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Lipid Transport in Brown Adipocyte
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Non-shivering thermogenesis is an energy demanding process that primarily occurs

in brown and beige adipose tissue. Beyond regulating body temperature, these

thermogenic adipocytes regulate systemic glucose and lipid homeostasis. Historically,

research on thermogenic adipocytes has focused on glycolytic metabolism due to

the discovery of active brown adipose tissue in adult humans through glucose

uptake imaging. The importance of lipids in non-shivering thermogenesis has more

recently been appreciated. Uptake of circulating lipids into thermogenic adipocytes

is necessary for body temperature regulation and whole-body lipid homeostasis. A

wide array of circulating lipids contribute to thermogenic potential including free fatty

acids, triglycerides, and acylcarnitines. This review will summarize the mechanisms and

regulation of lipid uptake into brown adipose tissue including protein-mediated uptake,

lipoprotein lipase activity, endocytosis, vesicle packaging, and lipid chaperones. We will

also address existing gaps in knowledge for cold induced lipid uptake into thermogenic

adipose tissue.

Keywords: brown adipose tissue (BAT), fatty acid, fatty acid binding protein (FABP), triglycerides (TGs), CD36,

thermogenesis, lipoprotein, fatty acid transport protein (FATP)

INTRODUCTION

Endotherms maintain their body temperature by producing heat through both shivering and
non-shivering thermogenesis. The cells primarily involved in non-shivering thermogenesis include
brown and beige adipocytes, both of which stimulate heat production through disruption of the
mitochondrial proton gradient by uncoupling protein 1 (UCP1) (Cannon and Nedergaard, 2004;
Cannon et al., 2020). These cells leverage other mechanisms to produce heat including futile cycling
of phosphocreatine, calcium, and free fatty acids (Prentki and Madiraju, 2008; Kazak et al., 2015;
Ikeda et al., 2017, 2018). The high energy demand of these futile cycles makes cells reliant on
peripheral sources of stored fuels including glucose and lipids.

Research on peripheral fuel sources for non-shivering thermogenesis has focused on glucose
uptake by brown and beige adipose tissue. Until the late 1980s it was thought that only
human infants contained significant quantities of brown adipose tissue (BAT) (Lean et al.,
1986). However, innovation in imaging with positron emission tomography with contrast
tomography (PET-CT) using 18F-fluorodeoxyglucose demonstrated that adult humans also have
BAT capable of cold-induced heat production (active BAT) (Saito et al., 2009; van Marken
Lichtenbelt et al., 2009; Virtanen et al., 2009; Von Bank et al., 2021a). The use of glucose
uptake to image and quantify BAT mass and function has led to a glucose centric view of
thermogenesis. This has been fortified by the discovery that BAT is able to regulate whole body
glucose homeostasis in humans and takes up 8-fold more glucose than skeletal muscle when
activated (Chondronikola et al., 2014; Sidossis and Kajimura, 2015; Carpentier et al., 2018).
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Moreover, adult humans that are exposed to repeated cold
exposure have significantly lower blood glucose and hemoglobin
A1C levels, the effects of which are dependent on the presence
and quantity of BAT (Matsushita et al., 2014; Hanssen et al.,
2016). Activation of thermogenesis with β3-adrenergic receptor
agonists showed a similar response, leading to improved glucose
levels in obese and diabetic individuals (Cypess et al., 2015; Finlin
et al., 2020). Recent studies in humans andmice demonstrate that
cold activation of BAT leads to import of fuel sources other than
glucose including non-esterified fatty acids, branch chain amino
acids, and triglycerides (TGs) (Bartelt et al., 2011; Ouellet et al.,
2012; Yoneshiro et al., 2019).

Circulating lipids are also required as a fuel source for BAT
(Figure 1). The most common circulating lipids are triglycerides,
cholesterol and cholesteryl esters, and phospholipids. These
lipids make up lipoproteins that are assembled by the intestine
(chylomicrons and HDL) or liver (LDL, IDL, and HDL).
Lipoprotein transport and uptake will be discussed further in
section Extracellular Lipolysis and LDL Receptor Endocytosis
Facilitates Triglyceride and Cholesterol Uptake into BAT. Free
fatty acids (FFAs) also circulate at high levels bound to albumin.
FFAs are released from white adipose tissue (WAT) after
induction of an intracellular lipolysis cascade and taken up by
peripheral tissues either passively (diffusion) or actively (protein-
mediated). TG-rich lipoproteins (TRLs) such as VLDL, are the
main source of circulating FFAs for BAT during thermogenesis
(Festuccia et al., 2011; Hoeke et al., 2016). However, FFAs
from WAT are necessary for body temperature regulation in
mice (Schreiber et al., 2017). These FFAs can be directly
imported into BAT or taken up by the liver where they are
processed into TGs or acylcarnitines that are then shuttled
to BAT (Górski et al., 1988; Simcox et al., 2017; Grefhorst
et al., 2018). Moreover, hepatic uptake of FFA from WAT
is necessary for activation of the transcription factor HNF4α,
which positively regulates expression of genes involved in
acylcarnitine synthesis. This suggests that circulating lipids are
also essential signaling molecules for thermogenic activation, and
lipid import into liver and BAT is required for the thermogenesis.
The liver exports lipoproteins, cholesterol, and acylcarnitines
into the circulation following import of FFA in response to
cold exposure which are preferentially taken up by brown
adipocytes (Bartelt et al., 2011; Berbée et al., 2015; Hoeke
et al., 2016; Simcox et al., 2017). Collectively these studies
show that a variety of lipids are taken up by BAT, which is
reflected in the changing composition of circulating lipids upon
cold exposure (Simcox et al., 2017; Lynes et al., 2018). This
review will focus on the emerging knowledge that circulating
lipids are an important mediator of thermogenic potential
with a focus on how their transport into brown adipocytes
is facilitated.

CIRCULATING LIPIDS ARE NECESSARY
FOR BAT THERMOGENESIS

The utilization of circulating lipids by cold-activated BAT was
not appreciated until 2011, when Bartelt et al. demonstrated

a shuttling of TRLs into activated murine BAT (Bartelt et al.,
2011). This uptake of TRLs was found to be necessary for
thermogenesis. Mice unable to transport FFAs and TRLs
generated by whole body knockout (KO) of the putative
FA transport protein cluster of differentiation 36 (Cd36−/−)
were cold intolerant. The reliance of BAT thermogenesis on
circulating lipids was further demonstrated by genetic ablation
of the first enzyme in intracellular TG lipolysis, adipose
triglyceride lipase (ATGL) encoded by Pnpla2. Whole body
or adipose tissue specific ATGL KO led to accumulation of
TGs in BAT and an inability to maintain body temperature
(Haemmerle et al., 2006). Conversely, loss of ATGL in brown
and beige adipocytes alone had no effect on body temperature
or thermogenic transcripts (Schreiber et al., 2017). The results
from the ATGL KO mouse models tell a compelling story that
lipolysis in brown and beige adipocytes is dispensable for body
temperature maintenance, but lipolysis in WAT is required.
These findings were supported in mice unable to synthesize
TGs and subsequently lipid droplets in BAT due to a UCP1-cre
driven knockout of acyl-CoA:diacylglycerol transferase (Dgat) 1
and 2 (Chitraju et al., 2020). In this model, body temperature
was maintained in the cold and utilization of circulating FFAs,
and glucose was increased in BAT. Together, these studies
supported the need for lipid uptake from plasma into BAT for
thermogenic regulation.

