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Objective: Runs of homozygosity (ROH) are contiguous lengths of homozygous genotypes 
that can reveal inbreeding levels, selection pressure, and mating schemes. In this study, 
ROHs were evaluated in Wannan Black pigs to assess the inbreeding levels and the genome 
regions with high ROH frequency.
Methods: In a previous study, we obtained 501.52 GB of raw data from resequencing (10×) 
of the genome and identified 21,316,754 single-nucleotide variants in 20 Wannan Black 
pig samples. We investigated the number, length, and frequency of ROH using resequencing 
data to characterize the homozygosity in Wannan Black pigs and identified genomic regions 
with high ROH frequencies.
Results: In this work, 1,813 ROHs (837 ROHs in 100 to 500 kb, 449 ROHs in 500 to 1,000 
kb, 527 ROHs in >1,000 kb) were identified in all samples, and the average genomic inbreed
ing coefficient (FROH) in Wannan Black pigs was 0.5234. Sixty-one regions on chromosomes 
2, 3, 7, 8, 13, 15, and 16 harbored ROH islands. In total, 105 genes were identified in 42 ROH 
islands, among which some genes were related to production traits.
Conclusion: This is the first study to identify ROH across the genome of Wannan Black 
pigs, the Chinese native breed of the Anhui province. Overall, Wannan Black pigs have 
high levels of inbreeding due to the influence of ancient and recent inbreeding due to the 
genome. These findings are a reliable resource for future studies and contribute to save and 
use the germplasm resources of Wannan Black pigs.
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INTRODUCTION 

Pigs were among the first species that were domesticated. They provide an important meat 
resource and serve as a biomedical animal model for human [1]. Domestication of wild 
boars began approximately 10,000 years ago [2], and hundreds of pig breeds evolved world-
wide due to natural selection and artificial selection pressure. For a long time, pig breeding 
was the main method of increasing the economic performance of pig production [3]. The 
fertility, growth speed, and meat quality of pigs is significantly improved over that of the 
wild boar. 
  Molecular genetics is key to understanding the biodiversity and evolutionary relation-
ships, and breeding programs [4]. DNA technologies are improving continuously and 
being increasingly applied to investigate the genotype of animals subjected to breeding 
[5]. Compared with traditional selection, molecular-assisted selection has advantages of 
seed selection and shortened breeding period in pigs. However, increased inbreeding is 
an inevitable consequence of genetic selection in livestock populations [6]. Inbreeding in-
duces impaired performance traits (inbreeding depression) and reduced genetic variation 
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and therefore, is an important factor to consider in animal 
breeding practices [7-9]. Inbreeding is usually estimated 
from the pedigree information of the animal populations. 
Incomplete records and neglectful historical inbreeding 
leads to the high error rate estimation and underestimation 
of the true inbreeding levels [10]. With the reducing cost of 
resequencing, it is possible to use genome-wide single-nu-
cleotide polymorphism (SNP) information to assess true 
population genomic inbreeding levels [11]. 
  Runs of homozygosity (ROH) are contiguous lengths of 
homozygous genotypes that are present in an individual due 
to parents transmitting identical haplotypes to their offspring 
[12]. Longer haplotypes are inherited from recent common 
ancestors and shorter haplotypes are inherited from distant 
ancestors. ROHs are not randomly distributed across the ge-
nome [13], and the distribution of ROH islands across the 
genome shows that the genome was subjected to selective 
pressure [14]. Furthermore, ROH has been widely used as a 
predictor of whole genome inbreeding levels. Past studies 
have shown that genomic inbreeding coefficient (FROH) is a 
more accurate surrogate of inbreeding than the inbreeding 
coefficient estimated from the pedigree [15]. 
  To the best of our knowledge, numerous reports have 
revealed that ROH has been used to explore the selection 
signatures in sheep [16], horses [17], and Western pig breeds 
[18]. However, few studies have focused on ROH analysis 
in Chinese pig breeds. Wannan Black pig has been bred for 
more than 100 years in mountainous area of southern Anhui 
province. Wannan Black pig were historically bred in dark 
and damp environment and two important factors were 
chosen for their breeding: reproductive performance and 
adaptive capacity [19]. As a native Chinese breed endemic 
to the local agriculture which exhibits disease resistance, 
high prolificacy, and high fat deposition [20], Wannan Black 
pig makes an important contribution to the local commer-
cial pork production. In our previous work, we identified 
several candidate genes that have mutations in Wannan 
Black pigs that are significantly associated with production 
traits [21-23]. In recent decades, Wannan Black pigs have 
been in various unfavorable predicaments, leading to their 
low population density and diversity, greatly influenced by 
commercial, lean pig genotypes. From 1982 to 2019, the 
numbers of Wannan black pig sows changed from 6,688 to 
360. Importantly, the risk of high level of inbreeding in-
creased in small populations where the choice of breeding 
mates is limited [24]. On the other hand, some inbreeding 
depression in fitness-related traits of Wannan Black pigs 
has already been reported (Ministry of Agriculture and 
Rural Affairs of the People’s Republic of China, http://www.
moa.gov.cn/). In order to provide reference for rational and 
efficient utilization of Wannan black pig germplasm resources, 
the frequency, number, and FROH of ROHs in Wannan black 

pig population were detected.

