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Abstract: Processes of intracellular and extracellular transport play one of the most important
roles in the functioning of cells. Changes to transport mechanisms in a neuron can lead to the
disruption of many cellular processes and even to cell death. It was shown that disruption of the
processes of vesicular, axonal, and synaptic transport can lead to a number of diseases of the central
nervous system, including Parkinson’s disease (PD). Here, we studied changes in the expression
of genes whose protein products are involved in the transport processes (Snca, Drd2, Rab5a, Anxa2,
and Nsf ) in the brain tissues and peripheral blood of mice with MPTP (1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine)-induced models of PD. We detected changes in the expressions of Drd2, Anxa2,
and Nsf at the earliest modeling stages. Additionally, we have identified conspicuous changes in the
expression level of Anxa2 in the striatum and substantia nigra of mice with MPTP-induced models of
PD in its early stages. These data clearly suggest the involvement of protein products in these genes
in the earliest stages of the pathogenesis of PD.

Keywords: Parkinson’s disease; neurological diseases; MPTP; neurodegeneration; molecular
mechanisms; transport processes; gene expression; early diagnostics

1. Introduction

Among the most important processes in cell function are intracellular and extracellular
transport [1–3]. These are carried out using transport proteins, cytoskeletal proteins, and
transport vesicles [3,4].

Of particular importance is the cell transport in neurons. This is because of the struc-
tural features of these cell types, as in addition to the soma, they have very long processes
(axons and dendrites) [3,5–7]. These require significant resources for the implementation
of intracellular transport processes and provide one of the main functions of a neuron:
transmission of a nerve impulse for synaptic transmission [8–10].

Nerve impulse transmission at the synapse is a complex physiological process that
proceeds in several stages and includes multiple participants, such as synaptic vesicles,
receptors, neurotransmitters, and transporters [11]. Vesicular transport is one of the most
important components in synaptic transmission. In general, for a neuron, three main types
of transport can be distinguished: axonal, vesicular, and synaptic [4,12]. Axonal transport
ensures the integrity of the neuron and the connection of the soma with the synapse [12].
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Vesicular transport is one of the most extensive types. Vesicles can be used for the transport
of substances across the cell membrane by endocytosis and exocytosis. Numerous proteins
and protein complexes participate in the formation, movement, and secretion of vesicle
contents [9,10,13]. Synaptic transport is essential in the propagation of a nerve impulse and
is also one of the most common modes of interaction between neurons [14–16].

Changes to transport mechanisms in a neuron can lead to the disruption of many
cellular processes and even to cell death. Changes or disturbances in synaptic transmission
can lead to a slowdown or interruption in the transmission of nerve impulses and to the
disorganization of the brain and the organism as a whole [3,17].

Disruption of the processes of vesicular, axonal, and synaptic transport can lead to a
number of diseases of the central nervous system [3,17–28], including Parkinson’s disease
(PD) [4,29–32]. A key histopathology of PD is the presence of Lewy bodies (LBs) in the
cell bodies and outgrowths of neurons in affected areas of the brain. They can have a toxic
effect on the cell and isolate proteins vital for cell function [33]. There is evidence that the
presence of LBs can be associated with disruptions to neuronal transport [28,34,35]. In
addition, the presence of LBs complicates and changes transport in nerve cells [36–38]. This
can lead to the accumulation of proteins in certain parts of the cell, obstruct synaptic signal
transmission, and lead to slow neuronal death [39].

Previously, we performed a whole-transcriptome analysis of mouse brain tissues with
MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced models of the early stages
of PD [40,41]. It was shown that changes in the expression of proteins associated with trans-
port could affect the very early stages of pathogenesis. In addition, the use of bioinformatic
approaches made it possible to analyze the data and identify a number of genes influencing
changes to the transport processes in the early stages of neurodegeneration.

Here, we present an account of the data obtained as a result of whole-transcriptome
analysis and a study of the changes in expression of selected genes in MPTP-induced
models of the early stages of PD.

