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Resonance phenomena controlled 
by external feedback signals and 
additive noise in neural systems
Sou Nobukawa   1, Natsusaku Shibata1, Haruhiko Nishimura2, Hirotaka Doho2,3, 
Nobuhiko Wagatsuma4 & Teruya Yamanishi5

Chaotic resonance is a phenomenon that can replace the fluctuation source in stochastic resonance 
from additive noise to chaos. We previously developed a method to control the chaotic state for suitably 
generating chaotic resonance by external feedback even when the external adjustment of chaos is 
difficult, establishing a method named reduced region of orbit (RRO) feedback. However, a feedback 
signal was utilized only for dividing the merged attractor. In addition, the signal sensitivity in chaotic 
resonance induced by feedback signals and that of stochastic resonance by additive noise have not 
been compared. To merge the separated attractor, we propose a negative strength of the RRO feedback 
signal in a discrete neural system which is composed of excitatory and inhibitory neurons. We evaluate 
the features of chaotic resonance and compare it to stochastic resonance. The RRO feedback signal 
with negative strength can merge the separated attractor and induce chaotic resonance. We also 
confirm that additive noise induces stochastic resonance through attractor merging. The comparison of 
these resonance modalities verifies that chaotic resonance provides more applicability than stochastic 
resonance given its capability to handle attractor separation and merging.

Over decades, many types of synchronization phenomena in nonlinear systems have been explored (reviewed 
in1–3). Among them, stochastic resonance, in which additive noise enhances the response to weak input signals, 
has been widely observed in nonlinear systems, such as global climate4, economic5, electric6, and biological7–10 
systems. In particular, regarding recent studies about stochastic resonance in neural systems, we reported that 
spike-timing-dependent plasticity might be enhanced by stochastic resonance, and the enhancement depends on 
neural spiking patterns11. Likewise, Teramae et al.12 showed that spontaneous activity observed in cortical neural 
networks might be produced by the effect of stochastic resonance through a lognormal distribution of synaptic 
weights. Based on this study, we found that the temporal complexity of spontaneous activity produced by stochas-
tic resonance depends on small-world networks13. Furthermore, stochastic resonance is influenced by the neural 
network structure14–16 (reviewed in10). For instance, Wang et al.14, Yilmaz et al.15, and Yu et al.16 demonstrated that 
in the stochastic resonance of neural systems, the presence of electrical synapses, synaptic delay, and scale freeness 
may promote signal transmission. Regarding the input signals in stochastic resonance, not only a periodic weak 
input signal but also more complex input signals have been used17–19 (reviewed in10). Gao et al. demonstrated 
that stochastic resonance can arise under envelope-modulated signals that are widely observed in regional neural 
activity, such as phase-amplitude coupling signals, and its presence is maximized by the optimal balance between 
excitatory and inhibitory neural populations20. Besides spike transmission, the mechanism of stochastic reso-
nance might be applicable to higher brain functional levels (reviewed in21,22). For example, Garrett et al.23,24 and 
Mcintosh et al.25 demonstrated that the degree of fluctuations in neural activity observed from neuroimaging can 
reflect age, cognitive function, and recognition accuracy23–25.

Given the potential enhancement of signal sensitivity, applications of stochastic resonance have gained atten-
tion in biomedical engineering26–30. For instance, Kurita et al.26,29 proposed a wearable device utilizing the effect 
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of stochastic resonance to implement surgical grasping forceps, enhancing human tactile sensory performance 
through vibration. Enders et al.27 and Seo et al.28 proposed a method to improve touch sensation in paralyzed 
patients and stroke survivors. Moreover, at cognitive levels of brain function, Van der Groen et al.30 developed 
a method to enhance perceptual decision-making by exploiting stochastic resonance. Specifically, the optimal 
amount of noise applied by transcranial random noise stimulation to the visual cortex conforms a non-invasive 
brain stimulation technique that enhances the accuracy of perceptual decisions.

A chaotic system exhibits various kinds of dynamical characteristics, such as intermittency chaos, hyperchaos, 
and bubbling transition31,32 (reviewed in33,34). Among them, chaos induces phenomena such as chaos synchro-
nization and chaotic resonance (reviewed in1,2,35). In this study, we focused on chaotic resonance, which can be 
interpreted as the phenomenon replacing the fluctuation source in stochastic resonance by chaos instead of using 
additive noise35. Chaotic resonance can be applied in two forms. First, the signal response can be enhanced by 
applying an external deterministic chaotic signal instead of external stochastic noise36–38. Specifically, the signal 
generated by external chaotic systems is applied to a dynamical system with bi-stable states by inputting weak 
signals36–38. Second, the signal response can be enhanced by dynamics with intrinsic chaotic behavior instead of 
applying external chaotic signals produced in other systems (we considered the second form in this study)37,39–42. 
Chaotic resonance is fed to the system with chaos–chaos intermittency, where the chaotic orbit goes back and 
forth among separate regions36,37,39–41,43. In chaotic resonance, synchronization of chaos–chaos intermittency 
against small external signals can be induced, and its degree can be maximized close to the condition for attractor 
merging bifurcation (reviewed in35). This chaotic resonance has been found in many chaotic systems including 
one-dimensional cubic maps, the Chua’s circuit, Lorenz system, and Duffing oscillator36,37,39–41. In neural systems, 
the study of chaotic resonance has led to findings such as associative chaotic neural network models and a discrete 
neural system which is composed of excitatory and inhibitory neurons43–46. Moreover, recent studies of chaotic 
resonance have been focused on various types of neural systems, such as cerebellar learning systems and spiking 
neuron models with various types of spiking patterns47–52.

Compared to stochastic resonance, several studies have reported that the sensitivity of chaotic resonance is 
higher45,46. Still, few studies have addressed applications of chaotic resonance, possibly because in chaotic res-
onance, the chaotic state must be properly adjusted for obtaining resonance by the parameters of the internal 
system. In a large proportion of cases, particularly in biological system, adjusting internal parameters from out-
side cannot be realized. To solve this problem, we previously developed a method to control the chaotic state for 
generating chaotic resonance through an external feedback signal53. The feedback signal reduces the local maxi-
mum and minimum of a map function inducing chaos–chaos intermittency and separating the merged attractor. 
Consequently, chaotic resonance is achieved without rectifying internal parameters, in a method denominated 
reduced region of orbit (RRO) feedback. Although other conventional methods to control chaotic states by exter-
nal signals exist, such as the Ott–Grebogi–Yorke method54, delayed feedback55,56, and H∞ control57, they eliminate 
the chaotic dynamics by stabilizing equilibrium and transitioning to a stable periodic state by applying external 
perturbations. In contrast, RRO feedback adjusts the chaotic state without eliminating it to generate chaotic 
resonance53.