Just as BAT uptake of glucose regulates systemic glucose
homeostasis, uptake of lipids into BAT also regulates the
circulating lipid pool. In hyperlipidemic mice modeled by
KO of the extracellular lipolysis stimulator apolipoprotein A-
V (Apoa5), cold exposure led to reduced levels of TGs and
cholesterol in the plasma accompanied by an influx into
the BAT (Bartelt et al., 2011; Berbée et al., 2015). These
data demonstrate that BAT is an important regulator of the
circulating lipid pool in mice (Hoeke et al., 2016). The presence
of BAT in humans also regulates circulating TG and high-
density lipoprotein (HDL) cholesterol levels. Moreover, repeated
cold exposure has been shown to normalize circulating lipid
levels and decrease hepatic lipid accumulation in humans
(Wang et al., 2015; Bartelt et al., 2017; Wibmer et al.,
2021). Although there is overwhelming evidence that cold
activated BAT relies on lipid uptake for thermogenesis and
can modulate circulating lipid levels, little is known about the
regulation of transporters and the mechanisms that control
lipid uptake. The next sections will focus on the protein-
mediated uptake of FFAs, TGs, and other circulating lipids into
activated BAT.

FREE FATTY ACID UPTAKE INTO BAT IS
MEDIATED BY FABP, FATP, AND CD36

FA transport is divided into 3 steps: (1) adsorption,
(2) translocation, and (3) desorption (Hamilton, 1998;
Chmurzyńska, 2006). FAs are first delivered to the cell surface
where they intercalate between outer leaflet phospholipids
(adsorption). Next, a transition between outer and inner leaflet
occurs (translocation) followed by exit from the plasma
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FIGURE 1 | Lipid-mediated crosstalk between the liver, WAT, and BAT is required for non-shivering thermogenesis. After exposure to cold temperatures, the

sympathetic nervous system (SNS) releases norepinephrine (NE) to signal a need for thermogenesis. NE binds to β3-adrenergic receptors (β3ARs) in white and brown

adipose tissue (WAT and BAT). In WAT, this signal induces lipolysis of triglycerides (TGs) into fatty acids (FAs) and glycerol by an intracellular neutral lipase cascade

involving adipose triglyceride lipase (ATGL), hormone sensitive lipase (HSL), and monoglyceride lipase (MGL). These FAs are exported into the circulation and are

either taken up by BAT to activate uncoupling protein 1 (UCP1) and be broken down by β-oxidation or are taken up by hepatocytes to serve as substrates and

transcriptionally activate acylcarnitine production. These FAs are also used to synthesize TGs for packaging into triglyceride-rich lipoproteins (TRLs) for export into the

circulation and use by BAT to fuel thermogenesis. Hepatic acylcarnitines synthesized after signaling by WAT through FAs are exported into the circulation to be used

as both a signal and fuel for heat production.

membrane into the cytoplasm (desorption). Acylation
concomitant to desorption, termed vectorial acylation,
may serve as a final step in FA transport and a means of
directing the FA toward its target organelle (Zou et al.,
2003). The integral membrane protein and putative lipid
transporter CD36 along with fatty acid transport proteins
(FATPs) have been suggested to carry out the first two
steps and act as a docking site for plasma membrane
associated fatty acid binding protein (FABPpm), which has
been proposed to facilitate the desorption step. However,
FABPpm has also been proposed to function as a buffering
system, maintaining the concentration of unbound fatty acids
across the plasma membrane (Figure 2) (Abumrad et al.,
1999; Glatz and Luiken, 2020). Cytoplasmic FABPs shuttle
FAs to various organelles including the mitochondria for β-
oxidation, the ER for lipid synthesis, or the nucleus where FAs
regulate transcription.

Fatty Acid Transport Proteins (FATPs)
The FATP family is considered the primary transporter in the
putative protein-mediated FA transport mechanism. There are
six isoforms in mammals, and each displays a unique pattern
of tissue expression. They are members of the solute carrier
protein superfamily, classified specifically as Slc27a1-6. FATP1
was the first family member discovered in 1994 and is most
highly expressed in skeletal muscle and adipose tissue. FATP1
was shown to localize to the plasma membrane and significantly
increased radiolabeled oleic acid uptake when overexpressed in
the adipocyte 3T3-L1 cell line (Schaffer and Lodish, 1994). The
structure of FATPs is unknown but based on sequence and
protease protection assays of epitope tagged FATP1, FATPs are
oriented with an extracellular N-terminus and a cytoplasmic
C-terminus (Lewis et al., 2001; Stahl, 2004). FATPs contain
one or more membrane-spanning regions, multiple membrane-
associated regions, and anAMP-bindingmotif in the intracellular
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FIGURE 2 | Fatty acid uptake is facilitated by FATP, CD36, and FABPPM in cold-activated BAT. Cold exposure stimulates the release of norepinephrine (NE) from the

sympathetic nervous system (SNS) which is sensed by β3-adrenergic receptors (β3ARs) on the cell surface of adipocytes. Adenylate cyclase (AC) is activated and

produces cyclic AMP (cAMP) for binding to protein kinase A (PKA). This upregulates transcriptional programs to support thermogenesis, including uncoupling protein

1 (UCP1), proliferator-activated receptor-gamma co-activator (PGC1α), and lipoprotein lipase (LPL) through cAMP-responsive element binding protein (CREB). PKA

also activates lipolysis of lipid droplets to liberate fatty acid (FAs), fuel FA β-oxidation, and activate UCP1 through direct binding. Necessary to this process is the

transport of exogenous FAs into BAT by the combined action of fatty acid transport proteins (FATPs), CD36, and fatty acid binding proteins (FABPs). FAs bound to

albumin are released from the circulation into the brown adipocyte and can either diffuse across the plasma membrane or be actively transported by the FA transport

machinery. Triglycerides (TGs) from circulating TG rich lipoproteins (TRLs) are hydrolyzed to FAs via LPL tethered to the vascular lumen by

glycophosphatidylinositol-anchored HDL-binding protein 1 (GPIHBP1) for transport into and use by the cell as well.

region. FA transport through FATP is ATP-dependent, and the
sequence of the AMP-binding region is required for transport.
Loss-of-function mutations in the AMP-binding domain prevent
FA uptake, suggesting AMP-binding is directly involved in or
coupled to the transport mechanism (Stuhlsatz-Krouper et al.,
1998). Further, overexpression of FATP1 increased intracellular
FA acylation, thus suggesting a role for FATPs in cellular acyl-coA
synthetase activity (Steinberg et al., 1999). These results, along
with sequence similarity to acyl-CoA synthetases, suggested
that FATPs function to transport FAs through the plasma
membrane and esterify them as they enter the cell. Evidence
has emerged suggesting some FATPs do not actually transport
FAs, but rather enhance FA uptake through esterification at
the ER, thus lowering intracellular levels of non-esterified FAs
and encouraging FA uptake (Milger et al., 2006). Whether
the transport and esterification functions of FATP are coupled
or independent is widely debated and may depend on the
cellular context.