2. Materials and Methods
2.1. Parkinson’s Disease Models

We used models of the presymptomatic stage of PD with decapitation of mice 6 h
after last injection of MPTP (6 h-PSS), the presymptomatic stage of PD with decapitation
of mice 24 h after last injection of MPTP (24 h-PSS), and the advanced presymptomatic
(AdvPSS) and early symptomatic (ESS) stages of PD. Models were created as previously
described [42,43]. Detailed information is presented in the work performed by our team
earlier [44]. A brief description is provided in Table 1.

Table 1. Description of used models.

6 h-PSS 24 h-PSS AdvPSS ESS

Dose of MPTP 12 mg/kg 12 mg/kg 12 mg/kg 12 mg/kg
Number and frequency

of injections
4 injections at 2-h

intervals
4 injections at 2-h

intervals
2 injections at 2-h

intervals
4 injections at 2-h

intervals
Withdrawal time after the last

injection of MPTP 6 h 24 h 2 weeks 2 weeks

Change in DA levels in
the striatum 89% reduction 72% increase 56% reduction 75% reduction

Death of DAergic
neurons in substantia nigra 33% reduction unchanged 26% reduction 43% reduction

Changes in animal
behavior unchanged unchanged unchanged a decrease in motor

activity was detected

6 h-PSS—model of the presymptomatic stage of PD with decapitation of mice 6 h after last injection of MPTP;
24 h-PSS—model of the presymptomatic stage of PD with decapitation of mice 24 h after last injection of MPTP;
AdvPSS—model of the advanced presymptomatic stage of PD; ESS—early symptomatic stage of PD. MPTP—
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.
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All efforts were made to minimize the potential suffering and discomfort of animals
and care was taken according to the 3R rule (replacement, reduction, and refinement).

2.2. RNA Isolation and Expression Analysis of Individual Candidate Genes

RNA isolation from tissue samples from each animal as well as analysis of mRNA
levels using reverse transcription and real-time PCR (TaqMan technology, StepOnePlus™
System, Applied Biosystems, USA) was carried out in accordance with the protocols
described previously [44].

Primer and Probe design was produced using Beacon designer 7.0 software (v. 7.0,
Premier Biosoft International, Palo Alto, CA, USA) and the nucleotide sequences of the
Snca, Drd2, Rab5a, Anxa2, and Nsf genes and the reference genes Bcat2 and Psmd7 [45–48].
The sequences of gene-specific primers and probes are presented in Table 2.

Table 2. Nucleotide sequences of gene-specific primers and probes.

