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Abstract

Cerebral malaria (CM) presents as an encephalopathy and is due to infection with Plasmo-

dium falciparum. Patients are comatose, often with fever, recurrent seizures and this condi-

tion is associated with a high mortality rate. The etiology of the coma and seizures are

poorly understood. Circulating small molecules and lipids have bioactive functions and alter-

ations in their concentrations have been implicated in seizure disorders and other forms of

encephalopathy. We carried out a comprehensive analysis of blood metabolites during CM

to explore a biochemical basis of this encephalopathy. A paired metabolomics analysis was

performed on the plasma samples of Malawian children (n = 11) during CM and at convales-

cence thirty days later, to identify differentially abundant molecules associated with CM. We

also report plasma molecules associated with CM mortality (n = 4) compared to survival (n =

19). Plasma metabolites were identified through ultra high performance liquid chromatogra-

phy/tandem mass spectrometry and gas chromatography/mass spectrometry to maximize

compound detection and accuracy and then compared to a library for identification. We

detected a total of 432 small molecules in the plasma and 247 metabolites were significantly

differentially abundant between CM and convalescence (p < 0.05, FDR < 0.10). These rep-

resented global changes across many classes of molecules including lipids, amino acids

and hemoglobin metabolites. We observed significant changes in molecules that could

impact neurologic function during CM; these include increased levels of kynurenate and

decreased indolepropionate, glutamate, arginine and glutamine. Moreover, 1-methylimi-

dazoleacetate, kyurenate, arachidonic acid and dimethylarginine were associated with

mortality (p < 0.05, fold change > 1.2). These results highlight the broad changes in blood

chemistry during CM. We have identified metabolites that may impact central nervous sys-

tem physiology and disease outcomes and can be further explored for their mechanistic

roles into the pathophysiology of CM.
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Introduction

Despite improvements in clinical care and vector control, Plasmodium falciparum malaria

remains a disease of global importance, with 214 million cases worldwide and 438,000 deaths,

mostly among children in Africa [1]. Cerebral malaria (CM), a severe complication of P. falcip-
arum infection is heralded by coma, and a high prevalence of recurrent seizures and status epi-

lepticus [2]. The encephalopathy and seizures typically resolve within 2–3 days in conjunction

with antimalarial treatment and supportive care, but 25% of pediatric CM survivors develop

long term neurological sequelae including epilepsy [3]. The mechanisms of seizure and coma

in CM remain poorly understood.

The rapid onset and resolution of the coma of CM are consistent with a metabolic cause.

Metabolic changes in blood are common during CM and include hypoglycemia and hyperlac-

tatemia, though a comprehensive analysis has not been reported [4]. Changes in blood compo-

sition reflect the physiology of a severe P. falciparum infection which is associated with high

levels of inflammation, hemolysis and the presence of parasite derived metabolites. Local tissue

hypoxia due to microvascular compromise from sequestration of infected red blood cells

(iRBC) to vascular endothelial cells further impacts blood metabolite levels. Taken together,

we hypothesized that significant changes in the blood metabolome occur during CM, and that

these changes could impact normal brain functions. To examine the potential role of small

molecules and lipids in the clinical findings of CM we carried out a comprehensive, unbiased

plasma metabolomics association study in a cohort of Malawian children with CM during

coma and during a convalescent state thirty days later.

Materials and methods

Study population

Study subjects were Malawian children aged 6 months to 12 years enrolled in the Blantyre

Malaria Project (BMP), who presented with CM during the malaria transmission season Janu-

ary through June 2013 [5, 6]. Study subjects had a Blantyre Coma Score� 2, with no other

identified cause of coma such as hypoglycemia, bacterial meningitis or a post ictal state. Chil-

dren who fulfilled the WHO case definition of CM and had evidence of iRBC brain microvas-

culature sequestration determined by the presence of retinopathy were studied [5]. Patients

were excluded from the analysis if they were HIV positive, determined by two rapid tests: Uni-

Gold (Trinity Biotech) and Determine (Inverness Medical). Upon enrollment, venous blood

samples were collected in EDTA collection tubes, and plasma was separated by centrifugation

and maintained at -80˚C. Study subjects were treated with intravenous quinine (in accordance

with Malawi government treatment guidelines at that time), provided supportive care during

their hospitalization and were negative for parasites on blood smears, prior to discharge from

the research ward. Study survivors presented for follow up one month later and underwent a

physical exam, blood smear and a repeat venipuncture to obtain a convalescent plasma sample.