MATERIALS AND METHODS 

Sequencing, genetic diversity and genetic relationship 
analysis
Our research was approved by the Anhui Agricultural Uni-
versity Animal Ethics Committee under permission No. 
AHAU20140215. In this study, 20 ear tissues of Wannan 
Black pigs (10 females and 10 males) were collected from 
the Wannan Black pig conservation farm, Huangshan City, 
Anhui province, People’s Republic of China). In a previous 
work, these samples were re-sequenced on the Illumina 
HiSeq X Ten platform (Illumina, San Diego, CA, USA) at 
Novogene Biotech Co., Ltd. (Beijing, China) with an average 
depth of ten generations. The analytical procedures related 
to the resequencing were adapted from Zhang et al [25]. Based 
on sequencing data, 501.52 G of raw data of the Wannan 
Black pig genome were obtained, which have been submitted 
to the National Center for Biotechnology Information (NCBI) 
database under the accession number PRJNA524263. A total 
of 21,316,754 SNPs were identified. We used the PLINK’-ge-
nome’ command to analyze the genetic relationship between 
the 20 pigs, as described by Purrcell et al [26].

Runs of homozygosity detection criteria
ROH were identified for each animal using PLINK v1.07 
software [26]. The following criteria were chosen for ROH 
estimation [27-29]: i) the minimum length of the filter input 
regions was set to 1 Mb; ii) one heterozygous and five miss-
ing calls were allowed per window to account for genotyping 
error; iii) the minimum number of SNPs was set to 100; and 
iv) the minimum quality of bases in the filter input regions 
was set to 10. 

Inbreeding coefficient estimation
Based on ROH data, genomic inbreeding for each animal 
was estimated from ROH (FROH) as the ratio of the total 
length of the genome covered by ROH to the total length of 
the genome covered by SNPs or sequences, which is given as 
follows:
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Where LROH is the total length of an individual’s ROH in the autosomal genome, and Lgenome 144 

is the length of the autosomal genome covered by the SNPs, which was 2,435 G in this study.  145 

 146 

  Where LROH is the total length of an individual’s ROH in 
the autosomal genome, and Lgenome is the length of the au-
tosomal genome covered by the SNPs, which was 2,435 G in 
this study. 

Detection of common runs of homozygosity 
To identify genomic regions with a high frequency of ROH, 
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we take the population as a unit, in which the ROH ratio of 
SNP sites in ROH was counted for each SNP site. Manhattan 
map was drawn according to ROH ratio of each SNP site. 
The ROH ratio where the top 1% is located is taken as the 
threshold line of high frequency SNP, and ROH island is 
obtained according to the distribution of SNP sites exceed-
ing the threshold in the genome [30].
  The gene content of the ROH islands was annotated using 
the annotation database provided by NCBI (https://www.
ncbi.nlm.nih.gov). To further analyze the functions of the 
identified genes, gene ontology (GO) and Kyoto encyclope-
dia of genes and genomes (KEGG) analyses were performed 
using Database for Annotation, Visualization and Integrated 
Discovery (DAVID, v. 6.8) [31]. An extensive accurate litera-
ture search was then performed.

RESULTS 

The results of the genetic relationship analysis of the 20 Wannan 

Black pigs (Supplementary Table S1) showed that the animals 
were not related, which was useful for elucidating the ROH 
information.

Runs of homozygosity detection and inbreeding 
coefficient 
The descriptive statistics of ROH number and length by class 
are given in Table 1 and Figure 1. In total, 1,813 ROHs were 
identified in 20 Wannan Black pigs. Among the identified 
ROHs, 837 ranged between 100 to 500 kb, 449 between 500 
to 1,000 kb, and 527 ROHs were >1,000 kb, with a mean 
ROH length of 0.69 MB. The longest segment was found in 
Sus Scrofa chromosome (SSC) 2, which was 3.42 Mb, and 
the shortest segment was 0.01 Mb. The total ROH number 
of Wannan Black pigs was composed mostly of a high num-
ber of shorter segments (100 to 500 kb and 500 to 1,000 kb) 
which accounted for 70.94% of all ROH detected. Although 
the number of ROHs of 100 to 500 kb was the largest, the 
proportion of the genome covered by them was relatively 

Table 1. Descriptive statistics of ROH number and length (in kb) by ROH length class

ROH length (kb) ROH number Percentage (%) Mean length (Mb) 
(mean±SD) Genome coverage (%)

100-500 837 46.17 0.27 ± 0.11 9.16
500-1,000 449 24.77 0.72 ± 0.14 13.35
> 1,000 527 29.07 1.34 ± 0.88 29.05
Total > 100 1,813 100 0.69 ± 8.81 51.56

ROH, runs of homozygosity.

