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Abstract

Understanding the neural basis of brain function and dysfunction and designing effective 

therapeutics require high resolution targeted stimulation and recording of neural activity. Optical 

methods have been recently developed for neural stimulation as well as functional and structural 

imaging. These methods call for implantable devices to deliver light into the neural tissue at 

depth with high spatiotemporal resolution. To address this need, rigid and flexible neurophotonic 

implants have been recently designed. This article reviews the state-of-the-art flexible passive and 

active penetrating optical neural probes developed for light delivery with minimal damage to the 

tissue. Passive and active flexible neurophotonic implants are compared and insights about future 

directions are provided.

Introduction

Optical neuromodulation based on optogenetics has enabled stimulation of specific cell 

types using light at different wavelengths [1,2]. Functional optical imaging is also 

possible using calcium indicators and voltage-sensitive dyes [3,4]. Moreover, monitoring 

hemodynamic response as a proxy to neural activity is another method in which light can 

measure neural function without any optical tags [5]. A challenge for these light-based 

methods is the limited optical access to deep neural tissue with high spatial resolution, 

mainly because of the absorption and scattering of light in tissue.

To address this problem, implantable optical devices have been designed to enable efficient 

light delivery and collection within deep tissue. In recent years, different neural implants 
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have been designed that include photonic structures. Some of these designs involve surface 

arrays that project light from the surface of tissue [6,7]. Other designs include penetrating 

probes that are implanted into the neural tissue. To realize such devices, integrated photonic 

design concepts are borrowed from telecommunications to realize optical waveguides, 

mostly based on rigid materials such as Silicon, Silicon Nitride or Silicon Dioxide [8–11]. 

However, it has been shown that rigid penetrating neural implants can cause more severe 

damage to the neural tissue [12–14]. The glial scarring and tissue response depend on 

the size, material density, and stiffness of the neural implants [15,16•]. The significant 

mechanical mismatch between rigid neural implants and soft neural tissue causes damage 

to the tissue [17]. Moreover, brain micromotions arising from sources like cardiac rhythm, 

fluctuations in respiratory pressure, and head movements [18–20] exacerbate tissue damage, 

especially when the implanted neural probe is anchored to the skull [18,21]. Flexible neural 

implants, by contrast, have been shown to reduce damage to the brain tissue [22].

In this review article, we focus on penetrating flexible neurophotonic implants in two 

categories of passive and active optical neural probes. Passive neurophotonic implants route 

light into the tissue from light sources located outside the tissue. These light sources can 

be either benchtop lasers or laser diodes and LEDs, integrated to the backend of the neural 

probes, that emit light in the visible range of the spectrum (380 nm–700 nm) matching the 

absorption band of light-sensitive proteins such as opsins (e.g., 450 nm (ChR2/H134) — 

632 nm (Jaws)) [1,23]. In both cases, the light sources are located outside the tissue, thus 

minimizing the risk of thermal damage to the tissue due to the limited efficiency of light 

sources. On the other hand, active neurophotonic implants are devices that generate light 

directly inside the tissue by converting electricity to light. Three general designs of photonic 

neural implants are shown in Figure 1. The first one is an implantable Michigan-style 

microarray neural probe (indicated as ①) that consists of an array of active light sources 

or optical waveguides on the probe shank. Implantation of these probes would require a 

small craniotomy and multiple layers of the cortical laminae can be targeted along the 

shank. The second one (②) is an array of individual shanks, each acting as an independent 

optical waveguide (Utah-array-style) and the third one is a fiber-based design (③). In 

both of these designs, only the neural tissue near the tip of the shanks can be stimulated. 

Implantation of the Utah-array-style neural probes requires a large craniotomy. Electrical 

recording electrodes can be integrated with these different designs to realize optoelectric 

neural probes with both optical and electrical functionality.