Clinical and laboratory data were extracted from the study subjects’ record. The study was

approved by The University of Malawi College of Medicine Research and Ethics Committee,

and by the Institutional Review Boards of Michigan State University and Albert Einstein Col-

lege of Medicine. Written informed consent was obtained from the accompanying parent or

guardian of the study subjects.

Metabolomic analysis

To identify blood metabolites, a non-targeted metabolomics analysis was carried out on

plasma using ultra high performance liquid chromatography/tandem mass spectrometry in
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both positive and negative ion modes and gas chromatography/mass spectrometry to maxi-

mize compound detection and accuracy (Metabolon, Durham, NC). Metabolites were identi-

fied by comparing the experimental samples’ spectral signatures to a reference library dataset

[7]. The data provide relative molecule abundance represented by ion counts. We then quanti-

fied and validated a subset of molecules that demonstrated significant differences using Abso-

luteIDQTM (BIOCRATES Life Sciences AG, Innsbruck, Austria) on an UPLC-MS/MS

platform (Acquity UPLC- Xevo TQ MS, Waters Corporation, Milford, MA, USA) using meth-

ods as described [8]. This assay also quantified phospholipids and sphingolipids. Metabolites

with a covariance less than 20% are reported.

Statistical analysis

The primary outcome was to identify plasma small molecules that were significantly differen-

tially abundant during CM compared to the paired convalescent sample, and the secondary

outcome was small molecules associated with mortality. Ion counts were generated for each

metabolite and the metabolite was retained in the analysis if it was detected in 50% or more

samples from either the CM or convalescent group. After this filter, minimum values across all

groups were imputed for any remaining data below the detection threshold. Fold change for

abundance was calculated relative to the CM sample as compared to the matched convalescent

value, and in death relative to survival in the mortality analysis. Ion count values were log2--

transformed and analyzed by paired t-test for the CM-convalescent comparison, and t-test

with Welch approximation for the mortality analysis. The false discovery rate (FDR) was calcu-

lated for each metabolite for both comparisons. We defined significant metabolites as having a

p< 0.05 and FDR < 0.10 comparing paired CM and convalescent samples. For the survival

analysis we used a p< 0.05 without a FDR due to the low number of deaths. Comparisons of

CM and convalescence plasma amino acid concentrations were performed using the Wilcoxon

matched-pairs signed rank test. Analyses were carried out with R v3.1.1 (http://cran.r-project.

org/), Stata v13.0 (StatCorp, College Station, TX) and Graph Prism (GraphPad Software, La

Jolla, CA). GenePattern (http://www.broadinstitute.org/cancer/software/genepattern/) was

used for hierarchical clustering analysis and heat map generation [9].

Results

Characteristics of the study cohort

During the 2013 transmission seasons, plasma samples were collected on admission from

43 pediatric patients with CM and from 31 survivors on day 30 post-admission. Eleven

patients without retinopathy were excluded. Twenty-three CM patient plasma samples were

randomly selected for metabolomics analysis (Table 1). The demographics, laboratory data

and outcomes of this subset were not statistically different from the entire cohort (data not

shown). The twenty-three subjects manifested fever, coma, tachycardia, anemia and thrombo-

cytopenia reflective of CM. Four patients (17%) died, and at the time of discharge, 17% (4)

of the analyzed subjects sustained neurologic sequelae such as deficits in vision, hearing, or

motor function.

To identify the blood metabolite profiles during CM compared to convalescence, we ran-

domly selected eleven paired plasma samples. During the convalescent study visit, all eleven

subjects were afebrile, awake and overall clinically well. The median convalescent hematocrit

of 35% was significantly increased from the enrollment hematocrit of 23% (p = 0.008). Patient

number 5 presented to the convalescent visit with a two-day history of fever. At the time of the

exam he was afebrile, fully conscious, with a non-focal exam, however he had a 4+ positive

(semi-quantitative measurement, 1+ to 5+) peripheral blood parasitemia. He was treated with
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an oral antimalarial. All of the other patients were blood smear negative. Patient 6 reported

one week of diarrhea and was afebrile with a non-focal exam.

