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Lupus nephritis (LN) is a well-known complication of systemic lupus erythematosus
and is its leading cause of morbidity and mortality. Our study aimed to identify the
molecular markers associated with the pathophysiology and treatment of LN. The
renal tissue gene expression profiles of LN patients in the GSE32591 dataset were
downloaded as a discovery cohort from the Gene Expression Omnibus. Differentially
expressed genes (DEGs) were identified; weighted gene co-expression network analysis
(WGCNA) was used to identify the co-expression modules of DEGs; and gene
function enrichment analysis, molecular crosstalk analysis, and immune cell infiltration
analysis were performed to explore the pathophysiological changes in glomeruli and
tubulointerstitia of LN patients. The crosstalk genes were validated in another RNA-
sequencing cohort. DEGs common in RNA-sequencing dataset and GSE32591 were
uploaded to the Connectivity Map (CMap) database to find prospective LN-related
drugs. Molecular docking was used to verify the targeting association between
candidate small molecular compounds and the potential target. In all, 420 DEGs were
identified; five modules and two modules associated with LN were extracted in glomeruli
and tubulointerstitia, respectively. Functional enrichment analysis showed that type I
interferon (IFN) response was highly active, and some biological processes such as
metabolism, detoxification, and ion transport were impaired in LN. Gene transcription
in glomeruli and tubulointerstitia might affect each other, and some crosstalk genes,
such as IRF7, HLA-DRA, ISG15, PSMB8, and IFITM3, play important roles in this
process. Immune cell infiltration analysis revealed that monocytes and macrophages
were increased in glomeruli and tubulointerstitia, respectively. CMap analysis identified
proscillaridin as a possible drug to treat LN. Molecular docking showed proscillaridin
forms four hydrogen bonds with the SH2 domain of signal transducer and activator of
transcription 1 (STAT1). The findings of our study may shed light on the pathophysiology
of LN and provide potential therapeutic targets for LN.
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INTRODUCTION

Systemic lupus erythematosus (SLE) is an autoimmune disease
involving multiple organs and systems, and its pathophysiology
remains unclear (Mu et al., 2015). Lupus nephritis (LN) is a well-
known complication of SLE; about 80% of children and 40% of
adults are affected by LN (Brunner et al., 2008), which is the
leading cause of morbidity and mortality in SLE patients. We
performed a retrospective study for 491 LN patients in China
and found that the cumulative probability of survival at 10 and
20 years are 77 and 45%, respectively (Zheng et al., 2012). At
present, for the treatment of SLE and LN, most clinicians use
high-dose glucocorticoids and immunosuppressants to induce
remission, followed by long-term maintenance with small doses.
However, only 30–50% of the patients achieve remission, and
10–20% of LN patients progress to end-stage renal disease
(ESRD) (Maria and Davidson, 2020). Therefore, the treatment
and prognosis of LN are generally not optimistic. It is necessary
to strengthen the study of its pathophysiology further and
find new treatment methods to improve the survival rates of
patients with LN.

In recent years, the combination of molecular biology
and information technology has led to the emergence of
bioinformatics (Li et al., 2018), which has been used to reinterpret
disease at the gene level and has revealed many clinical markers
that may be used to diagnose disease or evaluate prognosis,
especially in cancer (Zhang et al., 2018). However, there are
few studies on bioinformatics in LN. Although the etiology of
LN remains uncertain, it is strongly believed that the incidence
of LN is associated with genomic and epigenomic mechanisms
(Kwon et al., 2019). The various gene expression profiles and their
regulatory mechanisms in LN remain to be illuminated.

Here, we obtained the differentially expressed genes (DEGs)
of 32 LN renal tissues and 15 healthy renal tissues from the
GSE32591 dataset. Functional enrichment analysis, weighted
gene co-expression network analysis (WGCNA), molecular
crosstalk analysis, and immune cell infiltration analysis were
performed to explore the pathophysiological changes in
glomeruli and tubulointerstitia of LN patients. The crosstalk
genes were then validated in another cohort. Moreover, the
DEGs common in an RNA-sequencing dataset and GSE32591
were uploaded to the Connectivity Map (CMap) database to
find LN-related drugs. Molecular docking was used to verify the
association between candidate small molecular compounds and
their potential targets. The analysis of DEGs may shed light on
the pathophysiology of LN and provide potential biomarkers
for its treatment.

MATERIALS AND METHODS

Subjects and Samples
Six renal tissues were obtained from biopsies of three untreated
patients with LN and three patients with renal cancer from the
First Affiliated Hospital of Zhengzhou University. The diagnosis
of patients with LN met the 1997 American Rheumatology
Association SLE Classification Criteria and international renal

pathology criteria. Healthy renal tissues at least 5 cm from the
tumor were taken for controls, and their unaffected status was
confirmed by microscopic examination. This study was approved
by the Ethical Committee of the First Affiliated Hospital of
Zhengzhou University (2018-KY-22), and informed consent was
obtained from the patients.