RRO feedback has been used in a discrete cubic map, coupled cubic maps, and a discrete neural system com-
posed of excitatory/inhibitory neurons44, successfully inducing chaotic resonance53,58,59. However, the feedback 
signal has been only utilized for separating the merged attractor in these studies. Therefore, if the system behav-
iour exhibits the condition for separating the attractor, chaotic resonance cannot be controlled because attractor 
merging is needed instead of separation. Further, the performance of chaotic resonance induced by feedback and 
that of stochastic resonance by additive noise remain to be evaluated and compared.

We hypothesized that the separated attractor can be merged by negative feedback in RRO feedback. Therefore, 
chaotic resonance can be induced even under a separated attractor. To prove this hypothesis, we applied nega-
tive feedback to a discrete neural system44 in this study. The induced chaotic resonance was evaluated regarding 
feedback strength, internal parameters of the neural system, and input signal amplitude/frequency. Finally, we 
compared the signal sensitivity of induced chaotic resonance with that of stochastic resonance by additive noise.

Methods
Neural system model.  Figure 1 illustrates the discrete neural system composed of excitatory/inhibitory 
neurons developed by Sinha44 and considered in this study. The dynamics of the states for excitatory neuron x(t) 
and inhibitory neuron y(t) is expressed as

+ = −x t F w x t w y t( 1) ( ( ) ( )), (1)a EE EI

+ = − .y t F w x t w y t( 1) ( ( ) ( )) (2)b IE II

Here, wEE and wEI represent excitatory synaptic weights between excitatory neurons and from excitatory to 
inhibitory neurons, respectively, wII and wIE represent inhibitory synaptic weights between inhibitory neurons 
and from inhibitory to excitatory neurons, respectively. Activation functions Fa and Fb are given by Fa(X) = −1 
for X < −1/a, Fa(X) = aX for −1/a ≤ X ≤ 1/a, Fa(X) = 1 for X > 1/a, Fb(Y) = −1 for Y < −1/b, Fb(Y) = bY for 
−1/b ≤ Y ≤ 1/b, and Fb(Y) = 1 for Y > 1/b. Parameters 1/a and 1/b correspond to the activation threshold 
for the states of excitatory and inhibitory neurons, respectively. Under constraint wEI/wEE = wII/wIE = k, the 
two-dimensional dynamics of x(t) and y(t) reduces to effective neural potential z(t) = x(t)−ky(t), whereas the 
one-dimensional dynamics is given by

+ = = − .z t F z t F z t kF z t( 1) ( ( )) ( ( )) ( ( )) (3)a b
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To control the signal response in the neural system, we use chaotic resonance or stochastic resonance (Fig. 1). 
In both control approaches, the signal response is controlled by attractor merging (chaos–chaos intermittency). In 
chaotic resonance, attractor merging is controlled by an external feedback signal, whereas in stochastic resonance, 
attractor merging is controlled by additive noise. Specifically, to induce chaotic resonance by controlling the 
chaos–chaos intermittency of effective neural potential z(t), we applied an RRO feedback term u(z)53 as follows:

+ = +z t F z t Ku z t( 1) ( ( )) ( ( )), (4)

σ= − − − − .u z z z z z( ) ( )exp( ( ) /(2 )) (5)d d
2 2

Here, K, zd, and σ are the RRO feedback strength, merging point of each chaotic attractors, and a parameter to 
determine the region for RRO feedback effect, respectively.

In this simulation, we used set parameters to a = 5.95, 5.96, 5.97, b = 3.42, and k = 1.381144. Consequently, the 
orbit of z(t) is trapped to its positive or negative regions. Based on our previous study53, zd and σ were set to zd = 0 
for the divided points of each chaotic region z = 0, and the distance from this divided point z(0) to the local max-
imum/minimum σ =

a
1 . In addition, the positive region of K was investigated, where RRO feedback signal Ku(z) 

suppresses chaos–chaos intermittency and separates the merged chaotic attractor59. In contrast, we focused on the 
negative region in the present study. In the negative region, we assumed that RRO feedback signal Ku(z) enhances 
chaos–chaos intermittency and merges the separated chaotic attractor.

To explain the effect of RRO feedback signal Ku(z), Figs 2 and 3 show map function of F(z) + K(u(z)) accord-
ing to external feedback signals. Attractor merging (chaos–chaos intermittency) occurs if F(fmax) + K(u(fmax)) < 0 
and F(fmin) + K(u(fmin)) > 0, where fmax and fmin are the local maximum and minimum of the map function. For 
internal neural parameter a = 6.03 and feedback strength K = 0, the attractor merging conditions are satisfied (left 
graph in Fig. 2). Applying positive feedback (K = 0.1, Fig. 4), the absolute values of fmax and fmin are reduced, and 
the attractor merging conditions are not satisfied, as shown in the right graph of Fig. 2. In our previous work59, we 
controlled chaotic resonance using this suppressing effect. For a = 5.96 and K = 0, the attractor merging condi-
tions are not satisfied (left graph in Fig. 3). However, applying negative feedback signal Ku(z) (K = −0.1, Fig. 4), 
the absolute values of fmax and fmin increase, and the attractor merging conditions are satisfied, as shown in the 
right graph of Fig. 3.