Gene Nucleotide Sequence

Snca
(Synuclein Alpha)
NM_001042451.2 *

Probe: 5′-VIC-CCTCCTCACCCTTGCCCATCTGGTCC-BHQ2-3′

Forward primer: 5′-AGTGGAGGGAGCTGGGAATATAG-3′

Reverse primer: 5′-GCATGTCTTCCAGGATTCCTTCC-3′

Drd2
(Dopamine Receptor D2)
NM_010077.2 *

Probe: 5′-ROX-CAGCCAGCAGATGATGAACACACCAAGA-BHQ2-3′

Forward primer: 5′-TCCCAGCAGAAGGAGAAGAAAG-3′

Reverse primer: 5′-TGTATATTCAGGATGTGCGTGATG-3′

Rab5a
(RAB5A, Member RAS Oncogene Family)
NM_025887.4 *

Probe: 5′-VIC-CATCTGCATAGGACTGTGCTTCC-BHQ2-3′

Forward primer: 5′-GCAAGTCCTAATATTGTGATA-3′

Reverse primer: 5′-CTCCATAAATAATAAGCTGTTG-3′

Anxa2
(Annexin A2)
NM_007585.3 *

Probe: 5′-VIC-AGAAGGACATCATCTCTGACACATCTG-BHQ2-3′

Forward primer: 5′-GAGTGTACAAGGAAATGTAC-3′

Reverse primer: 5′-CGTAGTCAATAACTGAGC-3′

Nsf
(N-ethylmaleimide sensitive fusion protein)
NM_008740.4 *

Probe: 5′-VIC-CGTCCTCACCATCACATGCTG-BHQ2-3′

Forward primer: 5′-CCCTACTGATGAATTATCTTTA-3′

Reverse primer: 5′-TCCTCAGCGTAAATATGTA-3′

Bcat2
(Branched chain aminotransferase 2)
NM_001243053.1 *

Probe: 5′-FAM-CGGATACACTCCAACAGCTCCTGCTTGT-BHQ1-3′

Forward primer: 5′-TCAACATGGACAGGATGCTACG-3′

Reverse primer: 5′-CCAGTCTTTGTCTACTTCAATGAGC-3′

Psmd7
(Proteasome 26S Subunit, Non-ATPase 7)
NM_010817.2 *

Probe: 5′-FAM-AGTCCTAGGTCCTTTGGCTTCACGTCGA-BHQ1-3′

Forward primer: 5′-CTGCACAAGAATGATATCGCCATC-3′

Reverse primer: 5′-CTCCACTGAGATGTAGGCTTCG-3′

* Numbers in the database GenBank (Accession numbers). FAM, ROX and VIC—fluorescent dyes; BHQ1 and
BHQ2—fluorescence quenchers.

2.3. Statistical Processing and Bioinformatic Analysis

The protocol of statistical and bioinformatic analysis is described in detail in the work
carried out in our laboratory earlier [44].

3. Results

Previously, the whole-transcriptome analysis of the murine striatum and substantia
nigra in models of the presymptomatic stage of PD with the decapitation of mice 6 h after
the last injection of MPTP (6 h-PSS), the presymptomatic stage of PD with the decapitation
of mice 24 h after the last injection of MPTP (24 h-PSS), and the advanced presymptomatic
(AdvPSS) and early symptomatic (ESS) stages of PD was carried out in our laboratory.
As a result, 170 differentially expressed genes that belonged to the “transport” clusters
were identified [41].

We performed a more detailed analysis of these genes using Pathway Studio® software
12.0 (Elsevier, The Netherlands) [49,50]. A network of interactions was built using the
keywords “Parkinson’s disease”, “transport”, “neuron”, and “neurodegeneration” under
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the condition of direct interactions between network participants. As a result, a network of
interactions of five genes, Snca, Drd2, Rab5a, Anxa2, and Nsf, was built, corresponding to all
keywords as closely as possible (Figure 1).
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Figure 1. A network of genes that are somehow involved in the functioning of transport. Pathway
Studio was used to build this network. Cellular processes are marked with a yellow box, genes and
protein structures under study are marked with a red ellipse, disease (PD) and related processes are
marked with a purple box, and a cell (neuron) is marked with light blue. Interactions between the
gene and the object are indicated by arrows.

Further, an analysis of the expression levels of selected genes was performed at the
early stages of the development of PD in the brain tissues and peripheral blood of mice
using MPTP-induced models of the early stages of the disease [43]. Earlier, we obtained
data on the expression of the Snca and Drd2 genes in the brain tissues and peripheral blood
using the AdvPSS and ESS models of PD [40]. This work presents data from previous [40]
and current studies for building a holistic picture of the genes involved in this disease. The
results of the expression analysis of the candidate genes are presented in Table 3.

The data presented in Table 3 demonstrate statistically significant changes in the
expression of all the genes studied. However, the mRNA levels of Drd2 in the peripheral
blood of mice in the 6 h-PSS and 24 h-PSS models of PD were under the detection level of
the methods used.

Fewer genes changed their expression levels in the tissues of animals with the 6 h-PSS
and 24 h-PSS models than in those using the models of the more advanced stages of PD
(12 versus 19).

At the earliest stage modeled (6 h-PSS), there were changes in gene expression only
in the substantia nigra and peripheral blood, whereas there were increases in the relative
mRNA levels for all genes; the relative expression levels of Anxa2 and Drd2 increased
in the substantia nigra while Snca, Rab5a, and Anxa2 transcript levels changed in the
peripheral blood.

There was a change in the relative mRNA level of Anxa2 in all studied tissues at 24 h
after MPTP administration. Moreover, a large increase in mRNA level—almost 7.5-fold—
was observed in the striatum. There was a significant decrease in the relative mRNA level
of Drd2 in the substantia nigra and an increase in the striatum by more than 1.5-fold. A
change in expression at the mRNA level was also detected for Nsf in the striatum and
peripheral blood.
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Table 3. Relative mRNA levels of the genes studied in brain and peripheral blood of mice with
MPTP-induced models of early stages of PD.