It should be noted that flexibility is not only determined by the bulk material properties, 

but also depends on the geometry of the implant [16•]. Assuming a simple cantilever model 

for a neural probe that can represent any of the three designs discussed in Figure 1, the 

stiffness is determined by the dimensions of the neural probe as well as the bulk elastic 

modulus of the material (Young’s modulus), listed in Figure 2a for the commonly used 

flexible materials [13]. Here, we are assuming that the probe is anchored to the skull on 

one side and is floating in the brain (Figure 2b), The smaller the cross section of the neural 

probe, the more compliant it is (i.e., lower stiffness as indicated by kx and ky). Therefore, 

even for materials with high elastic modulus (e.g., Silicon), it is still possible to reduce the 

stiffness to some extent by designing devices with smaller cross sections. On the other hand, 

devices made of materials with relatively low Young’s moduli can retain low stiffness at 
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larger dimensions. Overall, a neural probe made of a soft material with small cross-sectional 

dimensions exhibits a lower level of stiffness. Luan et al. have demonstrated glial scar-free 

neuronal recording with ultra-flexible SU-8-based neural probes with a very small cross 

section of 10 μm × 1.5 μm [24]. In addition to reducing cross sectional dimensions and using 

a low elastic modulus material, meandering wiring in neural probes has also been utilized to 

reduce the stiffness of neural implants [25]. Highly flexible neural probes may lack enough 

rigidity to penetrate brain tissue. For successful implantation, the neural probe must not 

buckle under the insertion force [16•]. Therefore, there is a trade-off between the need for 

stiffness to facilitate implantation and the need for compliance to minimize damage to the 

tissue once the device is implanted. Much like the stiffness of neural probe, the buckling 

force for a rectangular shank also depends on the elastic modulus and the geometrical 

parameters (Figure 2b).

Various techniques have been developed to stiffen flexible neural probes during implantation 

including using insertion shuttles [24], external insertion guides [26], bioresorbable 

stiffeners [27,28], mechanically adaptive polymer nanocomposites [29], thermally softening 

polymers [30], hydration-dependent stiffness modulated hydrogel matrix [31], liquid crystal 

polymers [32], liquid metal integrated microfluidic channels [33], pressurized fluidic 

channels [34], a PEG brace [35] or a dissolvable silk-based scaffold to reduce the effective 

length [36]. Some of these techniques have been developed for implantation of flexible 

electrical neural probes, but they can also be adopted for flexible optoelectric neural 

implants.

In the following sections, we provide a review of the state-of-the-art passive and active 

flexible neurophotonic implants.

Passive flexible neurophotonic implants

Flexible neural probes based on passive integrated photonic waveguides have been designed 

to deliver light from outside into the brain tissue. The essence of an optical waveguide is 

a high refractive index core surrounded by a lower refractive index cladding. Therefore, 

two flexible and biocompatible materials with a refractive index contrast are needed to 

form flexible optical waveguides that can be integrated into neural implants. One method to 

realize passive flexible photonic implants is to use a fiber drawing process using polymer 

materials [38]. Microfabrication techniques using different polymers such as Polycarbonate, 

SU-8, Parylene C and N, PDMS, Ormocers, EpoCore, and Cytop have also been used 

to construct integrated photonic waveguides. In some of these designs, the polymer 

waveguides are fabricated on rigid substrates, thus rendering such neural implants rigid 

[39,40]. It was only recently that fully flexible integrated photonic platforms, which utilize 

flexible core and cladding materials not attached to a rigid substrate were demonstrated. 

These designs include Polymeric Opto-Electro-Mechanical Systems (POEMS) [41••], 

flexible multifunctional fibers [31,42], and Parylene photonics [43•,44••,45•,46•]. POEMS 

is designed based on Cytop as the cladding and Ormocers or EpoCore as the material to 

form the waveguide core. Flexible multifunctional fibers are fabricated through a thermal 

drawing process using Polycarbonate Polymer as the optical fiber core and Cyclic Olefin 

Copolymer (COC) as the cladding [31,42]. To implement Parylene photonic waveguides, 
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Parylene N is used as the core and Parylene C as the cladding to form a flexible photonic 

waveguide [43•,46•]. Parylene C has also been used as the material for waveguide core with 

PDMS as the cladding [44••,45•]. The much higher refractive index contrast between PDMS 

and Parylene C results in highly confined optical modes.