To evaluate the signal response during chaotic resonance, an external sinusoidal signal S(t) = Asin2πΩt can 
be applied:

+ = + + .z t F z t Ku z t S t( 1) ( ( )) ( ( )) ( ) (6)

For stochastic resonance, additive white Gaussian noise ξ(t) with zero mean and unit variance can be applied 
to Eq. (6) as follows:

Figure 1.  Discrete neural system composed of excitatory and inhibitory neurons44 (top graph). Under 
constraint wEI/wEE = wII/wIE = k, the two-dimensional dynamics of x(t) and y(t) reduces to effective neural 
potential z(t) = x(t)−ky(t). Control method for signal response using chaotic resonance by a reduced region of 
orbit (RRO) feedback signal Ku(z) and stochastic resonance by Gaussian white noise Dξ (bottom graph).
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Figure 2.  Map function F(z) + K(u(z)) according to external feedback signals with positive strength for 
a = 6.03. The left and right graphs indicate map function with K = 0.0 satisfying attractor merging conditions 
and that with K = 0.1 not satisfying attractor merging conditions. The red and green circles indicate 
F(fmax) + K(u(fmax)) and F(fmin) + K(u(fmin)), respectively. RRO feedback separates the merged attractor due to 
decreasing absolute values of fmax and fmin.

Figure 3.  Map function F(z) + K(u(z)) according to external feedback signals with negative feedback strength 
for a = 5.96. The left and right graphs indicate map function with K = 0.0 not satisfying attractor merging 
conditions and that with K = −0.1 satisfying attractor merging conditions. RRO feedback allows to control the 
merging attractor conditions due to increasing absolute values of fmax and fmin.

Figure 4.  Feedback signal K(u(z)) for K = 0.1, −0.1. For positive feedback strength (K = 0.1), local maximum 
and minimum of K(u(z)) are located at the local minimum and maximum of the map function of F, respectively. 
For negative feedback strength (K = −0.1), this location is the opposite.
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ξ+ = + + + .z t F z t Ku z t S t D t( 1) ( ( )) ( ( )) ( ) ( ) (7)

Here, D represents the noise strength.

Indices for signal response, chaotic state, and controlling attractor merging.  We consider the 
synchronization between sign change of effective neural potential z(t) and input signal S(t) as signal response by 
utilizing the correlation coefficient between binarized time series z(t) being Z(t) (Z(t) = 1 if z(t) ≥ 0; Z(t) = −1 
otherwise) and the time series of input signal S(t):

τ
τ

=C C
C C

( ) ( ) ,
(8)

SZ

SZ ZZ

τ τ= 〈 + − 〈 〉 − 〈 〉 〉C S t S Z t Z( ) ( ( ) )( ( ) ) , (9)SZ

= 〈 − 〈 〉 〉C S t S( ( ) ) , (10)SS
2

= 〈 − 〈 〉 〉C Z t Z( ( ) ) , (11)ZZ
2

where 〈⋅〉 denotes averaging over t and τ is the time delay.
To evaluate the instability of the z(t) orbit as chaos index, the Lyapunov exponent is employed60:

∑λ
τ
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where dk(tl = 0) = d0 (k = 1, 2, …, M) indicates M perturbed initial conditions at t = t0 + (k−1)τ adding to z(t), 
whose temporal evolution for tl∈[0:τ] is τ= = − ′ | τ= +d t z t z t( ) ( ( ) ( ))k

l t t k0
, with z′(t) denoting a perturbed orbit.

Finally, to confirm the frequency control effect of chaos–chaos intermittency by external RRO feedback signal, 
we use the occurrence probability of chaos–chaos intermittency:

Figure 5.  Chaotic attractor merging by internal neural parameter a. As function of parameter a, bifurcation 
diagram of effective neural potential z(t) (black dot) and occurrence probability of chaos–chaos intermittency Pt 
(red line) (top) are shown using negative and positive initial values of z(0). Lyapunov exponent λ (middle) and 
F(fmax, min) (bottom). The chaotic attractor (λ > 0) is merged when satisfying condition for attractor merging 
F(fmax) < 0, F(fmin) > 0 for a  5.99. All graphs are plotted according to internal neural parameter a.
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where T and fcc denote the number of iterations and frequency of chaos–chaos intermittency, respectively.

Results
Attractor merging induced by internal neural parameters.  We demonstrate the dependence of 
dynamics on internal neural parameter a. Figure 5 shows the effective neural potential z(t) bifurcation diagram, 
occurrence probability of chaos–chaos intermittency Pt, Lyapunov exponent λ and F(fmax), F(fmin) according to 
internal neural parameter a. In the bifurcation diagram, two kinds of initial values for z(0) (i.e. negative and pos-
itive values) are used. The chaotic attractor (λ > 0), which is divided into positive and negative regions in 

 . .a5 72 5 99, is merged for  .a 5 99 when satisfying attractor merging condition F(fmax) < 0, F(fmin) > 0.

Control of attractor merging.  Consider the effect of RRO feedback signal for separating and merging the 
attractor. Figure 6 shows the z(t) map function and its orbit for a = 6.03 without RRO feedback signal (K = 0) and 
with positive RRO feedback signal (K = 0.1). Without RRO feedback, attractor merging condition F(fmax) < 0, 

Figure 6.  Effect of RRO feedback for separating the merged attractor (top) and merging the separated attractor 
(bottom). The graphs show the z(t) map function in the neural system (blue solid line) and its orbit (black solid 
line) for a = 6.03, 5.96 without RRO feedback signal (K = 0) and with RRO feedback signal (K = 0.1,−0.1). 
The red and green circles indicate F(fmax) + K(u(fmax)) and F(fmin) + K(u(fmin)), respectively. fmax (fmin) is local 
maximum (minimum) for the map function. By reducing and increasing the absolute values fmax and fmin, the 
effects for separating and merging the attractor are induced, respectively.
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Figure 7.  System behaviour according to RRO feedback strength K. As function of K, bifurcation diagram of 
z(t) (black) and occurrence probability of chaos–chaos intermittency Pt (red line) are shown using RRO 
feedback (top). Two kinds of initial values of z(0) (i.e. negative and positive values) are used. Lyapunov exponent 
λ (middle) and F(fmax) + K(u(fmax)), F(fmin) + K(u(fmin)) (bottom). All graphs are plotted according to feedback 
strength K. The chaotic attractor (λ > 0) is merged as it satisfies condition for attractor merging 
F(fmax) + K(u(fmax)) < 0, F(fmin) + K(u(fmin)) > 0 at  − . − . − .K 0 068, 0 051, 0 035 for a = 5.95, 5.96, 5.97, 
respectively. Decreasing internal neural parameter a from the attractor merging, a ≈ 5.99, shown in Fig. 5, 
demands a larger absolute value of negative feedback strength K.