Figure 1. Distribution of the runs of homozygosity.

https://www.ncbi.nlm.nih.gov
https://www.ncbi.nlm.nih.gov
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small compared to that of ROH segments longer than 1,000 
kb. 
  The numbers of ROH on each chromosome and the per-
centage of chromosomes covered by ROH in Wannan Black 
pigs are shown in Figure 2. The results indicated that ROHs 
were distributed unevenly, with SSC13 and SSC5 showing 
the highest (n = 267) and lowest (n = 48) number of ROHs, 
respectively. The highest genome coverage by ROH was ob-
served on SSC6 (38.84%), whereas the lowest coverage was 
on SSC3 (9.40%).
  From the sequencing data, we inferred that 2,435,262,063 

bp long autosomes were covered by SNPs and 1,274,547,767 
bp long ROH were present on autosomes. Based on this in-
formation, the average FROH of Wannan Black pigs was 0.523.

Identification of runs of homozygosity islands
By determining the frequency of SNPs in ROH, we identi-
fied the genomic regions that were most commonly associated 
with ROHs in Wannan Black pigs. The results were plotted 
against the positions of the SNPs along the autosome. A total 
of 61 ROH islands were identified on SSC2, 3, 7, 8, 13, 15, and 
16 (Figure 3; Supplementary Table S2). The longest ROH 

Figure 2. Number of runs of homozygosity (ROH) longer per chromosome (bars) and average percentage of each chromosome covered by ROH 
(red line).
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Figure 3. Manhattan plot of incidence of each single-nucleotide polymorphism (SNP) in the runs of homozygosity (ROH) across individuals. The 
red line represents the 30% threshold.
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island was observed on SSC3, whereas the shortest one was 
observed on SSC13.

Functional annotation of genes in the runs of 
homozygosity islands 
Furthermore, the 61 ROH islands harbored 105 candidate 
genes, whereas 19 ROH islands did not harbor any genes 
(Supplementary Table S2). The function of the genes in the 
identified regions was analyzed (Supplementary Table S3, 
S4). Eight genes including eukaryotic translation initiation 
factor 1 (EIF1), nucleoporin 54 (Nup54), mitochondrial ribo-
somal protein S9 (MRPS9), and ribosomal protein S7 (Rps7) 
were related to signal translation processes, and four genes 
(four and a half LIM domains 2 [FHL2], leucine rich repeat 
containing 4C [LRRC4C], cytoplasmic polyadenylation ele-
ment binding protein 4 ([PEB4], and EPH receptor A3 
[EPHA3]) were involved in development. The remaining 
genes were involved in the immune system, nucleotide me-
tabolism, amino acid metabolism, cellular community, and 
other important biological processes. Based on the results of 
the literature query, five genes were associated with economic 
traits in animals (Table 2).

DISCUSSION 

ROH are continuous homozygous segments of the DNA se-
quence in diploid genomes and are widely distributed in 
humans and livestock populations [32]. Inbreeding level has 
a significant influence on abundance, length, and number of 
ROH. In addition, genetic drift, natural and artificial selec-
tion, population bottlenecks among several other factors 
promote ROH buildup in a population [33]. However, ROH 
segments are not randomly distributed across the genome. 
In Chinese Merino sheep, Ovies aries chromosome (OAR) 
21 and OAR3 exhibited the highest and lowest coverage across 
the chromosomes by ROH, respectively [34]. Xu et al [28] 
reported that in Jinhua pigs, the highest number of ROH per 
chromosome was on SSC6 with 1,672 segments, and the 
lowest was on SSC16 with 485 segments. In agreement with 
these findings, the SSC13 of Wannan Black pigs harbored 
the highest number of ROHs (n = 267), whereas SSC5 had 
the lowest number (n = 48).
  The information regarding the abundance, length, and 