Blood metabolite differences during CM compared to paired

convalescence samples

We detected a total of 432 metabolites of which 393 remained after filtering out infrequently

detected molecules in the eleven paired samples. Of the 393 metabolites, 247 were statistically

significantly differentially abundant (p< 0.05, FDR< 0.10) between CM and convalescence.

These differentially abundant molecules represented diverse chemical classes, including 59

amino acids, 11 carbohydrates, 10 cofactors and vitamins, 4 tricarboxylic cycle acid (TCA)

cycle intermediates, 120 lipids, 12 nucleotides, 8 peptides, and 23 xenobiotics (S1 Table).

Unsupervised hierarchical clustering of these 247 metabolites completely segregated the sam-

ples by CM and convalescence (Fig 1). Notably, the metabolome derived from the convalescent

sample (patient 5) who had mild malaria clustered with the convalescent samples.

Amino acids and their metabolites were both enriched and depleted during CM. Alpha-

ketobutyrate and 2-hydroxybutyrate, degradation products of threonine and methionine

metabolism, were highly enriched during CM (S1 Table). We quantified and validated the

increase in a subset of amino acids during CM, including branched chained amino acids leu-

cine (211 µM vs 80 µM, p = 0.008) and valine (317 µM vs 117 µM, p = 0.008) (Fig 2). Phenylala-

nine was also increased during CM (128 µM vs 54 µM, p = 0.008), as was tryptophan (53 µM

vs 30 µM, p = 0.016). Phenylalanine metabolites 3-(4-hydroxyphenyl) lactate, phenyllactate

and N-acetylphenylalanine were also enriched during CM, along with tryptophan metabolites

kynurenine (6.4 µM vs 1.7 µM, p = 0.008), kynurenate and indolelactate (S1 Table).

Table 1. Associated clinical and laboratory features of Malawian children with cerebral malaria that

underwent plasma metabolic profiling (n = 23).

Feature Median (IQR)

Demographic and clinical

Age (months) 45 (28–74)

Sex (% female) 57

Weight (kg) 11.7 (8.9–17.0)

Temperature (˚C) 38.1 (37.5–39.0)

Systolic blood pressure (mmHg) 94 (86–101)

Pulse (bpm) 148 (128–164)

Respiratory rate (breaths/minute) 44 (36–54)

Coma resolution time (hrs) 60 (38–92)

Parasite clearance time (hrs) 36 (30–48)

Fever clearance time (hrs) 32 (18–72)

Neurologic sequelae (%) 17

Death (%) 17

Laboratory

Hematocrit (%) 21 (18–28)

Parasitemia (x 103/µL) 67 (5–345)

WBC (x103/µL) 9.0 (5.9–13.5)

Platelets (x103/µL) 59 (30–97)

Glucose (mg/dL) 96.4 (77.5–113.5)

Lactate (mmol/L) 6.0 (3.1–9.1)

IQR: Interquartile range.

https://doi.org/10.1371/journal.pone.0175686.t001
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During CM, we found a depletion in amino acids including arginine (41 µM vs 61 µM

p = 0.109), glutamate (36 µM vs 80 µM p = 0.078) and glycine (131 µM vs 278 µM p = 0.008)

(Fig 2). Citrulline (11 µM vs 27 µM p = 0.008) and ornithine (19 µM vs 48 µM, p = 0.008), met-

abolic precursors for arginine, the principle substrate for nitric oxide production, were also

depleted during CM. Indolepropionate, a tryptophan derivative that acts as a neuroprotective

free-radical scavenger, demonstrated a large reduction during CM (S1 Table) [10].

The study subjects were anemic during CM, with a median hematocrit of 21%. Red cell

lysis was reflected with a significant enrichment of heme metabolites during CM including ele-

vated biliverdin, bilirubin, L-urobilin, and I-urobilinogen (S1 Table).