FATP1 is the primary member expressed in adipocytes.
Translocation to the plasma membrane is stimulated by
insulin and causes an increase in FA uptake (Kim et al.,
2004). This insulin stimulation is consistent with the current
model that inhibition of lipolysis through the intracellular
hormone sensitive lipase (HSL) signals a shift toward glucose
utilization and storage of TGs. FATP1 KO mice showed
delayed clearance of serum FAs following insulin injection.
FA uptake in primary brown adipocytes from these mice
was diminished following insulin treatment, suggesting FATP1
is needed to transport FA from the circulation into tissue.
Radiolabeled oleic acid uptake into WAT in FATP1 KOmice was
diminished, while uptake by the liver and heart was increased,
demonstrating a systemic compensation for disruption of FA
transport by specific FATPs (Wu et al., 2006). Single nucleotide
polymorphisms (SNPs) in FATP1 are linked to increased plasma
TG levels in humans, and high expression of other FATPs in
peripheral tissue correlates with obesity and insulin resistance
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owing to an accumulation of intracellular FAs (Lobo et al.,
2007).

FATP1 in BAT is necessary for maintaining core body
temperature after prolonged cold exposure (Wu et al., 2006).
It is primarily localized to the plasma membrane upon
cold activation, but a small pool is detected on intracellular
membranes as well. Besides uptake of exogenous FAs, FATP1may
aid in lipid transport between organelles in brown adipocytes or
esterify incoming FAs for quick turnover into β-oxidation. FATP1
expression is significantly induced in cold-activated BAT, and
FATP1 KO mice exhibit a significant drop in body temperature
after ∼12 h of cold exposure. This was accompanied by a
rise in serum FA levels during cold exposure, likely owing to
the inability of activated BAT to efficiently take up exogenous
FAs. Peroxisome proliferator-activated receptor alpha (PPAR-
α) and gamma (PPAR-γ), two transcriptional regulators of cell
differentiation and lipid metabolism, were shown to control
expression of FATP1 in 3T3-L1 adipocytes (Frohnert et al., 1999).
Treatment with activators of PPAR-γ, such as linoleic acid,
induced expression of FATP1 and FA uptake. This is consistent
with the induction of both PPAR-γ and FATP1 in BAT during
cold exposure, although a direct path of regulation has not been
demonstrated in cold-activated BAT. Similarly, BAT-specific KO
of FATP1 has yet to be explored to elucidate the function of its FA
transport role in thermogenesis. Future studies are required to
contextualize the role of FATPs in exogenous FA uptake by BAT.

Fatty Acid Binding Proteins (FABPs)
FABPs are a family of intracellular protein chaperones that bind
long chain fatty acids (LCFAs) to expedite movement through
membranes. There are currently 9 FABPs named for the tissue
of discovery, but they are not exclusively expressed in the
tissue for which they are named. The cytoplasmic FABP family
differs in sequence, structure, and function from the plasma
membrane associated FABP (FABPPM). First described in 1985,
the putative fatty acid transporter FAPBPM was shown to have
a high affinity for fatty acids (Stremmel et al., 1985). Later,
FABPPM was found to be identical to mitochondrial aspartate
aminotransferase, a member of the malate-aspartate shuttle,
although expression at the plasma membrane was associated
with fatty acid uptake (Berk et al., 1990; Bradbury and Berk,
2000). Inhibition of FABPPM by antibody treatment in multiple
tissues yielded a decrease in LCFA uptake while overexpression in
skeletal muscle yielded an increase, thus supporting FABPPM as a
lipid transporter (Berk et al., 1990; Clarke et al., 2004). More work
is needed to understand the importance of FABPPM expression
in brown adipocytes and how it changes with cold exposure.
The remainder of this section will focus on other FABP family
members in the cytoplasm.

Cytoplasmic FABPs solubilize hydrophobic molecules in the
aqueous cellular environment, acting as chaperones and delivery
systems for lipids between organelles. Structural characterization
has revealed an indirect role in LCFA uptake; that is, FABPs
do not facilitate transport across the plasma membrane but
are essential for delivery into the cell (Storch and McDermott,
2009). All FABPs share a common tertiary structure comprised of
antiparallel beta sheets forming a small beta barrel within which a

hydrophobic molecule may bind (Sacchettini et al., 1988). There
are subtle structural differences between isoforms that dictate
ligand specificity. For example, adipocyte FABP (FABP4), also
known as adipocyte protein 2 (AP2), exclusively binds LCFA
while liver FABP (FABP1) can additionally bind eicosanoids,
lysophospholipids, and acyl-CoA (Rolf et al., 1995; Thompson
et al., 1997; Furuhashi andHotamisligil, 2008). These cytoplasmic
FABPs have also been shown to be secreted into the bloodstream
with several physiological stresses including high fat diet, insulin
resistance, and cold exposure (Hotamisligil and Bernlohr, 2015;
Shu et al., 2017).

The adipocyte associated FABP (FABP4) is the best
characterized in its family. FABP4 was first isolated from
mouse embryonic fibroblast (3T3)-derived adipocytes, although
it is highly expressed in macrophages as well (Hunt et al.,
1986; Hotamisligil et al., 1996). FABP4 KO mice were viable,
developed normally, and were indistinguishable from control
mice in appearance and metabolic health (Hotamisligil et al.,
1996). Like control mice, they were sensitive to dietary and
genetic obesity, but were protected from insulin resistance
and diabetes. This implicates FABP4 in suppression of insulin
signaling, perhaps through increasing the intracellular lipid
pool. Additionally, these mice exhibited a compensatory increase
in epidermal FABP (E-FABP or FABP5) expression in adipose
tissue, despite basal FABP5 expression being almost 100-fold
lower than FABP4. Besides binding FAs, FABP4 has been shown
to suppress PPAR-γ, a master adipocyte transcription factor
that activates genes involved in lipid synthesis and uptake to
enhance adipogenesis (Garin-Shkolnik et al., 2014). FABP4 also
stimulates intracellular lipolysis through direct binding of HSL
as suggested by a reduction in lipolysis in FABP4 KO mice
and demonstrated by fluorescence resonance energy transfer of
FABP4 mutagenized within the putative HSL binding site (Smith
et al., 2008). At a chemical level, FABP4 binds FAs entering the
cell. However, substantial evidence illustrates its function as an
intracellular signal for proper adipocyte function and systemic
fuel utilization.