The design of input and output ports in these passive flexible neural probes is critical. The 

input port to each optical waveguide must be designed to enable efficient coupling of light 

from external light sources at the backend (Figure 1). Moreover, the backend packaging 

should be compact and minimally cumbersome. Optimization of the input/output coupling 

has not been explored much for fully flexible neurophotonic implants. However, some of 

the design concepts for input/output coupling to rigid waveguides can translate to fully 

flexible optical neural probes. For example, input coupling from optical fibers has been 

achieved via butt-coupling from the edge [39] or using grating couplers from the surface of 

the waveguide [8]. The grating couplers are usually designed for specific wavelengths and 

are narrowband. Scaling up the number of channels would require packaging many input 

fibers at the backend. An alternative technique is to use a single fiber bundle combined with 

a digital micromirror device or a scanning mirror galvanometer to direct light to multiple 

input facets without the complexity of aligning and bonding individual fibers [9]. However, 

all these methods require a rigid tethered fiber connection to the external light sources, 

which can be cumbersome. To address this issue, compact light sources have been directly 

bonded to the input ports, including packaged laser diodes [10] and flip-chip bonded bare 

laser diodes using direct butt-coupling [47] or through a GRIN lens to boost the coupling 

efficiency [11]. In this case, light sources (e.g., laser diodes or LEDs) are integrated with 

the neural probe backend, obviating the need for having a tether fiber connection to a 

benchtop external light source, but still stay outside the brain tissue. While these techniques 

are mainly developed for rigid neurophotonic implants, they can still be adopted for light 

coupling to flexible optical waveguides. For example, butt-coupling from optical fibers 

to flexible polymer waveguides has been used [42,46•,48,49]. More recently, coupling to 

such waveguides from integrated light sources such as micro-LEDs [50] or edge-emitting 

laser (EEL) diodes [41••] or through 3D printed flexible optical wirebonds [41••] have been 

demonstrated. Also, embedded micromirrors have been used for out-of-plane input coupling 

into fully flexible Parylene photonic waveguides [44••].

The design of output waveguide ports is also crucial to illuminate localized volumes of 

the brain tissue. In one design variant, light leaves the output facet along the length of 

the waveguide in the so-called end-firing waveguides. This design has been used in Utah-

array-style neural implants, where a 2D array of individual waveguide shanks have been 

realized by a variety of methods, including bonding an array of optical fibers to light 

sources [51,52], micromachining glass substrates [53], or patterning photodefinable polymer 

shanks [54]. To increase spatial resolution by incorporating multiple output ports on a single 

shank, and to collocate the electrical recording and optical stimulation volumes, an out-of-

plane illumination scheme is desired. Out-of-plane output coupling also prevents direct 

illumination of recording electrodes, reducing the photoelectric artifact [55]. Out-of-plane 

output coupling has been demonstrated using grating couplers [55,56] in rigid neurophotonic 

implants as well as broadband micromirrors in fully flexible Parylene photonic implants 

[44••].
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Table 1 summarizes recent designs of passive photonic neural implants based on optical 

waveguides made of flexible polymers, including the materials, their refractive index 

values, waveguide propagation loss, input coupling mechanism and output light illumination 

arrangement, the method of fabrication, as well as the implantation site.