Notably there was a generalized enrichment of fatty acids during CM, including 12 polyun-

saturated fatty acids and 15 medium and long chain fatty acids with concomitant reduction in

lysolipids (Fig 3, S1 Table). Arachidonic acid, which is mobilized from membrane lipids by

phospholipase A2 (PLA2) and is a precursor for a wide variety of inflammatory mediators

such as eicosanoids, was increased during CM compared to convalescence. To further explore

and quantify the decrease in complex lipids, we carried out a quantitative analysis in 8 of the

11 paired samples and found a significant depletion of 22 lysolipids and enrichment of 5 spe-

cies of phosphatidylcholine during CM (p< 0.05, FDR < 0.10) (Fig 3, S2 Table).

During CM, bile acids were broadly enriched and alterations in relative contribution of

each bile acid to the total bile acid pool was detected (S3 Table) [11]. Four gamma-glutamyl

moieties and thirteen steroids, including cortisone, cortisol and pregnenolone sulfate, were

elevated during CM (S1 Table). Quinine and acetaminophen were detected during CM sec-

ondary to malaria treatment.

Fig 1. Hierarchical clustering of differentially abundant plasma metabolites during CM and

convalescence in a paired analysis of eleven Malawian children. A heatmap of a heirarchical clustering

of 247 differentially abundant (p < 0.05, FDR < 0.10, paired t test) plasma metabolites between CM and

convalescence (one month later). Unsupervised hierchical clustering segregates the samples by clinical

state. The asterisk notes one child with mild malaria diagnosed during the convalescent visit.

https://doi.org/10.1371/journal.pone.0175686.g001
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Plasma molecules associated with mortality

To identify metabolites associated with mortality, we compared the CM metabolome dataset

between fatal cases (n = 4) and survivors (n = 19). 363 metabolites were assessed after filtering,

and 19 were significantly associated with death (p<0.05), including 1-methylimidazoleacetate,

kyurenate, arachidonic acid and dimethylarginine (p< 0.05, fold change> 1.2, Table 2).

Fig 2. Plasma amino acid concentrations during CM compared to convalescence. Selected plasma amino

acid concentrations during CM and at convalescence (one month later) in eleven children. (A) Enriched amino

acids during CM. (B) Depleted amino acids during CM. Scatter plots show median and interquartile ranges. A

Wilcoxon matched-pairs signed rank test was performed. * represents P<0.05; ** represents P<0.01.

https://doi.org/10.1371/journal.pone.0175686.g002
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Fig 3. Enrichment in fatty acids, sterols, bile acids and other lipids during CM compared to

convalescence. A bar graph of the number of differentially abundant lipids (paired t test, p-value < 0.05,

FDR < 0.10) by lipid class during CM compared to convalescence (n = 11 paired samples). We found marked

reduction in the number of phospholipids and lysolipids during infection and enrichment in fatty acids. *
denotes data obtained from a quantitative metabolomic method (n = 8 paired samples).

https://doi.org/10.1371/journal.pone.0175686.g003

Table 2. Blood metabolites associated with mortality in CM (n = 23).

Molecule Pathway P value Fold change

5-hydroxyhexanoate Fatty Acid, Monohydroxy 4.7E-02 2.17

palmitoyl ethanolamide Endocannabinoid 2.6E-02 1.86

docosadienoate (22:2n6) Polyunsaturated Fatty Acid (n3 and n6) 2.8E-02 1.84

kynurenate Tryptophan Metabolism 5.3E-03 1.78

1-methylimidazoleacetate Histidine Metabolism 3.8E-03 1.51

arginine Urea cycle; Arginine and Proline Metabolism 1.1E-02 1.51

N-acetylthreonine Glycine, Serine and Threonine Metabolism 2.3E-02 1.46

17-methylstearate Fatty Acid, Branched 1.2E-02 1.42

gluconate Food Component/Plant 3.2E-02 1.34

acisoga Polyamine Metabolism 3.6E-02 1.32

arachidonic acid (20:4n6) Polyunsaturated Fatty Acid (n3 and n6) 8.0E-03 1.25

dimethylarginine (SDMA + ADMA) Urea cycle; Arginine and Proline Metabolism 4.7E-02 1.20