Next-Generation Sequencing
Total RNA was extracted from the renal tissues using the TRIzol
LS Reagent (Invitrogen, CA, United States). After total RNA
quality check, the rRNA was removed using the Ribo-ZeroTM
rRNA removal kit (Illumina, CA, United States), and purification
and fragmentation of RNA were performed at the same time
(the fragment length was between 100 and 300 bp to facilitate
sequencing). First-strand cDNA was synthesized via reverse
transcription, followed by second-strand cDNA synthesis. After
terminal repair and purification, the cDNA library was amplified
through PCR. Finally, samples were sequenced using a 2 × 150
base paired-end configuration with the Illumina Hiseq 2500
(Illumina, CA, United States).

Gene Expression Omnibus Data
Preprocessing
The renal tissue gene expression profiles of GSE32591 from LN
patients and healthy controls were downloaded from the Gene
Expression Omnibus (GEO) database. GSE32591 is a microarray
dataset generated by the Affymetrix GeneChip Human Genome
HG-U133A Custom CDF (Berthier et al., 2012). It included 32
patients with SLE and LN and 15 healthy controls. Then, the
annotation document of corresponding platforms was used to
annotate the gene expression profiling in each dataset. Finally,
the matrix with row names as sample names and column names
as gene symbols was obtained for subsequent analysis.

Differentially Expressed Gene Analysis
For GSE32591, the DEGs in glomeruli and tubulointerstitia were
defined by p < 0.05 and log2| fold change| > 1.0 using the
“limma” package in R software 4.0.0. All the DEGs in glomeruli
and tubulointerstitia were defined as total DEGs in GSE32591.
For RNA-sequencing data, Deseq2 software was used to analyze
the DEGs by comparing the case and control groups. The DEGs
were defined by p < 0.05 and log2| fold change| > 1.0.

Weighted Gene Co-expression Network
Analysis
To explore the function of the DEGs more accurately,
we identified the co-expression modules in glomeruli and
tubulointerstitia using WGCNA, which is an algorithm that can
specially screen genes related to the clinical traits and obtain co-
expression modules with high biological significance (Langfelder
and Horvath, 2008). For glomeruli, to obtain a sufficient number
of genes for WGCNA analysis, the genes were ranked by their
log2| fold change| value. Finally, the genes with log2| fold change|
> 0.589 (| fold change| > 1.5) and p < 0.05 were selected from
the final ranked gene list. For the tubulointerstitia, the genes with
log2| fold change| > 0.380 (| fold change| > 1.3) and p < 0.05
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were selected. The WGCNA was performed using the R package
“WGCNA” (Langfelder and Horvath, 2008). First, the appropriate
soft powers β was selected according to the standard of scale-
free network using the algorithm “pickSoftThreshold.” Second,
the adjacency coefficient aij was calculated by the formula: aij = |
Sij| β . The Sij was the Pearson correlation coefficient of gene i
and gene j, β represents soft powers value. Third, a topological
overlap matrix (TOM) and the corresponding dissimilarity (1-
TOM) were calculated according to the adjacency coefficient.
Then, a hierarchical clustering dendrogram built based on 1-
TOM matrix was used to divide co-expressed genes into different
modules. Fourth, the module eigengene (ME) that represented
the expression patterns of each module was calculated and
performed a Pearson correlation analysis with the clinical trait
to obtain the modules that were significantly associated with LN.

In this study, the soft threshold was defined as 12 in
WGCNA analysis of glomeruli and 18 in WGCNA analysis
of tubulointerstitia. The other parameters were the following:
minModuleSize = 20, networkType = “unsigned,” deepSplit = 2,
and mergeCutHeight = 0.25.

Functional Enrichment Analysis
Gene Ontology (GO) analysis was used to describe the attributes
of genes and gene products, including biological process (BP),
molecular function (MF), and cellular component (CC). The
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
enrichment analysis was used to obtain pathways at the gene level.

For the co-expression modules obtained from the WGCNA,
we focused on the DEGs with log2| fold change| > 1 and p< 0.05
due to their significant changes and performed the GO and
KEGG analyses on DEGs using DAVID1. The results of the GO
analysis related to BP and KEGG pathways were focused, and
the p-value represented the significance of the GO terms and
pathways; the smaller the p-value, the higher the significance.