FABP4 is increased with cold exposure in BAT and in the
blood plasma and was shown to be necessary for FFA uptake
into BAT (Shu et al., 2017). Knockout of FABP4 and HFD
led to cold sensitivity and lower UCP1 expression that could
be rescued with recombinant FABP4. FABP4 was shown to be
sufficient to drive increased oxygen consumption in mice and
elevated UCP1 expression. This increase required FA binding
to FABP4, as a mutant R126Q did not have the same rescue
capacity. Mechanistically, FABP4 in the BAT was shown to drive
the intracellular conversion of T4 to T3 which is necessary for
the thermogenic program (Ahmadian et al., 2011). FABP4 has
also been shown to be increased in the BAT of hibernating
mammals (Hittel and Storey, 2001; Eddy and Storey, 2004).
Other studies have shown that FABP4 and 5 are necessary for
proper metabolic adaptation in cold-activated BAT and that
fasting greatly impacts this contribution to BAT function as well.
When fasted for 20 h prior to a 4-h cold exposure, FABP4/5
KO mice were cold intolerant but indistinguishable from control
mice in a fed state (Syamsunarno et al., 2014). This suggests a
requirement of FABP4/5 for proper adjustment of systemic fuel
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utilization during physiological stress, such as long-term fasting
and cold.

Curiously, heart-type FABP (FABP3) has been shown to be the
dominant isoform in BAT upon cold activation. Expression of
FABP3 was significantly increased in BAT after 4 h of cold despite
a basal level of expression 6-fold lower than FABP4. Further,
FABP3 KO mice were cold intolerant but displayed similar
changes in thermogenic transcriptional programs to WT mice,
such as induction of the coactivator PGC1α, which regulates
mitochondrial biogenesis. Expected physiological changes were
observed in FABP3 KO mice as well, such as depletion of TGs in
BAT and increased FFAs in plasma (Vergnes et al., 2011). FABP3
was also shown to increase in hibernating ground squirrels (Hittel
and Storey, 2001). Together, these data highlight an essential
role for FABP3 in the uptake of exogenous lipids into BAT, the
dysfunction of which results in an inability to maintain body
temperature. Although FABP3 is not the dominant isoform in
BAT, its function in cold exposure suggests a dynamic response
network of FABPs in certain cell types depending on the
environmental stimulus (Daikoku et al., 1997; Yamashita et al.,
2008). This also underscores the gaps in current knowledge of
FABPs in BAT function.

Cluster of Differentiation 36 (CD36)
CD36, also referred to as fatty acid translocase (FAT), is
an integral membrane protein belonging to the scavenger
receptor superfamily. SRs bind a host of ligands including
LDL, oxidized LDL, phospholipids, cholesterol esters, collagen,
thrombospondin, carbohydrates, and microbial pathogens.
There are 11 classes of scavenger receptors categorized based
on primary sequence (A-L). CD36 belongs to the scavenger
receptor B class (SR-B), the members of which contain two
transmembrane domains and a single extracellular loop (Pepino
et al., 2014). Diversity in the extracellular loop allows SR-Bs
to regulate a variety of signal transduction pathways. Loss of
function mutations or genetic deficiencies of SR-B members
causes dysregulation of apoptosis, inflammatory response, and
intracellular metabolism resulting in metabolic disease (Bonen
et al., 2007; Glatz et al., 2010; McFarlan et al., 2012).

Although originally identified in human platelets, CD36 was
characterized as a high affinity long-chain fatty acid (LCFA)
receptor and transporter in rat adipocytes (Abumrad et al.,
1993; Harmon and Abumrad, 1993). Treatment with highly
charged FA analogs (N-sulfosuccinimidyl LCFA esters) inhibited
oleate transport into adipocytes, and covalent protein labeling
identified the 88 kDa CD36 as the receptor candidate (Harmon
and Abumrad, 1993). Northern blotting revealed transcript
abundance across tissues including adipose, heart, intestine,
and skeletal muscle. Oleate uptake was limited to cell lines
expressing CD36, further implicating the membrane protein as
a lipid transporter (Abumrad et al., 1993). Modern proteomics
and transport kinetics studies in transgenic Chinese hamster
ovary cells identified a definitive FA binding pocket in CD36
that supports a direct function in lipid binding (Kuda et al.,
2013). This pocket contains lysine 164 which binds the CD36
inhibitor N-hydroxysuccinimidyl ester of oleate (SSO) and, when
mutagenized to alanine, diminished FA uptake. Despite a host

of evidence supporting its lipid binding function, its role as a
transporter has long been disputed.

Transmembrane LCFA transport has been at the center of
a contentious debate for decades. The two opposing sides are
comprised of “diffusionists,” who argue for rapid diffusion-
mediated LCFA transport, and “translocationists,” who suggest
transport is facilitated by proteins (Pownall and Moore, 2014;
Glatz and Luiken, 2020). There is a myriad of evidence
supporting both sides. The diffusionists argue that in biological
membranes, lipids constantly diffuse laterally and often exchange
between membrane leaflets without proteins. The FFAs would
transfer from albumin to the outer leaflet of the plasma
membrane and then flip-flop to the inner leaflet (Hamilton,
1998). This hypothesis is supported by demonstration of
diffusion through fluorescent LCFA uptake in lipid vesicles pre-
treated with inhibitors of FA transporters, two of which were
direct competitive inhibitors for CD36 (Jay et al., 2020). The rate
of uptake in rat adipocytes was unaffected by inhibitor treatment,
suggesting that proteins are not required for transport (Abumrad
et al., 1993; Harmon and Abumrad, 1993; Coburn et al., 2000;
Kuda et al., 2013). However, these are imperfect systems to study
lipid transport. Artificial membranes do not reflect true biological
lipid or protein composition, and cultured cells do not reflect
membrane dynamics. For example, fatty acid chain composition
is different in culture, having lower levels of poly-unsaturated
fatty acids compared to cells in organisms (Else, 2020).

The translocationists have been supported by several key
findings including the observation that FFA uptake can be
saturated in multiple cell types at levels within physiological
range and that the flip-flop between the outer and inner
leaflet does not occur at high enough levels to support
metabolic demand (Kleinfeld and Storch, 1993; Kleinfeld et al.,
1997). Moreover, an antibody to CD36 blocked FFA uptake
into mouse adipocytes, and mutation of Lys164 in the FA
binding pocket demonstrates site specific functional regulation
(Abumrad et al., 1993; Pepino et al., 2014). Recent work has
found that palmitoylation of CD36 leads to caveolae-dependent
internalization, and inhibition of palmitoylation prevents this
uptake (Hao et al., 2020). While the mechanism of lipid transport
remains controversial, the in vivo role of CD36 in regulating
FA uptake and metabolism has been demonstrated across many
models. Moreover, in humans, common SNPs in the promotor
of CD36 cause protein deficiency and have been associated with
high levels of FAs and LDL in serum, a phenotype recapitulated in
Cd36−/− mice (Miyaoka et al., 2001; Ma et al., 2004; Goudriaan
et al., 2005; Yamashita et al., 2007; Love-Gregory et al., 2011).
Newer models favor both diffusion and translocation that are
important in different ranges and energy demands of the cell
(Abumrad et al., 1999).