Genes

Striatum Substantia Nigra Peripheral Blood

6 h-PSS
(n = 10)

24 h-PSS
(n = 10)

Adv-
PSS

(n = 10)

ESS
(n = 10)

6 h-PSS
(n = 10)

24 h-PSS
(n = 10)

Adv-
PSS

(n = 10)

ESS
(n = 10)

6 h-PSS
(n = 10)

24 h-PSS
(n = 10)

Adv-
PSS

(n = 10)

ESS
(n = 10)

Drd2 0.94 1 1.76 0.90 * 0.42 * 1.34 0.57 3.55 * 0.27 * — — 0.90 * 0.38 *
0.77–1.18 2 1.25–2.39 0.17–1.09 0.33–0.86 1.24–1.46 0.46–0.81 3.14–5.80 0.13–0.59 0.75–1.52 0.27–0.44

Snca 1.10 0.87 0.93 * 0.73 * 0.87 0.49 7.52 * 0.17 * 3.37 0.74 0.69 * 0.20 *
1.01–1.33 0.78–1.41 0.12–1.00 0.61–1.30 0.81–1.13 0.33–1.06 6.42–8.36 0.16–0.36 2.12–4.29 0.60–0.93 0.21–1.82 0.14–0.36

Rab5a 1.03 1.01 0.57 1.12 0.93 1.01 2.68 2.43 1.81 0.61 0.36 0.96
0.83–1.52 0.82–1.11 0.47–0.85 0.39–1.59 0.72–1.08 0.88–1.44 1.79–4.89 2.01–3.38 1.56–2.72 0.39–1.30 0.22–0.47 0.73–1.82

Anxa2 0.98 7.41 0.93 1.92 6.38 1.21 0.29 1.24 2.88 0.71 1.30 1.05
0.84–1.22 5.80–9.60 0.68–2.20 1.37–2.75 5.38–6.47 0.72–3.83 0.19–1.01 0.99–1.56 1.12–5.11 0.36–0.87 0.83–1.96 0.73–1.70

Nsf 0.98 1.29 2.69 0.11 1.13 1.03 1.32 3.50 1.14 0.58 0.72 1.07
0.88–1.09 1.00–1.59 1.67–3.27 0.07–0.33 1.12–1.25 0.82–1.31 0.71–3.13 2.47–5.21 1.06–3.18 0.39–1.67 0.46–0.84 0.79–1.13

1 Median. 2 25–75—quartiles. n = 10 for each group. The levels of the mRNA of the genes studied in the control
group were taken as 1. The data with p < 0.05 and fold change ≥1.5 are bold and highlighted. The data with
p < 0.05 and fold change <1.5 are bold but not highlighted. Dashes indicate samples in which analysis was not
performed. * The results obtained in previous studies [40]. 6 h-PSS—model of the presymptomatic stage of PD
with decapitation of mice 6 h after last injection of MPTP; 24 h-PSS—model of the presymptomatic stage of PD
with decapitation of mice 24 h after last injection of MPTP; AdvPSS—model of the advanced presymptomatic
stage of PD; ESS—early symptomatic stage of PD.

There were significant changes in gene expression in the AdvPSS model of PD. There
was an abrupt decrease in the relative mRNA level of Anxa2 by 3.5-fold and a 2.5-fold
increase for Rab5a in the substantia nigra. Decreased expression levels of Rab5a mRNA
were also detected in the striatum and peripheral blood.

For the ESS model of PD, we found increases in the relative mRNA levels of Nsf and
Rab5a in the substantia nigra. In addition, there was an abrupt 9-fold decrease for Nsf and
an almost 2-fold increase for Anxa2 in the striatum.

It is worth noting that the maximum number of significant data points on relative
mRNA levels was obtained for Drd2 and Anxa2, with 7 of 12 analyzed samples for each.

4. Discussion

Proteins encoded by the human genes of the monogenic forms of PD, SNCA, VPS35,
LRRK2, and ATP13A2 serve to maintain normal neuronal transport functions [36,51–56].
Mutations in these genes can contribute to the disruption of endo- and exocytosis and
intracellular transport, which results in the incorrect redistribution of neurotransmitters,
primarily dopamine (DA), in the synaptic gap and presynaptic terminals. These abnormali-
ties can lead to impaired transport and neuronal death. However, despite the significance of
these data [4], the entire spectrum of abnormal transport processes during the development
of PD has not been fully described, and little is known about the roles of other genes
involved in transport in the development of this disease.