Figure 8.  Effect of adding noise to merge separated attractor without RRO feedback (K = 0). The graphs show 
the z(t) map function (blue solid line) and its orbit (black solid line) for a = 5.96 without noise (D = 0) and 
with noise (D = 0.01). The red and green circles indicate F(fmax) and F(fmin), respectively. Despite of attractor 
merging condition (F(fmax) < 0, F(fmin) > 0) is not satisfied by the effect of additive noise, and attractor merging 
is induced.
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F(fmin) > 0 is satisfied, and therefore z(t) exhibits chaos–chaos intermittency between the negative and positive 
z(t) regions. With RRO feedback signal, this condition is not satisfied, and the merged attractor is separated, while 
z(t) is trapped in the negative or positive region, depending on the z(t) initial value. Figure 6 also shows the z(t) 
map function and its orbit for a = 5.96 without RRO feedback signal (K = 0) and with negative RRO feedback 
signal (K = −0.1). Without feedback, the condition for attractor merging, F(fmax) < 0, F(fmin) > 0, is not satisfied, 
and therefore z(t) is trapped in the negative or positive region. Applying negative feedback (K = −0.1), the merg-
ing condition is satisfied, and thus z(t) exhibits chaos–chaos intermittency. To evaluate the dependence of the 
system behaviour on negative RRO feedback strength K in more detail, Fig. 7 depicts the z(t) bifurcation diagram, 
Pt, λ, F(fmax) + K(u(fmax)), and F(fmin) + K(u(fmin)) as function of K for a = 5.95, 5.96, 5.97. The separated chaotic 
attractor (λ > 0) merges as it satisfies the condition for attractor merging, F(fmax) + K(u(fmax)) < 0, 
F(fmin) + K(u(fmin)) > 0 and Pt > 0 in  − . − . − .K 0 068, 0 051, 0 035 for a = 5.95, 5.96, 5.97, respectively. 
Decreasing internal neural parameter a from the attractor merging, a ≈ 5.99, demands a larger absolute value of 
negative feedback strength K.

Next, we evaluate the effect of additive noise for merging the attractor. Figure 8 shows the map function of z(t) 
and its orbit for a = 5.96 without noise (D = 0). The attractor is separating (F(fmax) > 0, F(fmin) < 0). Adding noise 
(D = 0.01), the attractor is merged, and z(t) exhibits chaos–chaos intermittency. The dependence of z(t) behaviour 
on noise strength D is investigated in detail. Figure 9 shows the bifurcation diagram of z(t) and Pt according to D 
for a = 5.95, 5.96, 5.97. If  . × −D 2 5 10 3, 2.0 × 10−3, 1.5 × 10−3 in a = 5.95, 5.96, 5.97, respectively, the attractor 
is merged for Pt > 0. Decreasing internal neural parameter a from the attractor merging, a ≈ 5.99, shown in Fig. 5, 
demands a larger noise strength D.

Control signal response in chaotic resonance.  We first evaluate the signal response according to 
feedback strength K under chaotic resonance. Figure 10 shows correlation coefficient maxτ C(τ) between 
input sinusoidal signal S(t) and binarized z(t) according to RRO feedback strength K, F(fmax) + K(u(fmax)), and 
F(fmin) + K(u(fmin)). Correlation coefficient maxτ C(τ) exhibits a unimodal peak at the slightly merged settings 
for feedback strength. To observe the system behaviour in more detail, Fig. 11 shows time series z(t) for a = 5.96. 
Without RRO feedback signal (K = 0), attractor switching occurs around the peaks of input signal S(t). However, 
switching is not maintained for more than one iteration. Stronger feedback (K = −0.035) increases the switching 

Figure 9.  System behaviour according to noise strength D. Bifurcation diagram of z(t) (black) and occurrence 
probability of chaos–chaos intermittency Pt (red line). Two kinds of initial values of z(0) (i.e. negative and 
positive) are used. All graphs are plotted according to noise strength D. The chaotic attractor is merged for 
D  2.5 × 10−3, 2.0 × 10−3, 1.5 × 10−3 at a = 5.95, 5.96, 5.97, respectively. Decreasing internal neural parameter a 
from the attractor merging, a ≈ 5.99, indicated in Fig. 5, demands a larger noise strength D for attractor 
merging.
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frequency, but again, switching is not maintained for more than one iteration. In contrast, at appropriate feedback 
strength, where K corresponds to the peak of maxτ C(τ) (K = −0.075), the attractor switches at the period of S(t), 
and thus chaos–chaos intermittency synchronizes with the input signal. At even stronger negative K (K = −0.15), 
the very high chaos–chaos intermittency frequency does not allow to confirm its synchronization with input 
signal S(t).

Then, we evaluate the sensitivity of the signal response in chaotic resonance. Figure 12 shows correlation coef-
ficient maxτ C(τ) between input sinusoidal signal S(t) and binarized z(t) according to feedback strength K and 
signal amplitude A under chaotic resonance. In amplitude region  . × . ×− −A2 0 10 6 0 103 2 and for 
K ≈ −0.068 (a = 5.95), −0.051 (a = 5.96), −0.035 (a = 5.97), where attractor merging occurs without input sinu-
soidal signal S(t), high values of maxτ C(τ)  0.3 are confirmed for every value of a (i.e. chaotic resonance occurs).

To investigate the relationship between input signal amplitude and signal response frequency, Fig. 13 shows 
correlation maxτ C(τ) according to the amplitude and frequency of S(t) for various values of K and a, where K 
corresponds to peaks in correlation maxτ C(τ) (Fig. 10). High values of maxτ C(τ)  0.3 are achieved in region 

 . × Ω . ×− −2 0 10 1 0 105 3 and  . × . ×− −A2 0 10 6 0 103 2.