arabinose Pentose Metabolism 2.4E-02 1.18

uridine Pyrimidine Metabolism, Uracil containing 1.7E-02 1.14

urea Urea cycle; Arginine and Proline Metabolism 4.5E-02 1.13

valine Leucine, Isoleucine and Valine Metabolism 2.8E-02 0.73

3-phenylpropionate (hydrocinnamate) Phenylalanine and Tyrosine Metabolism 4.0E-05 0.30

taurolithocholate 3-sulfate Secondary Bile Acid Metabolism 1.8E-02 0.22

1,2-propanediol Chemical 4.4E-02 0.10

Plasma metabolites collected during CM were compared between 4 non-survivors and 19 survivors. Fold change represents the ratio of non survivors to

survivors. Ion counts were log2-transformed and analyzed for significance by t-test with Welch approximation.

https://doi.org/10.1371/journal.pone.0175686.t002
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Discussion

CM is a severe systemic disease associated with an encephalopathy, seizures and mortality. To

examine a potential role of small molecules in the pathophysiology of pediatric CM we charac-

terized the blood metabolomes during CM compared to convalescence. We identified greater

than two hundred small molecules and lipids that were significantly altered during pediatric

CM reflecting global blood chemistry dysregulation. Both parasite and host metabolism likely

contributes to these changes during CM. A large sequestered biomass of parasites utilize host

nutrients including carbons, lipids, purines and amino acids and these processes are accompa-

nied by a catabolic inflammatory host response to alter the blood chemical landscape [12].

Some of the depleted molecules have important neuroprotective roles, such as indolepriopio-

nate and the depletion of other molecules such as glutamate can impair immunologic function.

More broadly, we noted a marked depletion of complex phospholipids and an enrichment in

fatty acids representing an increase in energetic needs and evidence of liver dysfunction sug-

gested by increases in bile acids. These data provide new insights into the pathophysiology and

potential biochemical etiologies of the neurological manifestations and mortality of CM.

Neurologic implications

Seizures commonly occur during CM and the development of epilepsy post CM is prevalent.

In other conditions, metabolic causes of seizures are associated with abnormal levels of amino

acids, purines, carbohydrates, acylcarnitines and urea cycle defects [13]. We found changes in

small molecules levels during CM that have been implicated in seizure and/or encephalopa-

thies, including increases in kynurenate and the branch chain amino acids leucine and valine

[14]. We also noted a modest elevation in phenylalanine (2.6 fold increase), which has been

reported in children and adults with CM and other forms of severe malaria compared to con-

trols [15]; however, the blood concentrations did not approach those seen in phenylketonuria,

which results in seizures and other neurological symptoms [16]. Oxidative stress may contrib-

ute to the development of epilepsy, as compounds with antioxidant properties prevent seizure

induced pathology [17]. A number anti-oxidants were depleted during CM including indole-

priopionate a neuroprotective free-radical scavenger which has been shown to provide a neuro

protective effect in an animal model of ischemia along with the glutathione precursors, gluta-

mate, and glycine [18]. Thus a reduction in molecules that combat oxidative stress may con-

tribute to the high prevalence of seizures and post CM epilepsy [10]. Glutamate plasma levels

were lower during CM compared to convalescence. This amino acid provides cellular energy

and low levels can impair white blood cell function [19]. Treatment with glutamate could

potentially improve outcomes as supplemental glutamate increased survival in the animal

model of cerebral malaria through modulation of CD8+ effector T cell function [20].

Hemoglobin metabolism and liver disease

We observed elevated heme degradation products including bilirubin, biliverdin and urobili-

nogen during CM. Heme is metabolized to biliverdin, then to bilirubin which is transported to

the gastrointestinal tract and further metabolized by gut microbiota to urobilinogen. Eleva-

tions in heme metabolites can reflect the increase in heme metabolism due the hemolysis of

malaria infection and/or liver injury [21]. The enrichment of gamma-glutamyl amino acids

may indicate increased activity of gamma-glutamyl transferase, which is associated with liver

disease [22]. High levels of bilirubin can cause neurotoxicity (kernicterus), though the impact

of its downstream metabolites on brain function is unknown. Bile salts, which facilitate hepa-

tobiliary secretion of lipids, and act as signaling molecules in metabolism and immune

responses, were dysregulated during CM, and may also reflect liver disease [23]. Autopsy
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studies of pediatric CM have identified extensive Kupffer cell hyperplasia with accumulation of

malaria pigment and mild portal and lobular lymphocytic infiltration, however there are only

minimal signs of cellular necrosis or cholestasis [24]. Perhaps this unique pathology of the biliary

system is sufficient to alter plasma bile salt concentrations. Individual bile salts have distinctive

bioactive properties and can impact the blood brain barrier and neurologic function [25–27].