CD36 expression is known to be highest in adipose tissue,
and it is required for body temperature regulation in mice (Putri
et al., 2015). Additionally, its expression is significantly increased
in BAT following cold exposure (Bartelt et al., 2011). CD36 is
required for lipoprotein uptake in BAT, and global CD36 KO
in mice results in TG buildup in BAT and cold intolerance
(Yamashita et al., 2007; Bartelt et al., 2011). CD36 is necessary
for transport of lipids via lipoproteins and FFA-bound albumin
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in BAT as well. Clearance of both lipoproteins and FFAs from
plasma and uptake into BAT were diminished in cold-exposed
Cd36 KO mice (Bartelt et al., 2011). CD36 is also required for
uptake of lipid-related molecules into BAT, such as coenzyme
Q (CoQ) (Anderson et al., 2015). CoQ contains an isoprenoid
tail and is a necessary electron transporter between complexes
in the electron transport chain. Therefore, it is required for both
ATP synthesis and heat production in BAT. High levels of CoQ
are present in BAT despite low levels of endogenous synthesis,
suggesting a requirement for uptake of CoQ from the circulation.
Whole-body Cd36−/−mice displayed a 2-fold increase in serum
CoQ accompanied by CoQ deficiency, TG accumulation, and
diminished mitochondrial size and metabolic capacity in BAT.
Although CD36 is present in other tissues, these phenotypes
were not reflected throughout the mice. Cold intolerance in
both whole-body and BAT-specific Cd36−/−was driven by CoQ
insufficiency causing reduced FA β-oxidation in BAT. These
studies highlight the requirement of CD36 for proper uptake of
lipids and hydrophobic molecules into cold-activated BAT.

EXTRACELLULAR LIPOLYSIS AND LDL
RECEPTOR ENDOCYTOSIS FACILITATES
TRIGLYCERIDE AND CHOLESTEROL
UPTAKE INTO BAT

Lipoprotein Metabolism and Regulation by
BAT
Lipoproteins are means of transporting lipids of varying polarity
from centers of lipid processing, such as the intestine and liver,
to peripheral tissues through the circulation. They are comprised
of a phospholipid monolayer interlaced with apolipoproteins
that serve as structural reinforcements and as LDL receptor
(LDLR) recognition sites to aid in endocytosis. Lipoproteins fall
into four main classes depending on their relative composition
of proteins and lipids: high density (HDL), low-density (LDL),
very low-density (VLDL), and chylomicrons. In addition to the
characteristic structure of each class, different lipoproteins also
serve different functions. For example, LDL carries circulatory
cholesterol and easily enters arterial walls, while chylomicrons
are essential for dietary lipid transport to the liver and peripheral
tissues. Nonetheless, each class has a vital role in lipid transport,
endocytosis, and hydrolysis (Zanoni et al., 2018).

LDL endocytosis begins with recognition at the cell membrane
by a low-density lipoprotein receptor (LDLR). Following
recognition, a clathrin-coated pit forms a vesicle around the
endocytosed lipoprotein. The vesicle is directed to endosomes
where a drop in pH causes release of LDL from LDLR.
Acidic lipases in the newly formed lysosome hydrolyze the
contents of LDL to release FAs from TGs and unesterified
cholesterol from cholesteryl esters (Figure 3). Cholesterol is
incorporated into cell membranes and negatively regulates its
own synthesis by preventing translocation of sterol regulatory
binding protein (SREBP) from the ER to the Golgi, thereby
blocking transcriptional activation of HMG-CoA reductase
(Brown and Goldstein, 1997). FAs released from LDL are shuttled

to the ER for synthesis into membrane lipids, the Golgi for
protein acylation, and the mitochondria for FA β-oxidation.

In brown adipocytes, LDLR endocytosis fuels the electron
pool needed for proton gradient uncoupling and heat production
(Figure 4). LDLR is recycled back to the plasma membrane for
addition rounds of endocytosis (Ikonen, 2008). LDLRs are also
necessary in systemic cholesterol and triglyceride balance during
cold exposure. Ldlr−/− mice displayed a reduction in plasma TG
upon activation of BAT by cold or with a β3 adrenergic receptor
agonist but did not show a reduction in plasma cholesterol
normally observed after BAT activation (Dong et al., 2013; Berbée
et al., 2015). In this model, the liver is unable to clear lipoprotein
remnants produced from FA uptake in BAT following LPL-
mediated TG hydrolysis and thus cholesterol remains in the
circulation. Coordinated plasma lipid clearance between the liver
and BAT during cold exposure requires proper protein-mediated
lipid uptake, such as LDLR endocytosis.

Triglyceride Uptake Into BAT
TGs are the neutral storage form of FAs and travel between
tissues through the bloodstream via chylomicrons and VLDL.
Chylomicrons are the largest form of lipoprotein and are
assembled by the small intestine following emulsification of
dietary fats. TGs packaged into chylomicrons mainly enter
adipose tissue and skeletal muscle due to high lipoprotein lipase
(LPL) activity. The remaining TG is taken up by the liver
and can be repackaged into VLDL for use throughout the
body. Alternatively, FAs are synthesized by the liver through
de novo lipogenesis, assembled into TG, and mobilized in
VLDL. As TGs are liberated from VLDL for use by peripheral
tissues, smaller remnants of decreasing TG content are formed
such as intermediate-density lipoproteins (IDL) and LDL. Like
chylomicrons, VLDL is utilized by tissues after lipolysis by LPL.

LPL is the predominant lipase in tissues with high levels
of exogenous lipid uptake, such as adipose tissue, heart, and
skeletal muscle. LPL is a dimeric enzyme localized to the
vascular lumen where it hydrolyzes plasma TGs into glycerol
and FAs for tissue uptake. TG-derived FA uptake into BAT
is reliant on localized LPL activity, as injection of an LPL
inhibitor (tetrahydrolipstatin) or treatment with heparin to
release LPL from the vascular wall in mice prior to cold
exposure almost completely abolished labeled TRL uptake
into BAT.20 LPL is ferried and anchored to the endothelium
via glycophosphatidylinositol-anchored HDL-binding protein
(GPIHBP1). Mice lacking GPIHBP1 have increased plasma TGs
due to reduced tissue uptake (Cushing et al., 2018). As circulating
lipoprotein levels are highly modulated in response to metabolic
state, such as fasting and cold exposure, tight regulation of
LPL activity is required. Besides localization, LPL is primarily
regulated post-translationally by several extracellular proteins.
Angiopoietin-like proteins (ANGPTL) are the main class of LPL
regulators. ANGPTLs are secreted into the lumen and directly
interact with LPL, preventing its dimerization and inhibiting
lipolysis (Hegele, 2016).