The whole-transcriptome analysis of mouse brain tissues [40,41] and subsequent
analysis of these data using Pathway Studio revealed potential significant participants in
the transport processes in the early stages of the pathogenesis of PD (Figure 1). Therefore,
the aim of this work was to study the expression levels of Snca, Drd2, Rab5a, Nsf, and Anxa2
in the brain tissues and peripheral blood of mice containing MPTP-induced models of PD.

In the present study, we used MPTP-induced models of the presymptomatic stages of
PD, 6 h-PSS and 24 h-PSS, and of the advanced presymptomatic (AdvPSS) and early symp-
tomatic (ESS) stages of PD (with decapitation 2 weeks after MPTP administration) [42,43].
The administration of MPTP makes it possible to simulate the death of substantia nigra
DAergic neurons, DA deficiency in the striatum, and the manifestation of the classic signs
of PD [57,58]. PD models based on MPTP injections are considered the most adequate
experimental models of this disease. An important advantage of using MPTP is that it selec-
tively penetrates into DAergic neurons due to its high affinity for the DA transporter DAT
and selectively inhibits complex I of the mitochondrial electron transport chain, leading to



Life 2022, 12, 751 6 of 13

oxidative stress and impaired calcium homeostasis. These events lead to the degeneration
of DAergic neurons through necrosis or apoptosis [59–61]. The introduction of MPTP makes
it possible to simulate the various stages of neurodegeneration in PD, including the earliest
ones. This makes it possible to study the specific patterns and mechanisms underlying
neurodegeneration in PD at different stages of the development of the pathological process
as well as study the compensatory mechanisms that occur in nerve cells. Today, MPTP is
the gold standard for the study of Parkinson’s disease, including at the earliest stages [62].

Other types of models have a number of their own features. In addition to MPTP, one
of the most common toxins is 6-hydroxydopamine (6-OHDA). The introduction of this toxin
promotes the degeneration of catecholamine neurons, including DAergic neurons, since 6-
OHDA has a high affinity for DA transporters. The neurotoxic effect of 6-OHDA is mediated
by a two-stage mechanism: at the first stage, the toxin accumulates in catecholamic neurons;
at the second stage, a change in cellular homeostasis and neuron death occurs. Because of
its similarity to endogenous catecholamines, 6-OHDA is taken up by the DAT and NAT
transporters. The oxidation of 6-OHDA by monoamine oxidase (MAO-A) promotes the
formation of hydrogen peroxide (H2O2), which is not only cytotoxic but also causes the
formation of oxygen radicals [63]. An increase in the concentration of reactive oxygen
species and other reactive substances caused by the entry of 6-OHDA into the cell leads
to a rapid depletion of intracellular antioxidants, which, in turn, enhances neurotoxicity,
leading to cell death [64].

A significant disadvantage of 6-OHDA is its inability to penetrate the BBB, which
leads to its direct administration by stereotaxic method into the striatum and/or substantia
nigra and less often into other parts of the brain [65–68]. Moreover, when using 6-OHDA,
it is rather problematic to model the presymptomatic stages of PD since the very nature of
toxin administration causes the rapid death of DA neurons [65,69].

Genetic models can mainly show only that variant of the pathogenesis of PD caused
by a specific genetic defect. In addition, genetic models do not clearly reproduce the
behavioral and neurodegenerative changes characteristic of PD. In addition, familial forms
of PD account for only 5–15% of all cases of the disease, so this type of model cannot cover
the entire spectrum of the causes of PD. Another disadvantage of such models is that they
practically do not reproduce the presymptomatic stages of PD [70–75].

There are also models employing the use of amphetamine psychostimulants and
reserpine. Currently, they are used very rarely to model the presymptomatic stages of
PD due to their high nonspecificity. The principle of action is very different from the
compounds described above and is associated with the release of DA from the terminals of
neurons into the cytosol, leading to a lack of DA in the striatum [76–79]. These models do
not show clear symptoms of parkinsonism and can be used to study the dysfunction of the
catecholaminergic system as a whole.