Active flexible neurophotonic implants

To deliver light deep into the tissue with high spatial resolution, active light sources can 

be directly implanted into the neural tissue. These light sources include light emitting 

diodes (LEDs) or lasers that emit light when powered by electricity. Implants have been 

recently demonstrated with an array of such light sources integrated on a flexible substrate 

(Table 2). For example, Gallium Nitride (GaN) LEDs have been used to design active 

photonic neural implants that generate blue light in the wavelength range that overlaps with 

the absorption band of Channelrhodopsin (ChR2), one of the most widely used opsins in 

optogenetics, as well as fluorescent tags used for structural and functional imaging of the 

brain. GaN is usually grown on sapphire as the substrate. Epitaxial growth of GaN on 

Silicon has also been demonstrated recently for designing implantable Silicon neural probes 

with photonic functionality [64]. Off-the-shelf LEDs also have been packaged with flexible 

neural probes. In this scheme, metal traces and bondpads are lithographically defined on 

a polymer substrate and then the LED chips are flip-chip bonded onto the polymer shank. 

This method has the advantage that LEDs emitting light at different wavelengths can be 

integrated on the same probe shank to stimulate different opsins. These LEDs can be bonded 

on the surface of the neural probe in any arbitrary arrangement. Existing off-the-shelf 

LED chips are usually large and thick (220 μm × 270 μm × 50 μm) [65••], thus limiting 

the density of these neurophotonic probes. Such devices have also been used in cochlear 

implants [66]. To address the size and density limitations, smaller LED chips have been 

custom-designed and fabricated. In this method, first, an array of micro-LEDs are fabricated 

on a sapphire substrate and the flexible probe shanks are fabricated on a separate substrate 

and then the micro-LEDs with dimensions as small as 50 μm × 50 μm × 6.45 μm are 

transferred to the polymer substrate using a laser liftoff (LLO) process, where an excimer 

laser is used to detach GaN from sapphire [67,68,69••]. The flip-chip bonding process 

requires precise alignment and is usually serial, which would limit the scalability and 

throughput of the packaging process. To increase the packaging throughput and scale up 

the density of active photonic neural probes, a transfer process has been developed for 

cochlear implants to directly transfer an array of micro-LEDs to flexible substrates at the 

wafer scale [70,71]. A monolithic fabrication process has also been recently demonstrated 

to directly fabricate flexible micro-LED neural probes on a Silicon wafer with epitaxially 

grown GaN layers [72••]. In this scheme, the Silicon handle layer is etched to fully release 

the flexible devices. This method provides a high degree of customizability. Any size and 

arrangement of micro-LEDs can be lithographically defined on the neural probe collocated 

with recording electrodes. Moreover, the fabrication process is scalable and potentially high 

throughput. The efficiency of micro-LEDs fabricated on Silicon (~6%) is usually lower than 

the efficiency of GaN micro-LEDs fabricated on sapphire (~17%) [73].
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Comparison of flexible active and passive neurophotonic implants and the 

future outlook

Research on developing passive and active flexible neurophotonic implants has produced 

interesting results recently. Each technology platform offers certain advantages and has 

some limitations, based on which it can be adopted for specific applications. Here, we 

provide a comparison between the state of the art passive and active flexible photonic 

technology platforms, with the understanding that each of these two technologies are 

evolving fast to address the shortcomings and offer more effective solutions. The active 

neurophotonic implants based on micro-LEDs can potentially be realized with a very high 

density of light sources. To power these active light sources, we would only need electrical 

traces that can be made very small and densely routed even with very sharp in-plane bends. 

The passive photonic waveguides on the other hand, must be routed all the way from the 

backend to the probe shank and cannot be defined over trajectories with sudden sharp bends. 

Moreover, we do not necessarily have to use two independent metal traces to power each 

active light source. In fact, one metal trace can be used in common for all of them (e.g., 

to connect to the p-contacts) and the n-contacts can be addressed individually. This way, to 

address N number of LEDs, we would only need N+1 metal traces. Moreover, it has been 

shown that a dense 2D array of N micro-LEDs can be controlled using a matrix grid of 

2 N metal interconnects by indexing individual micro-LEDs via the row and column in 

the array [72••]. Therefore, active photonic neural probes can be potentially realized with 

a much higher density of optical output ports compared to passive photonic waveguide 

neural implants. However, the lower efficiency of micro-LEDs contributes to heat generation 

and dissipation in the probe shank. It is important to minimize the heat conduction to 

the brain tissue. The safe operation condition is considered to be temperature change of 

less than 1°C in tissue [74], although the effect also depends on the exposure time [75]. 