ANGPTL4 is the predominant isoform in brown adipose
tissue. In BAT, ANGPTL4 expression is induced during periods
of nutrient deprivation (fasting) and suppressed when substantial
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FIGURE 3 | Triglycerides are delivered to cold-activated BAT through LPL hydrolysis at the endothelial wall. Following β3-adrenergic receptor (B3AR) activation by

norepinephrine (NE) signaling a drop in temperature, hepatocytes and enterocytes mobilize triglyceride (TG)-rich lipoproteins (TRLs) into the blood for transport to

brown adipocytes. Lipoprotein lipase (LPL) at the vascular endothelium hydrolyzes TGs from TRLs into fatty acids (FAs) for subsequent FATP/CD36-mediated

transport into brown adipose tissue (BAT). Hydrolysis is dependent on the co-factor apolipoprotein C-II (apoC-II) and activator apolipoprotein A-V (apoA-V). As

hydrolysis occurs, TRLs reduce into intermediate lipoproteins (IDLs), low-density lipoproteins (LDL), and finally remnant particles to be cleared by the liver. Each

reduction in size is accompanied by a loss of triglycerides (TGs). Imported FAs are funneled into mitochondrial β-oxidation and eventual heat production.

nutrients are available or needed, such as postprandially or
during cold exposure (Singh et al., 2018). In cold-activated WAT,
ANGPTL4 is upregulated to shift away from fat storage and
toward output of FAs to support thermogenesis. BAT-specific
ANGPTL4 KO mice exhibit reduced plasma TGs in the fed and
fasted state, accumulation of 3H from labeled triolein in BAT,
and increased expression of CD36 in BAT (Cushing et al., 2018).
LPL expression was unchanged, but activity was significantly
increased in BAT from ANGPTL4 KO mice. ANGPTL4 KO
mice had higher rectal temperature over time during a 4-h
cold exposure, likely due to enhanced LPL activity in BAT
fueling FA uptake and β-oxidation. In contrast,Gpihbp1−/− mice
show no change in labeled triolein uptake into BAT. Double
GPIHBP1/ANGPTL4 KO mice show a partial correction in
plasma TG levels compared to GPIHBP1 KO mice (Dijk et al.,
2015). However, this correction is lost after a 2-week HFD, with
both GPIHBP1 KO and GPIHBP1/ANGPTL4 KO showing a
similar increase in plasma TGs compared to mice of the same
genotype on a normal chow diet. In sum, these studies highlight
the necessity of tight LPL regulation in BAT to modulate TG
and FA uptake during metabolic stress, including cold exposure.

It has been shown that BAT relies more heavily on LPL-based
uptake of TG-derived FAs rather than particle endocytosis, but
cold exposure significantly enhances the uptake of TGs through
both methods (Khedoe et al., 2015). This was observed through
tracing of 3H-triolein and 14C cholesteryl esters which allow
measurement of TG uptake by lipolysis and lipoprotein uptake
by endocytosis, respectively.

While VLDL is overwhelmingly shuttled to BAT when
activated by exposure to cold, transport of HDL to the
liver is drastically increased (Schaltenberg et al., 2021). HDL
balances cholesterol flux between peripheral tissues and is both
synthesized and excreted by the liver. This hepatic processing is
dependent on endothelial lipase (EL). Following extended cold
exposure (1 week), expression of the gene encoding EL, Lipg,
was increased in murine BAT. Cold exposure was also shown
to enhance HDL clearance from plasma. Moreover, Lipg−/−

mice displayed higher plasma levels of HDL, indicating poor
cholesterol clearance. The HDL particles from Lipg−/− mice
were enriched in phospholipids but lacking in cholesterol and
TG compared to WT mice both at room temperature and after
prolonged cold exposure. EL is known to promote TRL uptake,

Frontiers in Physiology | www.frontiersin.org 8 December 2021 | Volume 12 | Article 787535

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Wade et al. Intercellular Lipid Trafficking in Thermogenesis

FIGURE 4 | Triglycerides and cholesterol are delivered to cold-activated BAT through LDLR mediated endocytosis. Low-density lipoprotein receptors (LDLRs)

recognize apolipoprotein B on the surface of low-density lipoproteins (LDL). A clathrin-coated pit forms around the bound receptor and an endocytotic vesicle forms.

An internal drop in pH prompts release of LDL from LDLR for hydrolysis in the lysosome. Acid hydrolases liberate fatty acids (FAs) from triglycerides (TGs) and

cholesterol within LDL. In brown adipocytes, FAs are shuttled into mitochondrial β-oxidation to fuel downstream heat production. Cholesterol is incorporated into cell

membranes and signals a negative feedback loop of biosynthesis by preventing sterol-regulatory-element binding proteins (SREBP) translocation to the Golgi from the

ER. This prevents proteolytic processing and localization to the nucleus, thereby inhibiting expression of genes encoding cholesterol synthesis enzymes (HMG-CoA

reductase) and lipoprotein receptors (LDLR).

much like LPL. While EL expression is induced in BAT after cold
exposure, it was not required for proper thermogenic activation,
nor did its loss affect thermogenic transcriptional programs such
as those controlled by PPAR-γ.

VARIOUS LIPIDS ALTERED IN THE
PLASMA WITH COLD EXPOSURE

The advent and expansion ofmass spectrometry based lipidomics
has broadened the field of circulating lipids, and several lipid
classes have been shown to be increased in blood plasma
with cold exposure including acylcarnitines, ceramides, 12,13-
dihydroxy-9z-octadecenoic acid (12,13-diHOME), and fatty acid
esters of hydroxy fatty acids (FAHFAs). Little is known about
how theses lipids are transported across plasmamembranes, what
functional roles they serve in non-shivering thermogenesis, and
in what complex structure they are mobilized in the circulation.
While this remains an emerging field, it is rapidly progressing

with new mass spectrometry-based technology such as ion
mobility, matrix-assisted laser desorption/ionization (MALDI)
imaging mass spectrometry, heavy isotope labeling, and several
new chemical probes (Kyle et al., 2018; Kirkwood et al., 2021).

Acylcarnitines
Acylcarnitines are fatty acids conjugated to a carnitine through
esterification. At the cellular level, acylcarnitines function
as intermediaries facilitating transport of FFAs into the
mitochondria for β-oxidation. Carnitine palmitoyltransferase 1
(CPT1) is embedded on the outer-surface of the mitochondrial
membrane and esterifies the fatty acid from an acyl-CoA to
carnitine. This acylcarnitine can then diffuse into the porous
outer mitochondrial member. Acylcarnitine is then brought into
the inner mitochondria by carnitine acylcarnitine transferase
(CACT) and de-carnitylated by CPT2. Besides their cellular role
for fatty acid transport, acylcarnitines are also found in the blood
plasma. Plasma acylcarnitines increase with chronic diseases such
as type 2 diabetes, cardiovascular disease, and inborn errors of
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metabolism as well as in acute metabolic stresses such as fasting,
exercise, and cold exposure (Muoio et al., 2012; Schooneman
et al., 2013; McCoin et al., 2015; Simcox et al., 2017). The
functional role of acylcarnitines in the plasma has been proposed
to range from protection from toxicity to a distinct storage pool
that can be pulled from during energy demanding conditions
(Muoio et al., 2012).