Molecular Crosstalk Analysis Between
Glomeruli and Tubulointerstitia
As the glomeruli and tubules are closely related anatomically,
we wanted to know whether the DEGs in the glomeruli and
tubulointerstitia can influence each other. First, we extracted
the gene expression data of DEGs from the modules identified
from WGCNA and reconstructed the matrices with row names
as sample names and column names as DEG symbols. Second,
to obtain the correlation among these matrices, we used the
principal component analysis (PCA) in SPSS 25.0 to obtain the
first principal component of each matrix. Pearson correlation
analysis was used to calculate the correlation between these first
principal components. The whole analysis process is similar to
the WGCNA “relating modules to clinical trait” analysis. Third,
to further explore the mechanism of interaction between the
glomerulus and tubulointerstitia, we selected the hub genes in
each first principal component of matrices based on the following
standards: (a) the eigengene connectivity (kME) of genes in
modules > 0.9; and (b) the correlation coefficient with the first

1https://david.ncifcrf.gov/

principal component in factor loading matrix > 0.8. Then, we
used the Search Tool for the Retrieval of Interacting Genes
(STRING) database to construct a protein–protein interaction
(PPI) network of the hub genes at the protein level. We focused
on the interaction between the hub genes located in different
modules. The hub genes with the highest degree in the network
were defined as crosstalk genes.

Immune Cell Infiltration Analysis
The CIBERSORT algorithm is an analytical tool used to estimate
the proportion of various types of immune cells in complex
tissues (such as large solid tumors) (Ali et al., 2016). Panousis
et al. (2019) have successfully used this algorithm to estimate
the proportion of blood immune cell subsets for SLE patients.
Therefore, we uploaded the gene expression data of glomeruli and
tubulointerstitia to the CIBERSORT website2 and obtained the
landscapes of immune cells in these tissues, which encompassed
T cells, B cells, monocytes, eosinophils, natural killer (NK)
cells, macrophages, plasma cells, neutrophils, dendritic cells,
and mast cells. Wilcoxon rank sum test was used to compare
the proportion of immune cells between LN renal tissues and
healthy renal tissues; p < 0.05 was considered significant.
Pearson correlation was used to evaluate the correlation between
the interferon (IFN)-induced genes and immune cells with
significantly different proportions.

Validation of Crosstalk Genes
Next-generation sequencing (NGS) technology has developed
rapidly in the past decade. It has great advantages for
discovering unknown transcripts and comparing alternative
splicing microarrays (Levy and Myers, 2016). Our team has
performed deep sequencing of three cases of LN renal tissues
and normal renal tissues and obtained a large number of
DEGs. Therefore, we used the RNA-sequencing dataset to further
validate the expression levels of crosstalk genes according to their
fold change value.

Connectivity Map Analysis and
Molecular Docking
The CMap database is a database of drug-related gene expression
profiles, and it consists of a large amount of genome-wide
transcriptional expression data of cell lines treated with small
molecular compounds to reveal the correlation among genes,
diseases, and drugs (Lamb, 2007). Based on the gene expression
profiles, researchers could quickly find the drugs with high
relevance to diseases.

To improve the accuracy of drug screening further, we
selected the common DEGs that had the same expression
trend in both GSE32591 and RNA-sequencing dataset. Then,
the common DEGs were converted to probe number HG133A
through Affymetrix3. The prober numbers of upregulated genes
and downregulated genes were transferred into the CMap website
for analysis. The p < 0.05 and Enrichment < 0 indicated that
the changes in the gene expression profiles caused by drugs were

2http://cibersort.stanford.edu/
3https://www.affymetrix.com
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FIGURE 1 | The hierarchical clustering heat maps and Venn diagrams. (A) The heat map above represents the differentially expressed genes (DEGs) in glomeruli; the
heat map below represents the DEGs in tubulointerstitia; red represents upregulation and green represents downregulation. (B) The Venn diagram of the upregulated
genes and downregulated genes in glomeruli and tubulointerstitia. LN, lupus nephritis; HCs, healthy controls; Glom, glomeruli; Tub, tubulointerstitia.

opposite to those caused by diseases, and these drugs might have
a therapeutic effect.

Molecular docking was performed using the Swissdock
website to explore whether there was a targeting association
between candidate small molecular compounds and DEGs
(Grosdidier et al., 2011). The UCSF Chimera software 1.14
was used to visualize the binding interactions between
small molecular compounds with three-dimensional (3D)
models of the target.

Statistical Analysis
The data in this article were collated from two independent
experiments. SPSS 25.0 and R software 4.0.0 were
used for statistical analysis; p < 0.05 was considered
statistically significant.

RESULTS

The Expression Profile of Differentially
Expressed Genes in GSE32591
From the GSE32591 dataset, 361 DEGs were identified
in glomeruli, including 254 upregulated genes and 107
downregulated genes. In addition, 130 DEGs were identified
in tubulointerstitia, including 105 upregulated genes and 25
downregulated genes. Hierarchical clustering heat map was used
to reveal the differences in the expressions of the DEGs between
LN and control groups (Figure 1A). Among these DEGs, 58
genes were upregulated and 13 genes were downregulated in
both glomeruli and tubulointerstitia (Figure 1B). In all, there
were 420 DEGs in GSE32591, including 301 upregulated genes
and 119 downregulated genes. Furthermore, the DEGs in the

RNA-sequencing dataset were also identified. There were 1,089
DEGs in the RNA-sequencing dataset, including 565 upregulated
genes and 524 downregulated genes (Supplementary Figure 1).