Control of signal response in stochastic resonance.  By controlling attractor merging using additive 
noise, stochastic resonance can be evaluated without feedback strength (K = 0). Figure 14 shows correlation coef-
ficient maxτ C(τ) between input sinusoidal signal S(t) and binarized z(t) according to noise strength D. A single 

Figure 10.  Signal response according to feedback strength K under chaotic resonance. (a) Correlation 
coefficient maxτ C(τ) between input signal S(t) and binarized z(t) according to feedback strength K. 
(b) Correlation maxτ C(τ) (corresponding to values in Fig. 10(a)) according to F(fmax) + K(u(fmax)) and 
F(fmin) + K(u(fmin)) (corresponding to values in Fig. 7) for −0.15 ≤ K ≤ 0.0. Solid lines and shaded areas 
represent the mean and standard deviation of maxτ C(τ) among 10 trials, respectively. For every value of a, 
correlation coefficient maxτ C(τ) exhibits a unimodal peak at the slightly merged settings for feedback strength 
(i.e. chaotic resonance occurs).
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Figure 11.  Time series of z(t) (black line) and input sinusoidal signal S(t) (red line) for internal neural 
parameter a = 5.96 (corresponding to Fig. 10). Without RRO feedback signal (K = 0) and with weak RRO 
feedback strength (K = −0.035), attractor switching occurs around the peaks of input signal S(t). However, 
switching is not maintained for more than one iteration. In contrast, at appropriate feedback strength 
(K = −0.075), where K corresponds to the peak of maxτ C(τ) (K = −0.075), the attractor switches at the period 
of S(t), and thus chaos–chaos intermittency synchronizes with the input signal. At even stronger negative K 
(K = −0.15), the very high chaos–chaos intermittency frequency does not allow to confirm its synchronization 
with input signal S(t).

Figure 12.  Correlation coefficient maxτ C(τ) between input sinusoidal signal S(t) and binarized z(t) according to 
feedback strength K and signal amplitude A under chaotic resonance. In the white region, the behaviour of z(t) 
indicates the absence of chaos–chaos intermittency. The red arrow indicates the region where synchronization 
occurs without feedback. The smaller region of K, delimited by the red dashed line, indicates attractor merging 
without input sinusoidal signal S(t). In the region of smaller K values where attractor merging induced and 

 . × . ×− −A2 0 10 6 0 103 2, chaotic resonance occurs for every value of internal neural parameter a. Around 
the values of K indicated as red dashed lines, the sensitivity of chaotic resonance becomes high. Consequently, 
the signal response of chaotic resonance is maximized at appropriate input signal amplitude.
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peak is confirmed around the slightly merged settings for noise strength D ≈ 5.0 × 10−3, 4.0 × 10−3, 3.0 × 10−3 at 
a = 5.95, 5.96, 5.97 respectively, given in Fig. 9. Therefore, stochastic resonance is induced. Figure 15 shows time 
series z(t) for a = 5.96 (corresponding to Fig. 14). Without additive noise (D = 0) and with weak noise strength 
(D = 1.5 × 10−3), attractor switching occurs around the peaks of input signal S(t). However, switching is almost 
lost in more than one iteration. For stronger noise corresponding to D where the peak of maxτ C(τ) occurs 
(D = 4.0 × 10−3), the attractor switches at the period of S(t), and chaos–chaos intermittency synchronizes with 
the input signal. At even stronger D (D = 2.0 × 10−2), the very high frequency of chaos–chaos intermittency does 
not allow to confirm its synchronization with input signal S(t).

Then, to evaluate the sensitivity of the signal response under stochastic resonance, Fig. 16 shows correlation 
coefficient maxτ C(τ) according to noise strength D and signal amplitude A. In amplitude region 

Figure 13.  Correlation coefficient maxτ C(τ) between input sinusoidal signal S(t) and binarized z(t) according 
to signal frequency Ω under chaotic resonance. K = −0.09, −0.06, −0.05 is considered for a = 5.95, 5.96, 5.97, 
respectively, corresponding to K values where peak maxτ C(τ) occurs in Fig. 10. Correlation coefficient maxτ 
C(τ) exhibits high values for  . × Ω . ×− −2 0 10 1 0 105 3 and weak input signal 

 . × . ×− −A2 0 10 6 0 103 2 for every value of a. Consequently, the signal response of chaotic resonance is 
maximized at appropriate input signal frequency.

Figure 14.  Correlation coefficient maxτ C(τ) between input sinusoidal signal S(t) and binarized z(t) according 
to noise strength D under stochastic resonance. Solid lines and shaded areas indicate the mean and standard 
deviation of maxτ C(τ) among 10 trials, respectively. Correlation coefficient maxτ C(τ) exhibits a unimodal peak 
around the slightly merged settings for noise strength given in Fig. 9. Therefore, stochastic resonance is induced.
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Figure 15.  Time series of z(t) (black line) and input sinusoidal signal S(t) (red line) for internal neural 
parameter a = 5.96 (corresponding to Fig. 14). Without additive noise (D = 0) and with weak noise strength 
(D = 1.5 × 10−3), attractor switching occurs around the peaks of input signal S(t). However, switching is almost 
lost in more than one iteration. For stronger noise, which corresponds to the value of D at which the peak of 
maxτ C(τ) occurs (D = 4.0 × 10−3), the attractor switches at the period of S(t), and chaos–chaos intermittency 
synchronizes with the input signal. At even stronger D (D = 2.0 × 10−2), the very high frequency of chaos–chaos 
intermittency does not allow to confirm its synchronization with input signal S(t).

Figure 16.  Correlation coefficient maxτ C(τ) between input sinusoidal signal S(t) and binarized z(t) according 
to noise strength D and signal amplitude A under stochastic resonance. In the white region, the behaviour of 
z(t) indicates the absence of chaos–chaos intermittency. The red arrow indicates the region where 
synchronization occurs without noise. The larger region of D, delimited by the red dashed line, indicates 
attractor merging without input sinusoidal signal S(t). In the region of larger D values from the attractor 
merging point (red dashed line) and  . × . ×− −A2 0 10 8 0 102 2, stochastic resonance occurs for every 
value of a. Compared to the chaotic resonance shown in Fig. 12, the sensitivity and degree of the signal response 
are lower.
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 . × . ×− −A2 0 10 8 0 102 2 and for large D, where attractor merging occurs without input sinusoidal signal 
S(t), high values of maxτ C(τ)  0.3 are confirmed for every value of a (i.e. stochastic resonance occurs).

Next, we investigate the relationship between input signal amplitude and signal response frequency. Figure 17 
shows correlation maxτ C(τ) according to the amplitude and frequency of S(t) for various values of D and a, where 
D corresponds to peaks in correlation maxτ C(τ) (Fig. 14). High values of maxτ C(τ)  0.3 are achieved in region 

 . × Ω . ×− −2 0 10 1 0 105 3 and  . × . ×− −A2 0 10 8 0 102 2 for every value of a.