In cold exposure, short chain, medium chain, and long chain
acylcarnitines are increased in the plasma while carnitine levels
decrease (Simcox et al., 2017; Pernes et al., 2021). This cold
induction of increased plasma acylcarnitines is mediated by β3-
adrenergic receptor induced WAT lipolysis, since adipose tissue-
specific ATGL knockout mice had no changes in acylcarnitine
levels with β3-adrenergic receptor agonist treatment. Once FFAs
are released from the WAT, they are taken up into the liver,
where they transcriptionally activate CPT1, CACT, and CPT2
through an HNF4α-mediated mechanism as well as serve as
substrate for acylcarnitine production (Simcox et al., 2017; Jain
et al., 2021). These liver-produced acylcarnitines are then taken
up into the BAT, skeletal muscle, and heart. In the BAT, the
acylcarnitines are catabolized as a fuel source for thermogenesis.
Beyond the liver, there are other potential sources for cold
induced plasma acylcarnitines; while ablation of acylcarnitine
production in the liver causes cold intolerance, it is not sufficient
to completely block the rise in plasma acylcarnitines with cold
exposure. Recently it has been shown that the kidney may also
contribute to the plasma acylcarnitine pool (Jain et al., 2021).
These studies collectively demonstrate that plasma acylcarnitines
are produced through a multi-tissue processing, and that they
function as a fuel source for cold-activated BAT.

Several questions remain in understanding the regulation
and transport of plasma acylcarnitines including how they are
transported through the plasma membrane in the liver and
in the brown adipose tissue. Studies in Xenopus oocytes have
demonstrated that acylcarnitines require a transporter to cross
the plasmamembrane, and cDNA libraries frommouse liver have
demonstrated that these unknown transporters are present in
the liver (Berardi et al., 1998; Nakanishi et al., 2001). SLC22a1
was recently identified as an acylcarnitine exporter in the liver,
and knockout of SLC22a1 led to decreased short and medium
chain acylcarnitines in plasma but had no impact on long chain
acylcarnitine levels (Kim et al., 2017). Moreover, there has been
no identified BAT acylcarnitine transporter and SLC22a1 has low
expression in brown adipocytes. Plasma long chain acylcarnitines
have been shown to travel bound to albumin, while short and
medium chain acylcarnitines are unbound. Whether albumin
bound acylcarnitines are the dominant form of acylcarnitine in
the circulation during cold exposure is unknown. Future work
will be needed to understand their entry into brown adipocytes
and the kinetics of their uptake compared to FFAs of the same
acyl chain.

Ceramides
Ceramides are a long chain sphingoid base conjugated to a
fatty acid through an amide bond and are the precursor to
all sphingolipids. Ceramides are known to circulate during
tissue dysfunction and metabolic disease in both mice and

humans. Plasma ceramide levels have been shown to correlate
with risk of diabetes and coronary artery disease in a
species-specific manner across human cohorts (Tippetts et al.,
2021). Reduction of plasma and WAT ceramides in mice via
increased degradation (ceramidase overexpression) or inhibition
of ceramide synthesis (SPTLC2 KO) ameliorated HFD-induced
obesity, insulin resistance, and hepatic steatosis (Xia et al., 2015;
Chaurasia et al., 2016). SPTLC2 KO in WAT also enhanced
adipocyte browning and resulted in an increase in beige adipocyte
differentiation (Chaurasia et al., 2016). This suggests that
ceramides act as signals to increase lipid storage in WAT and
inhibit the beige program. Moreover, liver SPTLC2 expression
is upregulated in response to SPTLC2 KO in WAT, suggesting
a means of communication to balance tissue ceramide levels.

Despite the wealth of literature on ceramide function
in metabolic disease and its regulation of the adipocyte
differentiation program, little is known about how ceramides
control brown and beige adipocyte maintenance or their direct
role in thermogenic metabolism. We have observed significant
increases in plasma ceramides following acute cold exposure,
with computational assessment revealing that these plasma levels
are regulated by the BAT and the kidney (Jain et al., 2021).
More work is needed to characterize how these plasma ceramides
are regulated in acute cold exposure, what their functional role
may be, and what complexes facilitate their transport in the
plasma during cold exposure. At ambient temperature, ceramides
are known to be associated with lipoproteins (primarily LDL)
and have been shown to transfer between cells via extracellular
vesicles (EVs) (Hammad et al., 2010; Crewe et al., 2018). These
vesicles act as carriers for intercellular signaling molecules during
metabolic stress, and many ceramide species act as second
messengers for key metabolic pathways including insulin sensing
and cell growth. For example, during fasting, white adipose tissue
traffics EVs containing signaling molecules such as caveolin 1
and very long chain ceramides to neighboring endothelial cells
(and vice versa) (Crewe et al., 2018). EVs are also produced by
adipose-derived stem cells during beige adipocyte differentiation
and were shown to be sufficient to differentiate these stem cells
into beige adipocytes (Jung et al., 2020). Additionally, BAT has
been shown to be a significant contributor of exosomes into
the circulation (Thomou et al., 2017). It is unknown whether
export of these vesicles is upregulated or if ceramides are enriched
in these vesicles during cold exposure. Moreover, there are no
known plasma membrane transporters of ceramides. Ceramides
in cold exposure remain an exciting area of research with
many outstanding questions, including the role of ceramides
in thermogenic metabolism as well as the function of plasma
ceramides compared to ceramides produced in brown and
beige adipocytes.

12, 13-Dihydroxy-9Z-Octadecenoic Acid
(12,13-DiHome)
12,13-diHOME is produced in brown adipose tissue and
can function as an autocrine or paracrine signal to increase
mitochondrial oxidation rates (Lynes et al., 2017). Upon β3-
adrenergic receptor activation, linoleic acid is oxidized by
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cytochrome P450 and soluble epoxide hydrolase to produce
12,13-diHOME. Beyond BAT, other tissues are known to produce
12,13-diHOME, including the skeletal muscle, and contribute to
the circulating pool to regulate body weight, energy expenditure,
insulin sensitivity, and plasma lipid levels (Vasan et al., 2019).
The uptake of 12,13-diHOME into brown adipocytes is regulated
by CD36 and FATP1, and treatment of brown adipocytes with
12,13-diHOME is sufficient to increase translocation of CD36
and FATP1 (Lynes et al., 2017, 2019). Further studies are needed
to understand how 12,13-diHOME regulates mitochondrial
oxidation, determine the mechanism of secretion from cells, and
understand how this lipid circulates in the plasma.

Fatty Acid Esters of Hydroxy Fatty Acids
(FAHFAs)
FAHFAs are a recently discovered class of signaling lipids
that regulate brown and beige adipocyte differentiation and
maintenance. Structurally, FAHFAs are fatty acids complexed to
a hydroxy fatty acid through an ester bond (Yore et al., 2014).
There are numerous types of FAHFAs named for the acyl chains
and the location of the hydroxylation including stearic-acid-
9-hydroxy stearic acid (9-SAHSA), oleic-acid-9-hydroxy stearic
acid (9-OAHSA), and palmitic-acid-9-hydroxy stearic acids (9-
PAHSA). Both 5- and 9- PAHSA have been shown to increase
brown adipocyte differentiation, insulin sensitivity, decrease
inflammation in adipose tissue, and improve whole body glucose
tolerance. Treatment of 3T3-L1 adipocytes or leptin deficient
mouse models with 9-PAHSA led to increased expression of
thermogenic genes including UCP1 (Wang et al., 2018). Part
of this signaling is mediated through binding and activating
G-protein coupled receptor 120 (GRP120), and knockdown
of GPR120 in 3T3-L1 cells abrogated the effect of 9-PASHA
treatment (Oh et al., 2014; Wang et al., 2018). Cold exposure
induced the production of 5- and 9-PAHSA fromWAT, with this
production being mediated by lipolysis from triglycerides since
knockout of ATGL led to ablated the cold-induced production
(Paluchova et al., 2020). Many outstanding questions remain
on how various species of FAHFAs impact brown and beige
adipocytes and how they are transported into cells.