To minimize heat dissipation to the brain tissue, a heat-sinking layer can be implemented 

[76]. Moreover, active light sources can be pulsed to prevent accumulation of heat [64]. 

In addition to improving the epitaxial structure of the micro-LEDs, integrated planar [77] 

and hemispherical mirrors [78] have also been explored in rigid optrodes to improve the 

efficiency and enhance the optical stimulation. Further research is needed to improve the 

efficiency of active photonic light sources and mitigate heat generation and dissipation into 

the tissue. On the other hand, passive flexible optical waveguides route light from external 

light sources, thus minimizing the conduction of heat generated by these light sources to the 

brain tissue. Most of the passive flexible neurophotonic implantable probes demonstrated 

so far are based on one or just a few optical channels. Currently available flexible 

polymers used as core materials in flexible optical waveguide neural probes have lower 

refractive indices compared to rigid materials such as Silicon Nitride, which puts constraints 

on miniaturization of waveguide core dimensions and reduction of the pitch between 

adjacent waveguides (due to crosstalk) for dense routing of passive waveguides. Therefore, 

development of novel biocompatible flexible polymers with higher index contrasts can 

enable higher density of optical channels in passive photonic neural probes. Moreover, like 

multilayer metal traces used in electrical neural probes, multilevel photonic waveguides can 

also be realized to increase the density of optical channels. In addition, similar to what 

has been demonstrated in Silicon Nitride neural probes, wavelength-domain multiplexing 
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can be used to route multiple wavelengths of light from one input waveguide to achieve 

illumination with individual spectral components at multiple waveguides terminating at 

different spatial locations along the probe shank [56]. These design concepts need to be 

optimized to realize high-density neurophotonic implantable probes.

Overall, existing active flexible photonic neural probes are best suited for acute experiments, 

in which high-density light illumination is highly desired. On the other hand, passive flexible 

neural probes have the potential to serve the purpose of chronic long-term neural interfacing. 

Of course, with the ongoing research in the field, we expect to see future work address the 

shortcomings of both technology platforms, which would enable their use in a broader range 

of acute and chronic experiments.
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Figure 1. 
Taxonomy of flexible optoelectric neural probe designs discussed in this paper. Three 

different designs are shown: (1) an implantable microarray neural probe (Michigan-style) 

with an array of active light sources or optical waveguides, (2) an array of individual 

optoelectric shanks (Utah-array-style) and (3) a fiber-based design. Active neurophotonic 

probes consist of an array of light sources (LEDs), while passive neurophotonic probes 

consist of an array of optical waveguides, each consisting of a high refractive index core 
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surrounded by low-index cladding. The input/output coupling mechanisms are illustrated for 

the optical waveguides.
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Figure 2. 
(a) The Young’s modulus for polymers commonly used to realize neurophotonic probes in 

comparison with the elasticity of brain tissue and Silicon as a representative stiff material 

that is used to design neural probes. (b) Implantation of flexible neural probes may fail if the 

required insertion force is larger than the buckling force that the device can endure [16•,37]. 

Buckling force is a function of the material elastic modulus (E) and its geometry (length: L, 

width: b, and thickness: h). K is the effective length factor, which depends on the boundary 

conditions at two ends of the neural probe and is in the range of (K = 0.5 to 2) [35]. The 
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expressions for the bending stiffness along x and y directions are provided as a function of 

the bulk elastic (Young’s) modulus (E) and the geometrical parameters.

* The value of the Young’s modulus is reported in the indicated reference.
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