The Co-expression Modules in Glomeruli
and Tubulointerstitia
According to the previously set criteria, there were 998 genes
and 955 genes in the glomeruli and tubulointerstitia, respectively,
into the WGCNA analysis. With each module assigned a color,
a total of five modules were identified in glomeruli (excluding
a gray module that was not assigned into any cluster). Then,
a heat map was generated regarding module–trait relationships
to evaluate the association between each module and two
clinical features (LN and control). As shown in Figure 2, The
two modules “brown” and “black” were positively associated
with LN, and three modules “red,” “yellow,” and “blue” were
negatively associated with LN (Figure 2B). Similarly, two
modules in tubulointerstitia were identified; the module “brown”
was positively associated with LN, and the module “red” was
negatively associated with LN (Figure 2D).

Gene Ontology and Kyoto Encyclopedia
of Genes and Genomes Pathway
Enrichment Analyses
In glomeruli, the DEGs in the brown module and the
black module positively correlated with LN were significantly
enriched in immune response, especially against virus infection
mediated by type I IFN, such as “response to virus,” “defense
response to virus,” and “type I interferon signaling pathway.”
The KEGG pathway analysis revealed that the abnormal
signaling pathways induced during some infectious diseases,
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FIGURE 2 | Weighted gene co-expression network analysis (WGCNA) analysis. (A) The cluster dendrogram of co-expression genes in glomeruli. (B) Module–trait
relationships in glomeruli. Each cell contains the corresponding correlation and p-value. (C) The cluster dendrogram of co-expression genes in tubulointerstitia.
(D) Module–trait relationships in tubulointerstitia. Each cell contains the corresponding correlation and p-value. LN, lupus nephritis; HCs, healthy controls; Glom,
glomeruli; Tub, tubulointerstitia.

such as those caused by influenza A, herpes simplex, and
Staphylococcus aureus, were similar to the pathways deployed
during the development of LN. The red module was negatively
related to LN, and the enrichment analysis showed some
biochemical reactions and metabolic pathways are impaired in
LN, such as cellular oxidant detoxification, sodium-independent
organic anion transport, biosynthesis of amino acids, and
protein digestion and absorption. Furthermore, the enrichment
analysis for the blue module negatively related to LN also
showed the regulation of muscle contraction, response to
toxic substances, and Rap1 signaling pathway were also
abnormal (Table 1).

In tubulointerstitia, the black module positively related to LN
was enriched in the type I IFN pathway, as in the glomerulus. In
the red module negatively related to LN, the enrichment analysis
showed the DEGs were mainly enriched in cellular response to

hormone stimulus, response to cAMP, transcriptional action, and
osteoclast differentiation (Table 2).

Gene Transcription in Glomeruli and
Tubulointerstitia Was Affected by Each
Other
As shown in Figure 3A, there was a high correlation between
the various modules. The black module in the tubulointerstitia
had different effects on almost every module in the glomeruli.
Positive correlation in the glomeruli was found with the brown
module and the black module, but negative correlation with
the blue, yellow, and red modules. Similarly, the brown module
in glomeruli is positively correlated with the black module but
negatively correlated with the red module in the tubulointerstitia.
The strong correlation between these modules suggested that
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TABLE 1 | GO and KEGG enrichment analysis of DEGs in co-expression
modules of glomeruli.