In this work, the tissues of the striatum, substantia nigra, and peripheral blood of mice
with MPTP-induced PD models were used. The striatum and substantia nigra are mainly
subject to neurodegeneration in PD in the earliest stages. Blood was examined to further
explore candidate genes as potential transcriptional peripheral biomarkers for this disease.

Table 3 demonstrates a greater number of significant changes in the tissues of the
brain and peripheral blood of mice with models of AdvPSS and ESS of PD compared
with those with 6 h-PSS and 24 h-PSS models. We observed more pronounced changes
at the transcriptome level at the advanced stages of the development of the pathological
process in PD. These results correlate with our previous data that showed that the number
of differentially expressed genes increased with the progression of the disease [41,44].

In our previous study, we obtained data on the expression of Snca and Drd2 in the
brain tissues and peripheral blood of animals using AdvPSS and ESS models [40] (Table 3).
Mutations in the human DRD2 gene encoding the DA uptake receptor and release inhibitor
D2 might be associated with some psychiatric and neurological diseases [80]. Alpha-
synuclein (SNCA), encoded by the SNCA gene, is a presynaptic protein and is actively
involved in the functioning of various types of neurons [81]. It is worth noting that
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SNCA can be involved in the development of both familial and sporadic forms of PD [82].
Alieva et al. (2017) demonstrated that these genes changed their expression levels in the
brain tissues of mice with MPTP-induced models of AdvPSS and ESS, and the most
pronounced and significant changes were observed in the substantia nigra [40]. These data
indicated the involvement of the Snca and Drd2 genes in the neurodegenerative processes
of PD. At the same time, an analysis of earlier time points (6 h-PSS and 24 h-PSS models
of PD) suggested that changes in the Snca mRNA levels did not occur at the early stages
of neurodegeneration. Here, we observed an increase in the relative level of Drd2 mRNA
in the striatum and a decrease in the substantia nigra 24 h after the last injection of MPTP.
Thus, this gene might be involved in pathogenesis at the very early stages of PD.

There were significant changes in the expression of Nsf mRNA in the striatum and
substantia nigra in the PD models studied. Nsf, encoding the N-ethylmaleimide-sensitive
factor, is required at all stages of the endosome pathway, from the endoplasmic reticulum
to the Golgi apparatus and from the Golgi apparatus to the plasma membrane [83]. Several
studies have demonstrated that the dysfunction of this protein can lead to the disruption
of intracellular transport, which includes not only a decrease in vesicular traffic but also
damage to the cytoskeleton [84–86]. An increase in the expression of Nsf mRNA in the
substantia nigra in the ESS model of PD indicates that, at this stage of neurodegeneration,
the mechanisms of intracellular transport are enhanced precisely in the nerve cell body.
However, there are insufficient resources to support these processes in nerve cell bodies
and neuronal outgrowths. This is reflected in a decrease in the Nsf mRNA levels in the
striatum at the same simulated stage.

Rab5a, encoded by a member of the RAS oncogene family, as well as Nsf, is required for
the fusion of endosomes with the plasma membrane [87,88]. This protein is involved in the
conversion of early endosomes to late ones [89]. In 2004, Delprato et al. showed that motor
neurons degenerate during Rab5a dysfunction [90]. The Rab5a gene showed increased
expression in the substantia nigra in the AdvPSS and ESS models of PD. Moreover, the
mRNA level of this gene decreased only in the striatum in the AdvPSS model but increased
in the control samples in the ESS model. It is likely that an increase in the mRNA level of
this gene at these stages of neurodegeneration in the substantia nigra might lead to the
development of the compensatory mechanisms observed in the striatum in the ESS model.

In the present study, Anxa2 showed the maximum number of significant results at
the mRNA level (Table 3). The protein annexin A2 encoded by this gene performs a
number of biological functions such as the regulation of the organization of organelle mem-
branes [91], participation in clathrin-mediated endocytosis, and other types of vesicular
transport [92]. Annexin A2 is also involved in the formation of the actin cytoskeleton [93].
Babbin et al. (2007) showed that inhibition of Anxa2 expression in cell cultures can lead to
the destabilization of actin filaments and their subsequent depolymerization [94].