Discussion
To control chaotic resonance under a separating attractor into different regions, we propose the application of 
negative RRO feedback. This feedback was applied to a discrete neural system which is composed of excitatory 
and inhibitory neurons. As a result, it has been confirmed that negative RRO feedback can merge the separated 
attractor and induce chaotic resonance. For comparison on attractor merging, white Gaussian noise was also 
applied to the neural system, inducing stochastic resonance through attractor merging.

Regarding the characteristics of chaotic resonance induced by negative RRO feedback, around the attrac-
tor merging strength, the correlation between the effective neural potential and input signal as index of signal 
response exhibits a unimodal peak. This signal response is maximized at appropriate input signal amplitude and 
frequency. These characteristics are similar to those induced by positive RRO feedback59 and agree with those of 
chaotic resonance in other systems36,37,39–41,43.

Compared to stochastic resonance, additive noise and negative RRO feedback have the same effect for attrac-
tor merging and enhancing the signal response. However, the sensitivity against weak input signal in chaotic 
resonance is higher than that in stochastic resonance (see Figs 12, 13, 16 and 17). Besides high sensitivity, the 
degree of signal response in chaotic resonance is higher compared to stochastic resonance (see the peak values 
in the resonance regions of Figs 12, 13, 16 and 17, maxτ C(τ) ≈ 0.7 for chaotic resonance and maxτ C(τ) ≈ 0.4 for 
stochastic resonance). This higher ability of chaotic resonance than stochastic resonance agrees with our findings 
in the case where chaotic resonance is controlled by an internal system parameter45,46. Therefore, in chaotic res-
onance induced by negative RRO feedback, this higher sensitivity is maintained. Moreover, additive noise only 
merges the separated attractor, whereas RRO feedback can either merge or separate the attractor by applying 
negative or positive feedback, respectively (chaotic resonance under positive RRO feedback is detailed in our 
previous study59). Therefore, RRO feedback can be adopted for more varied attractor conditions compared to 
additive noise.

Some limitations of this study should be considered. The neural system proposed by Sinha is the simplest neu-
ron model for eliciting chaos–chaos intermittency. Therefore, for applying the RRO feedback method to actual 
neural systems, chaotic resonance induced by RRO feedback must be evaluated in more realistic neural systems 

Figure 17.  Correlation coefficient maxτ C(τ) between input signal S(t) and binarized z(t) according to signal 
frequency Ω and signal amplitude A under stochastic resonance, where D = 5 × 10−3, 4 × 10−3, 3 × 10−3 for 
a = 5.95, 5.96, 5.97, respectively (corresponding to D values where peak maxτ C(τ) occurs in Fig. 14). For every 
value of a, correlation coefficient maxτ C(τ) exhibits high values for  . × Ω . ×− −2 0 10 1 0 105 3 and weak 
input signal  . × . ×− −A2 0 10 8 0 102 2. Compared to the chaotic resonance shown in Fig. 13, the 
sensitivity and degree of the signal response are lower.
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(i.e. complex, continuous, and high-dimensional neural networks). We are currently developing a method to 
apply RRO feedback in continuous chaotic systems utilizing the dynamics on Poincaré sections. This approach 
might be the suitable for applying RRO feedback to continuous and high-dimensional systems.

In this paper, we have reported that chaotic resonance can be induced by an external RRO feedback signal in 
neural systems without constraints on whether the attractor is merging or separating. Moreover, we confirm that 
chaotic resonance controlled by RRO feedback signal provides wider applicability than stochastic resonance. The 
outcomes of this study might promote the development of devices to strengthen signal responses by the effect 
of chaotic resonance in actual neural systems, where internal parameters cannot be controlled from outside the 
system.

References
	 1.	 Pikovsky, A., Rosenblum, M. & Kurths, J. Synchronization: a universal concept in nonlinear sciences, vol. 12 (Cambridge university 

press, 2003).
	 2.	 Rajasekar, S. & Sanjuan, M. A. Nonlinear resonances (Springer, 2016).
	 3.	 Majhi, S., Bera, B. K., Ghosh, D. & Perc, M. Chimera states in neuronal networks: A review. Physics of Life Reviews 28, 100–121 

(2019).
	 4.	 Benzi, R., Sutera, A. & Vulpiani, A. The mechanism of stochastic resonance. Journal of Physics A: mathematical and general 14, L453 

(1981).
	 5.	 Nobukawa, S., Hashimoto, R., Nishimura, H., Yamanishi, T. & Chiba, M. Noise-induced phenomena in the kaldor business cycle 

model. Transactions of the Institute of Systems, Control and Information Engineers 30, 459–466 (2017).
	 6.	 Harmer, G. P., Davis, B. R. & Abbott, D. A review of stochastic resonance: Circuits and measurement. IEEE Transactions on 

Instrumentation and Measurement 51, 299–309 (2002).
	 7.	 Moss, F. & Wiesenfeld, K. The benefits of background noise. Scientific American 273, 66–69 (1995).
	 8.	 Gammaitoni, L., Hänggi, P., Jung, P. & Marchesoni, F. Stochastic resonance. Reviews of modern physics 70, 223–287 (1998).
	 9.	 Hänggi, P. Stochastic resonance in biology how noise can enhance detection of weak signals and help improve biological information 

processing. Chem Phys Chem 3, 285–290 (2002).
	10.	 Guo, D., Perc, M., Liu, T. & Yao, D. Functional importance of noise in neuronal information processing. EPL (Europhysics Letters) 

124, 50001 (2018).
	11.	 Nobukawa, S. & Nishimura, H. Enhancement of spike-timing-dependent plasticity in spiking neural systems with noise. 

International journal of neural systems 26, 1550040 (2016).
	12.	 Teramae, J.-N., Tsubo, Y. & Fukai, T. Optimal spike-based communication in excitable networks with strong-sparse and weak-dense 

links. Scientific Reports 2 (2012).
	13.	 Nobukawa, S., Nishimura, H. & Yamanishi, T. Emergent patterns and spontaneous activity in spiking neural networks with dual 

complex network structure. In 2018 IEEE 17th International Conference on Cognitive Informatics & Cognitive Computing (ICCI* 
CC), 159–165 (IEEE, 2018).