Modules The
number of

DEGs

GO and KEGG terms* p-value

Brown
module

256 GO:0009615: Response to virus 6.99E–25

GO:0051607: Defense response to virus 1.01E–23

GO:0060337: Type I interferon signaling
pathway

4.68E–19

GO:0045071: Negative regulation of viral
genome replication

1.31E–16

GO:0045087: Innate immune response 2.14E–15

hsa05150: Staphylococcus aureus infection 2.92E–09

hsa05164: Influenza A 1.12E–07

hsa05152: Tuberculosis 4.49E–06

hsa05133: Pertussis 8.99E–06

hsa05168: Herpes simplex infection 3.19E–05

Black
module

8 GO:0060337: Type I interferon signaling
pathway

0.023

hsa04622: RIG-I-like receptor signaling
pathway

0.040

Red
module#

3 – –

Yellow
module

45 GO:0098869: Cellular oxidant detoxification 6.60E–04

GO:0043252: Sodium-independent organic
anion transport

0.001

GO:0055114: Oxidation-reduction process 0.003

GO:0042157: Lipoprotein metabolic process 0.004

GO:0006094: Gluconeogenesis 0.005

hsa01100: Metabolic pathways 0.001

hsa01130: Biosynthesis of antibiotics 0.002

hsa01230: Biosynthesis of amino acids 0.004

hsa04974: Protein digestion and absorption 0.007

hsa00260: Glycine, serine, and threonine
metabolism

0.013

Blue
module

33 GO:0006937: Regulation of muscle contraction 2.24E–04

GO:0032972: Regulation of muscle filament
sliding speed

0.003

GO:0009636: Response to toxic substance 0.008

GO:0055010: Ventricular cardiac muscle tissue
morphogenesis

0.040

GO:0055010: Negative regulation of insulin
receptor signaling pathway

0.046

hsa04015: Rap1 signaling pathway 0.025

∗ If GO or KEGG terms were more than five, only the top five terms were displayed.
#The red module was not enriched in significant terms. DEGs, differentially
expressed genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and
Genomes.

the genes transcribed in glomeruli and tubulointerstitia may
interact with each other. The PPI network between these
modules suggested some hub genes acted as bridges between
these modules (Figure 3B). We calculated the degree of each
hub gene using the “Network analysis” tool in Cytoscape 3.7.2.
The top 10 genes with the highest degrees were obtained,
including IRF7,HLA-DRA, ISG15, PSMB8, IFITM3,GBP2,OAS2,

TABLE 2 | GO and KEGG enrichment analysis of DEGs in co-expression modules
of tubulointerstitia.

Modules The
number of

DEGs

GO and KEGG terms* p-value

Black
module

106 GO:0060337: Type I interferon signaling
pathway

2.92E–34

GO:0009615: Response to virus 1.24E–21

GO:0051607: Defense response to
virus

2.99E–21

GO:0006955: Immune response 8.47E–19

GO:0045071: Negative regulation of
viral genome replication

3.31E–18

hsa05168: Herpes simplex infection 5.31E–15

hsa05332: Graft vs. host disease 1.61E–14

hsa05330: Allograft rejection 5.92E–14

hsa05150: Staphylococcus aureus
infection

8.92E–14

hsa04940: Type I diabetes mellitus 2.43E–13

Red
module

16 GO:0032870: Cellular response to
hormone stimulus

3.23E–10

GO:0051591: Response to cAMP 6.58E–08

GO:0006366: Transcription from RNA
polymerase II promoter

3.12E–06

GO:0045944: Positive regulation of
transcription from RNA polymerase II
promoter

9.67E–06

GO:0035914: Skeletal muscle cell
differentiation

1.04E–05

hsa05166: HTLV-I infection 3.19E–04

hsa04380: Osteoclast differentiation 7.34E–04

hsa05031: Amphetamine addiction 0.004

hsa04010: MAPK signaling pathway 0.005

∗ If GO or KEGG terms were more than five, only the top 5 terms were
displayed. DEGs, differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto
Encyclopedia of Genes and Genomes; MAPK, mitogen-activated protein kinase.

SLC27A2, SLC15A3, and IFI44; hence, these genes were defined as
crosstalk genes.

Performance of Immune Cell Infiltration
Analysis
As mentioned above, the type I IFN response was very significant
in LN. Considering that some immune cells play salient roles in
the type I IFN response, we used the CIBERSORT algorithm to
estimate the proportion of various types of immune cells in the
kidney and explore their relationship with IFN-induced genes.
The results showed that the number of monocytes increased
significantly in the glomeruli of the LN group compared with that
in the control. Moreover, the number of activated NK cells was
also increased. On the contrary, the number of memory B cells, T
follicular helper cells (Tfh cells), T regulatory cells (Tregs), resting
NK cells, resting dendritic cells, and resting memory CD4 T cells
was decreased (Figure 4A). In the tubulointerstitia, the number
of M1 and M2 macrophages, gamma delta T cells, and resting
mast cells was increased, whereas that of CD8 T cells, Tfh cells,
and resting dendritic cells was decreased (Figure 4B).
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FIGURE 3 | Molecular crosstalk analysis. (A) The correlation between modules in glomeruli and tubulointerstitia. (B) The interaction of hub genes located in various
modules. Glom, glomeruli; Tub, tubulointerstitia; PC1, first principal component. Blue lines represent inclusion relationship of modules to hub genes; red lines
represent the interaction between the hub genes located in different modules; magenta lines represent the interaction between various modules; red represents
upregulation; blue represents downregulation. “*” represents p < 0.05, “**” represents p < 0.01, “***” represents p < 0.001.
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FIGURE 4 | Immune cell infiltration analysis. (A) The proportion of the immune cell infiltration in glomeruli. (B) The proportion of the immune cell infiltration in
tubulointerstitia. (C) The correlation between the crosstalk genes and eight types of immune cells in glomeruli. (D) The correlation between the crosstalk genes and
seven types immune cells in tubulointerstitia. “*” represents p < 0.05, “**” represents p < 0.01, “***” represents p < 0.001.