Although reports on the dysfunction of annexin A2 appear primarily in the field of can-
cer research, a role for this protein in diseases of the nervous system, such as Alzheimer’s
disease [95,96] and Niemann–Pick type C disease, has also been demonstrated [97]. How-
ever, there is very little evidence that the Anxa2 gene is directly involved in the pathogenesis
of PD. It was shown that astrocytes expressing pathogenic Lrrk2 showed a significant
decrease in the expression of Anxa2 at the protein level and a subsequent decrease in
intracellular α-synuclein [98].

To maintain proper synaptic functioning, a neuron needs to concentrate all its re-
sources precisely in the near-synaptic region, including the enhanced expression of proteins
involved in vesicular transport. Our data support this assumption (Table 3 and Figure 2).
We observed a significant increase in the mRNA level of the Anxa2 gene in the substantia
nigra at the earliest modeled stage (6 h-PSS). In this case, it is likely that the cells were
trying to transport RNA to the neuronal terminal, which is reflected in the striatum in the
24 h-PSS model of PD. This indicates that neurons are trying to compensate for the lack of
resources caused by the development of neurodegeneration.



Life 2022, 12, 751 8 of 13

Life 2022, 12, x FOR PEER REVIEW 8 of 13 
 

 

Moreover, the mRNA level of this gene decreased only in the striatum in the AdvPSS 
model but increased in the control samples in the ESS model. It is likely that an increase 
in the mRNA level of this gene at these stages of neurodegeneration in the substantia nigra 
might lead to the development of the compensatory mechanisms observed in the striatum 
in the ESS model. 

In the present study, Anxa2 showed the maximum number of significant results at 
the mRNA level (Table 3). The protein annexin A2 encoded by this gene performs a num-
ber of biological functions such as the regulation of the organization of organelle mem-
branes [91], participation in clathrin-mediated endocytosis, and other types of vesicular 
transport [92]. Annexin A2 is also involved in the formation of the actin cytoskeleton [93]. 
Babbin et al. (2007) showed that inhibition of Anxa2 expression in cell cultures can lead to 
the destabilization of actin filaments and their subsequent depolymerization [94]. 

Although reports on the dysfunction of annexin A2 appear primarily in the field of 
cancer research, a role for this protein in diseases of the nervous system, such as Alz-
heimer’s disease [95,96] and Niemann–Pick type C disease, has also been demonstrated 
[97]. However, there is very little evidence that the Anxa2 gene is directly involved in the 
pathogenesis of PD. It was shown that astrocytes expressing pathogenic Lrrk2 showed a 
significant decrease in the expression of Anxa2 at the protein level and a subsequent de-
crease in intracellular α-synuclein [98]. 

To maintain proper synaptic functioning, a neuron needs to concentrate all its re-
sources precisely in the near-synaptic region, including the enhanced expression of pro-
teins involved in vesicular transport. Our data support this assumption (Table 3 and Fig-
ure 2). We observed a significant increase in the mRNA level of the Anxa2 gene in the 
substantia nigra at the earliest modeled stage (6 h-PSS). In this case, it is likely that the 
cells were trying to transport RNA to the neuronal terminal, which is reflected in the stri-
atum in the 24 h-PSS model of PD. This indicates that neurons are trying to compensate 
for the lack of resources caused by the development of neurodegeneration. 

 
Figure 2. Relative mRNA and protein levels of Anxa2 in striatum and substantia nigra of mice with 

MPTP-induced models of PD. The expression level studied in the control was taken as 1.  p-
Value ≤ 0.05. 

The study of gene expression in the blood opens up broad prospects in the search for 
genes that change expression at different stages of the disease, which will make it possible 
to better understand the mechanisms of PD pathogenesis. Blood cells, in particular lym-
phocytes, have some characteristics typical of a dopaminergic neuron: they contain both 

Figure 2. Relative mRNA and protein levels of Anxa2 in striatum and substantia nigra of mice
with MPTP-induced models of PD. The expression level studied in the control was taken as 1.

Life 2022, 12, x FOR PEER REVIEW 8 of 13 
 

 

Moreover, the mRNA level of this gene decreased only in the striatum in the AdvPSS 
model but increased in the control samples in the ESS model. It is likely that an increase 
in the mRNA level of this gene at these stages of neurodegeneration in the substantia nigra 
might lead to the development of the compensatory mechanisms observed in the striatum 
in the ESS model. 