	14.	 Wang, Q., Perc, M., Duan, Z. & Chen, G. Delay-induced multiple stochastic resonances on scale-free neuronal networks. Chaos: An 
Interdisciplinary Journal of Nonlinear Science 19, 023112 (2009).

	15.	 Yilmaz, E., Uzuntarla, M., Ozer, M. & Perc, M. Stochastic resonance in hybrid scale-free neuronal networks. Physica A: Statistical 
Mechanics and its Applications 392, 5735–5741 (2013).

	16.	 Yu, H. et al. Multiple stochastic resonances and oscillation transitions in cortical networks with time delay. IEEE Transactions on 
Fuzzy Systems (2018).

	17.	 Collins, J., Chow, C. C. & Imhoff, T. T. Stochastic resonance without tuning. Nature 376, 236 (1995).
	18.	 Collins, J., Chow, C. C. & Imhoff, T. T. Aperiodic stochastic resonance in excitable systems. Physical Review E 52, R3321 (1995).
	19.	 Collins, J., Chow, C. C., Capela, A. C. & Imhoff, T. T. Aperiodic stochastic resonance. Physical Review E 54, 5575 (1996).
	20.	 Guo, D., Perc, M., Zhang, Y., Xu, P. & Yao, D. Frequency-difference-dependent stochastic resonance in neural systems. Physical 

Review E 96, 022415 (2017).
	21.	 McDonnell, M. D. & Ward, L. M. The benefits of noise in neural systems: bridging theory and experiment. Nature Reviews 

Neuroscience 12, 415–426 (2011).
	22.	 Garrett, D. D. et al. Moment-to-moment brain signal variability: A next frontier in human brain mapping? Neuroscience & 

Biobehavioral Reviews 37, 610–624 (2013).
	23.	 Garrett, D. D., Kovacevic, N., McIntosh, A. R. & Grady, C. L. Blood oxygen level-dependent signal variability is more than just noise. 

The Journal of Neuroscience 30, 4914–4921 (2010).
	24.	 Garrett, D. D., Kovacevic, N., McIntosh, A. R. & Grady, C. L. The importance of being variable. The Journal of Neuroscience 31, 

4496–4503 (2011).
	25.	 McIntosh, A. R., Kovacevic, N. & Itier, R. J. Increased brain signal variability accompanies lower behavioral variability in 

development. PLoS Comput Biol 4, e1000106 (2008).
	26.	 Kurita, Y., Shinohara, M. & Ueda, J. Wearable sensorimotor enhancer for fingertip based on stochastic resonance effect. IEEE 

Transactions on Human-Machine Systems 43, 333–337 (2013).
	27.	 Enders, L. R., Hur, P., Johnson, M. J. & Seo, N. J. Remote vibrotactile noise improves light touch sensation in stroke survivors’ 

fingertips via stochastic resonance. Journal of neuroengineering and rehabilitation 10, 105 (2013).
	28.	 Seo, N. J., Kosmopoulos, M. L., Enders, L. R. & Hur, P. Effect of remote sensory noise on hand function post stroke. Frontiers in 

human neuroscience 8, 934 (2014).
	29.	 Kurita, Y. et al. Surgical grasping forceps with enhanced sensorimotor capability via the stochastic resonance effect. IEEE/ASME 

Transactions on Mechatronics 21, 2624–2634 (2016).
	30.	 Van der Groen, O., Tang, M. F., Wenderoth, N. & Mattingley, J. B. Stochastic resonance enhances the rate of evidence accumulation 

during combined brain stimulation and perceptual decision-making. PLoS computational biology 14, e1006301 (2018).
	31.	 Rossler, O. An equation for hyperchaos. Physics Letters A 71, 155–157 (1979).
	32.	 Venkataramani, S. C., Hunt, B. R. & Ott, E. Bubbling transition. Physical Review E 54, 1346 (1996).
	33.	 Baker, G. L., Baker, G. L. & Gollub, J. P. Chaotic dynamics: an introduction (Cambridge university press, 1996).
	34.	 Strogatz, S. H. Nonlinear Dynamics and Chaos with Student Solutions Manual: With Applications to Physics, Biology, Chemistry, and 

Engineering (CRC Press, 2018).
	35.	 Anishchenko, V. S., Astakhov, V., Neiman, A., Vadivasova, T. & Schimansky-Geier, L. Nonlinear dynamics of chaotic and stochastic 

systems: tutorial and modern developments (Springer Science & Business Media, 2007).
	36.	 Carroll, T. & Pecora, L. Stochastic resonance and crises. Physical review letters 70, 576–579 (1993).
	37.	 Carroll, T. & Pecora, L. Stochastic resonance as a crisis in a period-doubled circuit. Physical Review E 47, 3941–3949 (1993).
	38.	 Zambrano, S., Casado, J. M. & Sanjuán, M. A. Chaos-induced resonant effects and its control. Physics Letters A 366, 428–432 (2007).
	39.	 Crisanti, A., Falcioni, M., Paladin, G. & Vulpiani, A. Stochastic resonance in deterministic chaotic systems. Journal of Physics A: 

Mathematical and General 27, 597–603 (1994).
	40.	 Nicolis, G., Nicolis, C. & McKernan, D. Stochastic resonance in chaotic dynamics. Journal of statistical physics 70, 125–139 (1993).

https://doi.org/10.1038/s41598-019-48950-3


1 5Scientific Reports |         (2019) 9:12630  | https://doi.org/10.1038/s41598-019-48950-3

www.nature.com/scientificreportswww.nature.com/scientificreports/

	41.	 Sinha, S. & Chakrabarti, B. K. Deterministic stochastic resonance in a piecewise linear chaotic map. Physical Review E 58, 8009–8012 
(1998).

	42.	 Anishchenko, V. S., Astakhov, V., Neiman, A., Vadivasova, T. & Schimansky-Geier, L. Nonlinear dynamics of chaotic and stochastic 
systems: tutorial and modern developments (Springer Science & Business Media, 2007).

	43.	 Nobukawa, S., Nishimura, H. & Yamanishi, T. Evaluation of chaotic resonance by lyapunov exponent in attractor-merging type 
systems. In International Conference on Neural Information Processing, 430–437 (Springer, 2016).