The Pearson correlation analysis showed that the IFN-induced
genes, IRF7, ISG15, IFITM3, OAS2, and IFI44, in the crosstalk
gene set were associated with immune infiltration. In glomeruli,
these hub genes were positively correlated with monocytes but
negatively correlated with memory B cells and Tregs (Figure 4C).
In the tubulointerstitia, the IFN-induced genes were positively
correlated with M1 and M2 macrophages (Figure 4D).

Validation of Crosstalk Genes by
Next-Generation Sequencing
To verify our analysis, we extracted the expression level of these
crosstalk genes using NGS and found that most crosstalk genes
had the same changes in the RNA-sequencing dataset (Table 3),
illustrating a satisfactory reliability of the result. The expression
levels of HLA-DRA, GBP2, and SLC27A2 did not differ in our
sequencing (p > 0.05), but they showed the same trends as
microarray sequencing. In the future, we will expand the sample
size to validate these crosstalk genes.

Candidate Lupus Nephritis-Related
Small Molecular Compounds
To identify LN-related small molecular compounds accurately,
we integrated the DEGs between GSE32591 and RNA-sequencing

dataset and obtained 50 common DEGs, including 38
upregulated genes and 12 downregulated genes (Table 4).
Most of the common DEGs were IFN-induced genes, and their
biological processes are mainly related to type I IFN signaling

TABLE 3 | The FC value of crosstalk genes in GSE32591 and
RNA-sequencing dataset.

Glom Tub Kidney

FC p-value FC p-value FC p-value

IRF7 3.138 < 0.001 1.579 < 0.001 1.989 0.004

HLA-DRA 1.876 < 0.001 2.152 < 0.001 1.015 0.915

ISG15 6.561 < 0.001 9.980 < 0.001 5.732 < 0.001

PSMB8 1.543 0.004 2.836 < 0.001 1.780 < 0.001

IFITM3 2.530 < 0.001 3.278 < 0.001 1.707 0.004

GBP2 3.706 < 0.001 1.509 0.007 1.042 0.878

OAS2 5.979 < 0.001 1.911 < 0.001 3.621 < 0.001

SLC27A2 0.401 < 0.001 0.988 0.895 0.655 0.607

SLC15A3 2.359 < 0.001 1.173 < 0.001 2.228 < 0.001

IFI44 9.088 < 0.001 7.989 < 0.001 3.997 < 0.001

FC, fold change; Glom, glomeruli; Tub, tubulointerstitia.

Frontiers in Genetics | www.frontiersin.org 8 December 2020 | Volume 11 | Article 583629

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-583629 December 9, 2020 Time: 18:37 # 9

Yao et al. Bioinformatics of Lupus Nephritis

TABLE 4 | The common DEGs in GSE32591 dataset and
RNA-sequencing dataset.

Expression Genes

Up STAT1, IFI44L, MX1, IFI44, RSAD2, IFI6, MX2, HERC6,
ISG15, OAS2, OAS3, OAS1, HERC5, XAF1, IFI27, IFIT1,
IFITM1, IFIT3, PARP12, SAMSN1, RTP4, HLA-DQA1,
NNMT, PTGER2, LTF, SRGN, PSMB9, TFPI2, SLC15A3,
UCP2, ARPC1B, DDX60, LY6E, BST2, MMP7, CFB,
UBE2L6, CLU

Down ATF3, EGR1, ZFPM2, FOS, EGR3, CHI3L1, MYL9, TNNC1,
FOSB, JUNB, JUN, ZFP36

DEGs, differentially expressed genes.

TABLE 5 | Ten small molecular compounds for lupus nephritis obtained from the
Connectivity Map (CMap) database.

Rank CMap name n Enrichment p

1 Geldanamycin 15 0.661 0

2 Tanespimycin 62 0.583 0

3 Proscillaridin 3 −0.983 0.00002

4 H-7 4 0.922 0.00004

5 Lisuride 5 −0.807 0.00062

6 5155877 4 −0.860 0.00068

7 Meclocycline 4 −0.859 0.00068

8 Doxorubicin 3 0.921 0.00106

9 Lycorine 5 −0.775 0.00106

10 Lomustine 4 −0.819 0.00203

pathway (Supplementary Figure 2). Then, we queried the
CMap database using the upregulated and downregulated
genes and identified some compounds that might influence
LN; the 10 compounds are shown in Table 5. Doxorubicin and
H-7 were the first two small-molecule drugs with the highest
enrichment score, and proscillaridin was the small molecular
drug with the lowest enrichment scores; their 3D chemical
structures were also downloaded from Pubchem database
(Figures 5A–C).

