the manuscript. V.M. drafted the Supplementary 
Information. All authors reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-017-12415-2.
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://dx.doi.org/10.1371/journal.pmed.0050074
http://dx.doi.org/10.1371/journal.pmed.0050074
http://dx.doi.org/10.1371/journal.pcbi.1002673
http://dx.doi.org/10.1186/s12879-016-1918-z
http://dx.doi.org/10.1371/journal.pone.0016460
http://dx.doi.org/10.1056/NEJMp1005102
http://dx.doi.org/10.1038/srep29004
http://dx.doi.org/10.1038/srep29004
http://dx.doi.org/10.1371/journal.pcbi.1002699
http://www.wpro.who.int/outbreaks_emergencies/H7N9/en/
http://www.wpro.who.int/outbreaks_emergencies/H7N9/en/
http://reliefweb.int/sites/reliefweb.int/files/resources/A24395166FE4C77C492575D500235223-Full_Report.pdf
http://www.caa.co.uk/Data-and-analysis/UK-aviation-market/Airports/Datasets/UK-Airport-data/Airport-data-1990-onwards/
http://www.caa.co.uk/Data-and-analysis/UK-aviation-market/Airports/Datasets/UK-Airport-data/Airport-data-1990-onwards/
http://dx.doi.org/10.1038/s41598-017-12415-2
http://creativecommons.org/licenses/by/4.0/

	Detecting a Surprisingly Low Transmission Distance in the Early Phase of the 2009 Influenza Pandemic

	Results

	Model selection and transmission distance. 
	Geographic spread of the pandemic. 
	Epidemiological characterization of the pandemic. 

	Discussion

	Methods

	The models. 
	Model calibration. 
	Data availability statement. 

	Acknowledgements

	Figure 1 Transmission distance.
	Figure 2 Spatiotemporal dynamics of 2009 H1N1 influenza pandemic in England.
	Figure 3 Simulated geographic spread of 2009 H1N1 influenza pandemic in England.
	Figure 4 Epidemiological characteristics of the 2009 H1N1 influenza pandemic in England.
	Table 1 Estimated DIC scores and transmission distances.