In the present study, Anxa2 showed the maximum number of significant results at 
the mRNA level (Table 3). The protein annexin A2 encoded by this gene performs a num-
ber of biological functions such as the regulation of the organization of organelle mem-
branes [91], participation in clathrin-mediated endocytosis, and other types of vesicular 
transport [92]. Annexin A2 is also involved in the formation of the actin cytoskeleton [93]. 
Babbin et al. (2007) showed that inhibition of Anxa2 expression in cell cultures can lead to 
the destabilization of actin filaments and their subsequent depolymerization [94]. 

Although reports on the dysfunction of annexin A2 appear primarily in the field of 
cancer research, a role for this protein in diseases of the nervous system, such as Alz-
heimer’s disease [95,96] and Niemann–Pick type C disease, has also been demonstrated 
[97]. However, there is very little evidence that the Anxa2 gene is directly involved in the 
pathogenesis of PD. It was shown that astrocytes expressing pathogenic Lrrk2 showed a 
significant decrease in the expression of Anxa2 at the protein level and a subsequent de-
crease in intracellular α-synuclein [98]. 

To maintain proper synaptic functioning, a neuron needs to concentrate all its re-
sources precisely in the near-synaptic region, including the enhanced expression of pro-
teins involved in vesicular transport. Our data support this assumption (Table 3 and Fig-
ure 2). We observed a significant increase in the mRNA level of the Anxa2 gene in the 
substantia nigra at the earliest modeled stage (6 h-PSS). In this case, it is likely that the 
cells were trying to transport RNA to the neuronal terminal, which is reflected in the stri-
atum in the 24 h-PSS model of PD. This indicates that neurons are trying to compensate 
for the lack of resources caused by the development of neurodegeneration. 

 
Figure 2. Relative mRNA and protein levels of Anxa2 in striatum and substantia nigra of mice with 

MPTP-induced models of PD. The expression level studied in the control was taken as 1.  p-
Value ≤ 0.05. 

The study of gene expression in the blood opens up broad prospects in the search for 
genes that change expression at different stages of the disease, which will make it possible 
to better understand the mechanisms of PD pathogenesis. Blood cells, in particular lym-
phocytes, have some characteristics typical of a dopaminergic neuron: they contain both 

p-Value ≤ 0.05.

The study of gene expression in the blood opens up broad prospects in the search
for genes that change expression at different stages of the disease, which will make it
possible to better understand the mechanisms of PD pathogenesis. Blood cells, in particular
lymphocytes, have some characteristics typical of a dopaminergic neuron: they contain
both enzymes for dopamine synthesis, a dopamine membrane transporter, and a number
of dopamine receptors are expressed. It has been assumed that the changes found in the
peripheral blood of patients with PD might reflect the processes occurring in the DAergic
neurons of the substantia nigra [99–101] and that blood can be taken for analysis to further
study candidate genes as transcriptional peripheral markers of this disease. In our work,
we also analyzed the changes in gene expression in the peripheral blood of mice with
MPTP-induced PD. Previously, a correlation of changes in the relative levels of the Snca and
Drd2 mRNAs was revealed in the substantia nigra and peripheral blood [42]. Our work
also revealed statistically significant changes in the peripheral blood for all the studied
genes. At the same time, one can see a trend toward a decrease in the mRNA levels in the
models of the more advanced stages of PD. Such changes may reflect an increase in the
neurodegenerative process through a decrease in the expression of genes involved in cell
transport processes.

5. Conclusions

Here, we studied changes in the expression of genes whose protein products are
involved in transport processes (Snca, Drd2, Rab5a, Anxa2, and Nsf ) in the brain tissues and
peripheral blood of mice with MPTP-induced models of PD. We detected changes in the
expressions of Drd2, Anxa2, and Nsf at the earliest modeling stages. These findings suggest
that changes in transport already occur in the early stages of neurodegeneration.

Moreover, we are the first to report conspicuous changes in the expression levels of
Anxa2 in the striatum and substantia nigra of mice with MPTP-induced models of the early
stages of PD. These data clearly suggest the involvement of this gene in the compensatory
mechanisms in the early stages of the pathogenesis of PD.
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