The numerous plasma lipids that act upon BAT is still
an open area of study. For the purpose of this review, we
have chosen to focus on plasma lipids that are transported
into brown adipocytes, however there are a number of other
lipids that are altered in brown adipocytes themselves that
regulate thermogenesis. These include ether lipids (such as
plasmalogens) and cardiolipins (Lynes et al., 2018; Park et al.,
2019; Von Bank et al., 2021b). Although FFAs produced in
the BAT are not necessary for thermogenesis (Schreiber et al.,
2017), they have been shown to be sufficient to drive the
thermogenic program through mediation of GPCR signaling
(Sveidahl Johansen et al., 2021). Interestingly, ether lipids have
recently been observed to increase with cold exposure in studies
where mice were acclimated to thermoneutrality then placed for
24 h in thermoneutrality, room temperature (22◦C), and cold
exposure (5◦C) as well as fasted for the final 5 h of temperature
stress (Pernes et al., 2021). More work is needed to understand

these various lipids in the plasma and how their transport
is regulated.

PERSPECTIVES

BAT is an important regulator of whole-body glucose and lipid
homeostasis. Cold exposure increases the uptake of lipids into
the BAT by 12-fold and, in models of hyperlipidemia, can
normalize plasma triacyclglycerol and cholesterol levels (Bartelt
et al., 2011). Not only are thermogenic adipocytes able to regulate
systemic lipid metabolism, but they are also reliant on the plasma
lipid pool for fuel availability. The importance of peripheral
lipid storage for non-shivering thermogenesis has now been
established through use of the ATGL KO studies and DGAT1
and 2 double KO studies (Schreiber et al., 2017; Chitraju et al.,
2020). The uptake of these lipids into BAT from the circulation is
dependent upon facilitated transport through dedicated protein
transporters, chaperones, and endocytosis. This review focused
on known mechanisms of lipid uptake into BAT, beginning with
FFA uptake which is regulated in three distinct steps: CD36
and FATPs regulating (1) adsorption and (2) translocation, while
FABP facilitates (3) desorption (Hamilton, 1998; Chmurzyńska,
2006). Loss of CD36, FATP or FABP led to cold intolerance and
an inability for cold exposure to regulate circulating FFA levels.
TGs and cholesterol can also be imported into BAT through
LDL endocytosis, or for TGs, through LPL mediated lipolysis
from TRL. While the majority of work has focused on uptake
of FFAs, TGs, and cholesterol into BAT, questions remain on the
import mechanisms that regulate other plasma lipids during cold
exposure. Recent work on plasma acylcarnitines has shown that
they are taken up by BAT and are necessary for thermogenic
capacity (Simcox et al., 2017). Other work has shown that lipid
containing exosomes are increased in the plasma with cold
exposure and reflect brown adipocyte activity (Chen et al., 2016).
More work is needed to understand how these lipids and lipid-
containing vesicles are trafficked into cells, and to determine the
tissues where these various plasma lipids are produced.

One existing challenge in the modeling of lipid uptake
into brown adipocytes is standardization of protocols for cold
exposure and mouse models. Many studies have a range in cold
exposure from 3 h to 1 week. Longer cold exposure, such as
72 h to 1 week, is associated with beige adipocyte differentiation,
increased BAT mass, and increased food intake (Ikeda et al.,
2018). The variations in cold exposure timing and added
variable of fasting during a traditional cold tolerance test make
comparison difficult due to differences in thermogenic capacity
and contribution of the beige depot. Moreover, variations in
housing temperature also impact the brown and beige adipocyte
population and alter body weight in response to shifts in energy
expenditure (Fischer et al., 2018; Corrigan et al., 2020). Many
of the studies associated with lipid uptake in brown adipocytes
focus on 1 week including characterization of FABP and FATP.
Standardization would enable an understanding of the impact of
BAT on the circulating lipid pool.

Another barrier for lipid transport in thermogenic adipocytes
is depot-specific gene modulation. Many mouse models for
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lipid transport assessed the function in BAT using ablation of
the gene in all adipose tissue with cre expression driven by
the adiponectin promoter or in whole body KO models. All
of the work to assess FATP1 function in BAT was performed
in FATP1 null mice, as were several of the seminal studies
on CD36 (Lobo et al., 2007; Bartelt et al., 2011). Models that
use cre drivers target both the brown and beige adipocytes
using UCP1-cre for genetic modulation of various genes. An
important step in furthering our understanding of lipid transport
in thermogenesis will be the development of mouse models that
target only the brown or beige adipocytes. Single cell sequencing
has uncovered numerous unique markers of beige vs. brown
adipocytes, while also identifying numerous sub-populations of
adipocytes in brown and beige depots (Merrick et al., 2019;
Henriques et al., 2020; Sun et al., 2020). These challenges are
particularly important since the uptake of lipids into each of these
cell types may be mediated by distinct membrane composition
and expression of transporters.

Finally, although the majority of this review focused on lipids
being transported into BAT for catabolism, lipids are capable of
playing a number of signaling roles that regulate thermogenic
potential. Recent work by the Seale group has demonstrated
that FA oxidation is an important mediator of beige adipocyte
differentiation driven by transcriptional regulator PRDM16. The
breakdown of these FAs into ketone bodies was necessary and
sufficient to induce differentiation of pre-adipocytes into beige
adipocyte (Wang et al., 2019). Beige adipocyte differentiation was
also shown to be regulated by ceramide signaling which inhibits
the beige program while promoting lipid accumulation needed
for white adipocytes (Chaurasia et al., 2016).More work is needed
to understand how lipids influence metabolism in brown and
beige adipocytes and how they contribute to the thermogenic
potential, as well as how these signals are mediated by transport
into the BAT.

Lipid import from the circulation into brown adipocytes
is necessary for thermogenesis. Once in the brown and beige
adipocytes, these lipids can be catabolized as an energy source
or serve as signaling molecules. While there are fairly established
mechanisms and function for FFA and TG uptake into BAT,
more work is needed to characterize the uptake, circulating
form, and functional role in thermogenesis for other lipids

such as acylcarnitines, ceramides, and FAHFAs. The continued
exploration and development of new technology to probe lipid
uptake in brown and beige adipocytes will enable distinction of
catabolism, storage, and signaling capabilities. Lipid transport
proteins are essential to proper systemic lipid metabolism, and
tight regulation of this transport is necessary to prevent disease.
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