	44.	 Sinha, S. Noise-free stochastic resonance in simple chaotic systems. Physica A: Statistical Mechanics and its Applications 270, 
204–214 (1999).

	45.	 Nishimura, H., Katada, N. & Aihara, K. Coherent response in a chaotic neural network. Neural Processing Letters 12, 49–58 (2000).
	46.	 Nobukawa, S., Nishimura, H. & Katada, N. Chaotic resonance by chaotic attractors merging in discrete cubic map and chaotic 

neural network. IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences 95, 357–366 
(2012).

	47.	 Schweighofer, N. et al. Chaos may enhance information transmission in the inferior olive. Proceedings of the National Academy of 
Sciences 101, 4655–4660 (2004).

	48.	 Tokuda, I. T., Han, C. E., Aihara, K., Kawato, M. & Schweighofer, N. The role of chaotic resonance in cerebellar learning. Neural 
Networks 23, 836–842 (2010).

	49.	 Tokuda, I. T., Hoang, H., Schweighofer, N. & Kawato, M. Adaptive coupling of inferior olive neurons in cerebellar learning. Neural 
Networks 47, 42–50 (2013).

	50.	 Nobukawa, S., Nishimura, H., Yamanishi, T. & Liu, J.-Q. Analysis of chaotic resonance in izhikevich neuron model. PloS one 10, 
e0138919 (2015).

	51.	 Nobukawa, S. & Nishimura, H. Chaotic resonance in coupled inferior olive neurons with the llin´as approach neuron model. Neural 
computation (2016).

	52.	 Nobukawa, S., Nishimura, H. & Yamanishi, T. Chaotic resonance in typical routes to chaos in the izhikevich neuron model. Scientific 
reports 7, 1331 (2017).

	53.	 Nobukawa, S., Nishimura, H., Yamanishi, T. & Doho, H. Controlling chaotic resonance in systems with chaos-chaos intermittency 
using external feedback. IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences 101, 
1900–1906 (2018).

	54.	 Ott, E., Grebogi, C. & Yorke, J. A. Controlling chaos. Physical review letters 64, 1196 (1990).
	55.	 Pyragas, K. Continuous control of chaos by self-controlling feedback. Physics letters A 170, 421–428 (1992).
	56.	 Nakajima, H. On analytical properties of delayed feedback control of chaos. Physics Letters A 232, 207–210 (1997).
	57.	 Jiang, W., Guo-Dong, Q. & Bin, D. H variable universe adaptive fuzzy control for chaotic system. Chaos, Solitons & Fractals 24, 

1075–1086 (2005).
	58.	 Nobukawa, S., Nishimura, H., Yamanishi, T. & Doho, H. Induced synchronization of chaos-chaos intermittency maintaining 

asynchronous state of chaotic orbits by external feedback signals. IEICE Transactions on Fundamentals of Electronics, 
Communications and Computer Sciences 102, 524–531 (2019).

	59.	 Nobukawa, S. & Shibata, N. Controlling chaotic resonance using external feedback signals in neural systems. Scientific reports 9, 
4990 (2019).

	60.	 Parker, T. S. & Chua, L. Practical numerical algorithms for chaotic systems (Springer Science & Business Media, 2012).

Acknowledgements
This work was supported by JSPS KAKENHI for Early-Career Scientists (Grant number 18K18124) (S.N.) and for 
Scientific Research (C) (grant number 18K11450) (T.Y.).

Author Contributions
S.N. and N.S. conceived the study, N.S. conducted the experiments, and S.N., N.S., H.N., N.W., T.Y. and H.D. 
analysed the results. S.N. and N.S. wrote the main manuscript text and prepared all the figures. All authors 
reviewed the manuscript.

Additional Information
Competing Interests: The authors declare no competing interests.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-48950-3
http://creativecommons.org/licenses/by/4.0/

	Resonance phenomena controlled by external feedback signals and additive noise in neural systems

	Methods

	Neural system model. 
	Indices for signal response, chaotic state, and controlling attractor merging. 

	Results

	Attractor merging induced by internal neural parameters. 
	Control of attractor merging. 
	Control signal response in chaotic resonance. 
	Control of signal response in stochastic resonance. 

	Discussion

	Acknowledgements

	Figure 1 Discrete neural system composed of excitatory and inhibitory neurons44 (top graph).
	Figure 2 Map function F(z) + K(u(z)) according to external feedback signals with positive strength for a = 6.
	Figure 3 Map function F(z) + K(u(z)) according to external feedback signals with negative feedback strength for a = 5.
	Figure 4 Feedback signal K(u(z)) for K = 0.
	Figure 5 Chaotic attractor merging by internal neural parameter a.
	Figure 6 Effect of RRO feedback for separating the merged attractor (top) and merging the separated attractor (bottom).
	Figure 7 System behaviour according to RRO feedback strength K.
	Figure 8 Effect of adding noise to merge separated attractor without RRO feedback (K = 0).
	Figure 9 System behaviour according to noise strength D.
	Figure 10 Signal response according to feedback strength K under chaotic resonance.
	Figure 11 Time series of z(t) (black line) and input sinusoidal signal S(t) (red line) for internal neural parameter a = 5.
	Figure 12 Correlation coefficient maxτ C(τ) between input sinusoidal signal S(t) and binarized z(t) according to feedback strength K and signal amplitude A under chaotic resonance.
	Figure 13 Correlation coefficient maxτ C(τ) between input sinusoidal signal S(t) and binarized z(t) according to signal frequency Ω under chaotic resonance.
	Figure 14 Correlation coefficient maxτ C(τ) between input sinusoidal signal S(t) and binarized z(t) according to noise strength D under stochastic resonance.
	Figure 15 Time series of z(t) (black line) and input sinusoidal signal S(t) (red line) for internal neural parameter a = 5.
	Figure 16 Correlation coefficient maxτ C(τ) between input sinusoidal signal S(t) and binarized z(t) according to noise strength D and signal amplitude A under stochastic resonance.
	Figure 17 Correlation coefficient maxτ C(τ) between input signal S(t) and binarized z(t) according to signal frequency Ω and signal amplitude A under stochastic resonance, where D = 5 × 10−3, 4 × 10−3, 3 × 10−3 for a = 5.