number of ROHs on the chromosome is valuable in explor-
ing the demographic history of livestock species. With the 
availability of genomics tools, numerous polymorphisms 
can be synchronously genotyped across the genome and 
help to identify long stretches of homozygous genotypes 
[35]. In this work, the distribution and frequency of ROH 
in Wannan Black pig population were analyzed by rese-
quencing (10×) data. Several studies have reported that 
long ROHs are associated with recent events of inbreeding, 
whereas short ROHs have been broken by repeated recom-
bination and represent inbreeding that took place several 
generations ago [36,37]. A total of 1,813 ROHs were iden-
tified and short segments (lengths <1,000 kb) account for 
70.93%. Wannan Black pig may therefore have undergone 
inbreeding in a distant generation, which concurs with 
what we know of the history of the Wannan Black pig.
  Conventionally, coefficients of inbreeding were estimated 
from pedigree records. However, native breed conservation 
may suffer imperfections, such as the inaccurate pedigree 
records and chaotic consanguinity. Hence, ROH can be used 
as a predictor of whole genome inbreeding levels. FROH is 
defined as the proportion of the autosomal genome in ROH 
exceeding a specified length. McQuillan et al [38] first re-
ported that FROH strongly correlates with the inbreeding 
coefficient of pedigrees in European populations. Our results 
showed that the average FROH in Wannan Black pigs was 
higher than that of other pig breeds (Złotnicka Spotted, Polish 
Landrace, 0.287, 0.171, respectively) [39]. Li et al [40] ana-
lyzed the genetic diversity of the same Wannan Black pig 
population (from the same conservation farm), and reported 
that these animals have more allele frequencies of microsat-
ellite loci deviated from that expected under Hardy-Weinberg 
Equilibrium than introduced pig breeds (Duroc, Berkshire, 
Pietrain, Landrance, and Yorkshire) and other native pig 
breeds of Anhui province (Dinyuan pig, Wei pig, and Anq-
ing six-end-white pig), revealing that Wannan Black pig has 
a higher inbreeding level than other pigs. With a small pop-
ulation size, inbreeding increases at a higher rate, leading to 
loss of alleles, which is impossible to counterbalance without 
migration [41]. Introducing new consanguinity, and increasing 
the effective population size of Wannan Black pig is neces-
sary in the future.
  Several candidate genes associated with production traits 

Table 2. Candidate genes located in genomic regions with a high frequency of runs of homozygosity associated with economic traits 

Chromosome Location (bp) Size (bp) Gene Gene function

3 95,854,107 - 95,918,246 64,139 calmodulin-lysine N-methyltransferase Growth
15 92,482,944 - 93,357,026 874,082 GULP PTB domain containing engulfment adaptor 1 Immune responses
15 93,556,914 - 93,595,678 38,764 collagen type III alpha 1 chain Meat quality
16 50,185,113 - 505,01,620 316,507 cytoplasmic polyadenylation element binding protein 4 Growth
13 48,486,919 - 48,499,992 13,073 kelch repeat and BTB domain containing 8 Growth
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were identified in the ROH islands. Calmodulin-lysine N-
methyltransferase (CAMKMT) is located on SSC3 of Wannan 
Black pig, which is significantly correlated with the num-
ber of embryonic cells and bone surface area [42]. The 
polymorphisms SNP07, SNP28, and SNP31 of CAMKMT 
polymorphisms are associated with sheep growth traits [43]. 
CPEB4 is involved in bone, muscle, fat, and lung develop-
ment, which is related to growth traits in Large White pig 
populations by genome wide association study [44]. The 
expression of collagen type III alpha 1 chain (Col3a1) was 
reported to affect intramuscular collagen, which is associ-
ated with meat quality in pigs [45]. Co-analysis of ROH 
and the signature selection identified GULP PTB domain 
containing engulfment adaptor 1 (GULP1) and kelch re-
peat and BTB domain containing 8 (KBTBD8) genes. GULP1 
is located on SSC15 and plays key roles in cancer suppression 
and immune responses [46], whereas KBTBD8 is involved 
in cytoskeleton arrangement, regulation of cell morphology, 
and idiopathic short stature [47,48]. These two genes might 
be associated with the characteristics of Wannan Black pigs 
that adapt to natural and artificial selection. Therefore, elu-
cidating the potential involvement of GULP1 and KBTBD8 
in pig productive performance warrants further research.

IMPLICATIONS 

We identified runs of homozygosity s across the genome of 
the Wannan Black pig, the Chinese native breeds of the An-
hui province, for the first time. The frequency, numbers, and 
FROH were obtained and reflected the inbreeding history in 
the Wannan Black pigs. Our results showed that ancient and 
recent inbreeding had an influence on the genome and re-
vealed a high level of inbreeding in the existing population. 
Furthermore, several candidate genes associated with im-
portant biological processes were identified. In conclusion, 
our work will help to save and utilize the germplasm resource 
of Wannan Black pig.
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