Targeting Association Between Signal
Transducer and Activator of
Transcription 1 and Proscillaridin via
Molecular Docking
Proscillaridin was reported to inhibit signal transducer and
activator of transcription (STAT)3, and the protein STAT1
encoded by the upregulated DEG STAT1 has been shown to
have a structure similar to that of STAT3. We speculated
that proscillaridin could also inhibit STAT1. Molecular docking
was performed to preliminarily verify whether there is direct
targeting between compounds and the protein. The results
showed that the ARG586, HSD675, and ALA676 residues
form hydrogen bonds with proscillaridin, which indicated
that proscillaridin mainly interacts with the SH2 domain of
STAT1 (Figure 6).

DISCUSSION

In recent years, with the wide use of immunosuppressants and
biological agents, the prognosis and survival rate of patients
with LN have improved; however, 10–20% of the patients with
LN progress to ESRD, which is linked to a heavy burden and
morbidity (Aljaberi et al., 2019). So, there is a need to study
the pathophysiology and discover new therapeutic methods to
prevent LN progression and prolong patient survival. Therefore,
we performed sequencing in LN renal tissues and healthy renal
tissues to identify DEGs and explore their roles in LN.

Through GO and KEGG pathway enrichment analyses of
DEGs, we found that innate and adaptive immune response,
especially against virus infection mediated by type I IFN, was
highly active in both glomeruli and tubulointerstitia, such as
the brown module and the black module in glomeruli and the
black module in tubulointerstitia. Besides, the results also showed
that the metabolism process of carbohydrate, protein, and lipid
in LN patients was disordered, and some biochemical reactions
involving detoxification were impaired. Interestingly, we found
the blue module in glomeruli was enriched in the regulation
of muscle contraction, which indicated that the contraction of
mesangial cells (Jankowski et al., 2003), podocytes (Saleem et al.,
2008), and capillaries might be dysregulated. This may lead to
a decrease of the glomerular filtration rate (GFR) and might
be one of the causes of urine protein in LN patients (Stockand
and Sansom, 1998). In the tubulointerstitia, the red module was
enriched in response to hormone stimulus and cAMP. Many
types of ion transport are mediated via cAMP, such as Na+, K+,
Ca2+, and Cl− (Li et al., 2008). The dysregulation might affect the
tubules, then the filtration and reabsorption of tubules would be
impaired in LN patients.

Glomerular lesions and tubulointerstitial lesions often
occurred together in LN (Cimbaluk and Naumann, 2017), so we
wanted to explore whether the two lesions were related at the
genetic level. Therefore, we further used PCA and correlation
analysis to explore the interaction between glomeruli and
tubulointerstitial modules. There was a high correlation between
the various modules that suggested that the gene transcription
in glomeruli and tubulointerstitia may interact with each other.
Combined with gene enrichment results, clearly, the high
IFN response in glomeruli and tubulointerstitia revealed a
mutual promotion. For a long time, we focused on the fact
that IFN could result in autoimmune inflammation in LN
(Eloranta et al., 2013); however, our molecular crosstalk analysis
showed that the IFN response might also affect some biological
processes, such as metabolic pathways, muscle contraction, and
detoxification process in glomeruli. In the tubulointerstitia,
the cellular response to hormone stimulus and cAMP and
transcriptional activation were highly negatively correlated
with IFN response, which indicated that the IFN response
might have adverse effects on these biological processes in the
tubulointerstitia. Most crosstalk genes interpreted from the
PPI analysis were IFN-induced genes, which also indicated
that IFN-induced genes played an important role in the
transcription of each module. Except the IFN-induced genes,
we also found some new genes, such as SLC27A2, SLC15A3,
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FIGURE 5 | Three-dimensional (3D) chemical structures of the three molecules. (A) Doxorubicin. (B) Proscillaridin. (C) H-7.

FIGURE 6 | The docking simulation result showing hydrogen bonding between proscillaridin and the ARG586, HSD675, and ALA676 residues in the SH2 domain of
signal transducer and activator of transcription 1 (STAT1).

HLA-DRA, and PSMB8, which also might be important in kidney
gene transcription.

To further explore the relationship between type I IFN
response and immune cells in kidney, immune cell infiltration
analysis was performed, and the results showed monocytes were
the prominent differentially expressed cells in glomeruli and
were positively correlated with IFN-induced genes. Monocytes
are important subsets of immune cells, participate in various
types of immune responses, thereby playing an important role in
autoimmune diseases (Auffray et al., 2009). Uccellini and García-
Sastre (2018) observed high IFN response in inflammatory
monocytes during infection. Monocytes also have been reported
to produce IFN and mediate tissue damage in H1N1 IAV-infected
mouse models (Lin et al., 2014). Therefore, we speculated that
there might be a mutual promotion between the monocytes and
the high IFN response in glomeruli. However, we found that these
IFN-induced genes seemed to be negatively correlated with Tregs
and memory B cells. The function of Tregs is that they suppress
autoreactive lymphocytes, especially CD8+ T cell and B cell
activation, and maintain self-tolerance (Ohl and Tenbrock, 2015).
It has been reported that the defects in Tregs or a lack of Tregs