More broadly, we found a high level of ketone bodies, and an enrichment of fatty acids,

with a decrease in lysolipids suggesting a shift to fatty acid metabolism, likely due to increased

energetic needs [28]. High levels of catecholamines and pro-inflammatory cytokines during

severe malaria may drive the enhanced lipolysis and de novo synthesis of fatty acids to be used

for oxidative metabolism [29]. Liver stage parasites require phosphatidylcholine for growth

and this may also contribute to decreased blood levels [30]. A study in the murine model of

malaria found that blood lipoprotein profiles segregate animals that go on to cerebral as com-

pare to non-cerebral malaria, at a time point prior to onset of neurologic symptoms, suggesting

that lipid alterations may also be playing a role in neurologic function [31].

The reductions in plasma glycine, cysteine, serine, threonine and glutamine during CM

could be secondary to parasite uptake and/or host utilization [32]. Arginine was low during

CM, and its depletion plays an important role in the vasculopathy of CM [33]. Endothelial dys-

function may be further compounded by high blood levels of dimethylarginine, which can

inhibit NO synthesis and was associated with death in our study [34].

Biomarkers of mortality

We identified common changes in blood chemistry during CM and those reported in sepsis,

which is also associated with inflammation and heightened mortality. Sepsis is also associated

with an increase in 2-hydroxybutyrate, phenylalanine and decrease in glutamine, 1-arachido-

noylglycerophosphocholine and 1-linoleoylglyerophosphocholine [35, 36]. Furthermore, ele-

vated levels of kynurenate, 1-methylimidazoleacetate and dimethylarginine are associated with

mortality in both conditions [37–39]. 1-methylimidazoleacetate is a histamine metabolite and

histamine elevations have been previously reported during CM [40]. Histamine has been impli-

cated in murine models of CM, with histamine receptor inhibition providing a protective effect

[41]. A sepsis study and our data both found metabolites of PLA2 to be associated with death

(1-arachidonoyl-GPE (20:4), 1-arachidonoyl-GPC (20:4) in sepsis, and arachidonic acid in CM)

[37]. Despite the many shared clinical and biochemistry features between CM and sepsis, the

neurological symptoms are unique to CM and thus the study of small molecules specifically

associated with CM could provide mechanistic insights into CM associated seizures and coma.

One limitation of this study is the small sample size associated with death, and larger prospec-

tive studies are needed. Furthermore, our metabolomics method does not capture all molecules.

Parasites can generate unique metabolites and thus additional extraction and analytic methods

using unsupervised methods would be needed [42]. Understanding the impact of alterations of

the metabolome in asymptomatic or mild malaria would require additional comparative analysis

of these clinical phenotypes. Whether changes in single molecule or a combination of molecules

in the setting of fever lowers the seizure threshold and/or contributes to the encephalopathy of

CM is unknown. Longitudinal studies of children with CM with frequent blood sampling and

small molecule correlations to mental status and EEG monitoring are underway to parse which

molecules may be playing a role in the neurological manifestations of CM.

Conclusions

Collectively, these data represent the first wide-scale blood metabolomics analysis during pedi-

atric CM. Previous studies of blood chemistry during malaria infection malaria have been
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limited, with most using in vitro or animal models of disease, and none examining pediatric

CM plasma. We see evidence of global changes across metabolite classes, many of which play

important roles in human physiology. We found alterations in fatty acid metabolism and lipid

distributions reflecting changes also described in sepsis and critical illness. Alterations in

kynurenate, glutathione precursors, and glutamine may be involved in mediating encephalop-

athy and/or altering seizure thresholds. Further clinical and mechanistic studies are needed to

understand the role of small molecules on neurologic function and mortality in CM to

improve outcomes.
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