is associated with SLE pathogenesis (Ohl and Tenbrock, 2015).
So we speculated that the decrease of Tregs in LN leads to the
weakening of the inhibitory effect on B cells, thereby enhancing
the B cell intrinsic effect for the augmentation of IFN. Besides, the
reduction of memory B cells caused by the disturbance of B cell
homeostasis has been observed in active SLE (Odendahl et al.,
2000). We speculated that the decreased memory B cells might
be related to the abnormal activation of B cells. The activated
B cells circulate in the peripheral blood and participate in the
formation of autoantibodies and IFN response (Eloranta et al.,
2013). Therefore, there is a negative correlation between memory
B cells and IFN-induced genes. Macrophages were found to be
mainly elevated in the tubulointerstitia and positively correlated
with IFN-induced genes. There are two major polarization states
for macrophages; “M1” macrophages produce a lot of pro-
inflammatory cytokines including IFN-α to cause tissue damage.
On the contrary, “M2”-type macrophages can repair tissue
damage by secreting anti-inflammatory cytokines such as IL-10
and CCL18 (Wen et al., 2019). The increased numbers of M1
and M2 macrophages will cause repeated injury and repair of the
tubulointerstitia, leading to the fibrosis of tubulointerstitia.
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Through CMap analysis, 10 drugs (geldanamycin,
tanespimycin, proscillaridin, H-7, lisuride, 5155877,
meclocycline, doxorubicin, lycorine, lomustine) were identified
that might induce the development of LN (enrichment
score > 0) or which may be potential drugs for the treatment
of LN (enrichment factor < 0). Doxorubicin and H-7 were the
first two small-molecule drugs with the highest enrichment
scores, which indicated that the use of these small molecules or
their analogs might induce or aggravate LN. Huang et al. (2004)
reported a patient with SLE developing lupus-like symptoms,
such as fever, erythema, and exfoliative dermatitis, with a positive
lupus band test after using doxorubicin. Yang et al. (2009)
found that doxorubicin treatment in mice significantly increased
albuminuria and decreased podocytes. These results showed that
patients with LN should be cautious when using doxorubicin.
H-7 is a protein kinase inhibitor (Steele and Brahmi, 1988) and
has not been reported to be associated with LN. Proscillaridin
was the first small molecular drugs with the lowest enrichment
score, indicating that it might be a potential therapeutic strategy
for LN. In short, the abovementioned drugs might affect LN
through a variety of small molecular pathways.

The DEG STAT1 was upregulated in the common DEGs
(Table 2). STAT1 is known to occupy a central position in the
type I IFN signaling pathway. If drugs that can inhibit STAT1
and change the high IFN-response signature are identified, they
may be considered as potential candidate drugs for LN treatment.
Proscillaridin belongs to cardiac glycosides (Maryam et al., 2018),
and Ye et al. (2011) have reported that cardiac glycosides could
potently inhibit the induction of the IFN genes induced by virus,
double-stranded RNA, and double-stranded DNA, which was
consistent with our analysis. Proscillaridin was also reported
to have an inhibitory effect on STAT3 (Maryam et al., 2018).
As STAT1 and STAT3 belong to the STAT protein family and
have similar structures, and proscillaridin reverses the high
IFN-response signature, we speculated that it could also inhibit
STAT1. Through molecular docking, we found that proscillaridin
formed four hydrogen bonds with the SH2 domain of STAT1. The
SH2 domain is the most critical and conserved domain in STAT1,
located between amino acid residues 577 and 683; it is vital for
the activation and function of STAT1 (Levy and Darnell, 2002).
Proscillaridin might inhibit the activation of STAT1 and the type
I IFN signaling pathway by binding to the SH2 domain. However,
more details of the specific interactions between proscillaridin
and STAT1 need to be confirmed by future experiments.

However, there remain several limitations that need to
be resolved in the future. For example, our research was a
bioinformatic analysis based on sequencing data; therefore,
further verifications by cell and animal experiments are needed.
Besides, whether the small molecular compounds screened in
our study could influence LN and the specific interactions and
mechanisms between proscillaridin and STAT1 need further
confirmation. Next, better-designed experiments need to be
carried out based on our findings.

In conclusion, we found that type I IFN response was
highly active, and some biological processes such as metabolism,
detoxification, ion transport were impaired in LN through the
WGCNA analysis of DEGs. The gene transcription in glomeruli

and tubulointerstitia might affect each other, and some crosstalk
genes, such as IRF7, HLA-DRA, ISG15, SLC15A3, and IFITM3,
play important roles in this process. Monocytes and macrophages
may be associated with high IFN response in kidney tissues.
Proscillaridin may play a therapeutic role by targeting STAT1.
Therefore, the analysis for DEGs provided a new perspective for
the pathophysiology and treatment of LN.
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